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Outline of the talk
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@ Pointer structures and A-calculus

© Inductive and Coinductive Types
@ Games model

@ Winning conditions

@ Conclusions & Perspectives
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I. INTRODUCTION
1. Logical motivations



Tarski's notion of truth.

T

L

AN B is true

AV B is true

—A is true

Seems rather circular. . .

is true

is false

A is true and B is true

A is true or B is true

A is false
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Games

Two players are arguing over the validity of a formula F.

Defender
Verifier
dloise
Eve
Player

Player
Opponent

Attacker
Falsifier
Vbélard
Adam
Opponent

“F is truel!”
“F is false!”
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Rules
A A B
°B O attacks B
A V B
P O : “Do you defend Aor B 7"
° P : "l defend A"
oA O attacks A
-A
o O passes hand to P
LY\ P attacks A

A formula is “true” if Player has a total strategy.



Backtrack

Players can backtrack to an earlier position
VxA(x) v Ix-A(x)

/ ° O attacks
T \ P defends WxA(x)

00 O attacks A(xp)

00 P defends —A(xp)

This introduces repetitions.
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Repetitions may lead to non-termination
Consider the following play:

dx e N A(x)
T O attacks
g o0 P instanciates x by 0
lA(o) O refutes A(0)
| ol P backtracks with x =1
lA(l)
o2
L/‘\(2)
AN

This strategy should be invalid.
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Statement of the issue

Issue

What are the natural constraints on strategies to ensure the
finiteness of their debates ?

The right answer depends on the considered formulas:
© Finite or well-founded formulas

@ Infinite or non-well-founded formulas ((co)inductive types)
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2. Semantic motivations
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Game semantics

Game semantics is the study of the interactive behaviour of a
program against its environment :

o A type A is interpreted by a game
@ A program M : A =- B is interpreted as a strategy

Togother with a notion of composition of strategies.
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Composition

Composition is defined by parallel interaction plus hiding.

]B not B E not B

aq
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Composition

Composition is defined by parallel interaction plus hiding.

not not

B=—7BB B——B
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Composition

Composition is defined by parallel interaction plus hiding.

B not B E not IB
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Composition

Composition is defined by parallel interaction plus hiding.

B not B E not ]:B
1

q i
( i
1t |
£ £ /

it



Composition
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Composition is defined by parallel interaction plus hiding.

not;not
B

B

q

\

\

/ |
|

|

/

/

q
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Semantics of proofs

Game semantics is the study of the interactive behaviour of a
program proof against its environment counter-proofs :

o A type formula A is interpreted by a game
o A pregram proof M : A= B is interpreted as a total strategy

Togother with a notion of composition of strategies.
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Composition may not preserve totality

a
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Composition may not preserve totality

A=——= B B="=(C
[ ]
[} [ ]
[ ]
[ ]
[ [ ]
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Composition may not preserve totality

A=——= B B="=(C
[ ]
[} [ ]
[ ]
[ ]
[ [ ]
[ [ ]
[} [
[} [ ]
[} [ ]
[} [ )
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Composition may not preserve totality
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Semantics of proofs

To get a model of a proof system, we need to:

Issue

Isolate classes of total strategies which are stable under
composition.

Equivalently:

Issue

Find constraints on strategies to ensure the finiteness of their
debates.
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II. POINTER STRUCTURES AND NORMALIZATION

1. Pointer structures
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Pointer structures

To study finiteness, we forget the identity of moves and focus on
pointers

@ Technical simplifications,
o Sufficient to study termination,

e Similar to parity pointer functions [HHMO06] and
interaction sequences [Coq95].

This simplification amounts to a collapse operation on plays.



The collapse

We consider only the depth of moves.

(B=—=B)=—o0

/q

\_‘/

tt

q 0
( |
ff °

We lose notions of innocence and determinism. ..
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The collapse

We consider only the depth of moves.

(B x B)=—=o0)=—o0

7

e}

We lose notions of innocence and determinism. ..



The infinite interaction of 60
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2. Pointer structures and A-calculus



The unary A-calculus

Collapsing amounts to restricting to the unary \-calculus.

0 = o
k+1 = k—o
—— Unary A-calculus
Fr-M:k+1 Fr=N:k ax
M- MN O PP Mox:kbx:k

Mx:kEM:0 r=m:k Fr=N:k

lam plus
Fr=XMx.M: k41 FrNEM+N: k
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Syntactic collapse

Each simply typed term can be collapsed, along with its possible
reductions.

A1 x0-M)* = Ax(M[x/xi])*
(M Uy ... Up)* = M (Uf+--+U))

x* = x

non-deterministic sum

~

breaking innocence
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The Pointer Abstract Machine

The PAM [DHR96] connects pointer structures with unary
A-calculus.

0. o (M.F(Ax.fF(Ay.x)))(Ag.g(Az.g(Aw.2)))
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The Pointer Abstract Machine
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The Pointer Abstract Machine

The PAM [DHR96] connects pointer structures with unary
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The Pointer Abstract Machine

The PAM [DHR96] connects pointer structures with unary

A-calculus.

0. o (M. F(Ax.F(Ay.x
1. /‘0 (AM.F(Ax.fF(Ay.x
2. \o\ (M FOxF(\y.x
3. T \ (M.F(Ax.F(Ay.x
s o // (M FOF(

5. o (M F(Ax.F(Ay.x
6. ° (Af.F(Ax.F(Ay.x
7. /0 (AMF.F(Ax.F(Ay.x
8. \o (AF.FOxF(y.x
9. o (MF.F(Ax.F(Ay.x

Ag.g(A\z.g(Aw.z
Ag.g(Az.g(Aw.z
Ag.g(Az.g(Aw.z
2g.g(Az.g(Aw.z

Ag.g(Az.g(Aw.z
Ag.g(Az.g(Aw.z
Ag.g(Az.g(Aw.z
Ag.g(Az.g(Aw.z

e e e e e e e e

Ag.g(Az.g(Aw.z
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The Krivine Abstract Machine

The PAM also relates to some states of the KAM.

M F(Ax.f
ML F(Ax.f
A fF(x.f
ML F(Ax.f

(AfAf(
(Af.1(
(AMf.1(

\ | ( (

5 // (MF.F(Ox.F

. (MF.F(Ox.f

° (Af1(
(Af.1(
(AfAf(
(Af1(

A

ML F(Ax.f
AL F(Ax.f
M. F(Ax.f
ML F(Ax.f

© ® N ok w = o
A~ N N S N S N~

Ag.g(Az.g(Aw.z
Ag.g(Az.g(Aw.z
Ag.g(Az.g(Aw.z
Ag.g(Az.g(Aw.z

Az.g(Aw.z
Ag.g(Az.g(Aw.z
Ag.g(Az.g(Aw.z
Ag.g(Az.g(Aw.z

~— v N e N e N e N
~— N N e N N N e N
N N N N N N N N N
AN AN N AN AN AN N AN /S A/~

Ag.g(Az.g(Aw.z
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The Krivine Abstract Machine

The PAM also relates to some states of the KAM.

© 0o N kWb BEO

M3 x N3
(M. F(Ax.fF(Ay.x)))(Ag.g(Az.g(Aw.z)))
(M.F(Ax.f(Ay.x)))(Ag.g(Az.g(Aw.2)))
(A F(Ax.F(Ay.x)))(A\g.g(Az.g(Aw.2)))
(M.F(Ax.f(Ay.x)))(Ag.g(Az.g(Aw.z2)))
(M .F(Ax.f(Ay.x)))(Ag.g(Az.g(Aw.2)))
(A fF(x.fF(Ay.x)))(A\g.g(Az.g(Aw.2)))
(M.F(Ax.F(Ay.x)))(Ag.g(Az.g(Aw.z)))
(A F(Ax.f(Ay.x)))(A\g.g(Az.g(Aw.2)))
(A F(Ax.F(Ay.x)))(A\g.g(Az.g(Aw.2)))
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The Krivine Abstract Machine

The PAM also relates to some states of the KAM.

© o N @ kWb = O

A
//
/s

\

\
o

M3 % N3

N3 x ME—Ns
M .f
M .f
M .f

( Ax.f
(

(
(MF.f
(

(

(

(

Ax.f
Ax.f
Ax.f
Ax.f
Ax.f
Ax.f
Ax.f

Ay.x)))(Ag-g(Az.g(Aw.z)))
Ay.x)))(N\g.g(Az.g(Aw.z)))
Ay x)))(A\g.g(Az.g(Aw.z)))
Ayx)))(Ag.g(Az.g(Aw.z)))
AL F Ay.x)))(Ag.g(Az.g(Aw.z)))
Af.f N)(Ag-g(Az.g(Aw.z2)))
Aff ))(Ag-g(Az.g(Aw.z)))
))(Ag-g(Az.g(Aw .2)))

M .f

Ay.x)))(\g.g(Az.g(Aw.z

Ay.x))(Ag.g(Az.g(Aw.z

Ay.x)))(Ag.g(Az.g(Aw.z

~ o~ o~ o~ o~ o~ o~ o~
~ o~ o~ o~ o~ o~ o~ o~

)
)
)
)
)
)
)
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The Krivine Abstract Machine

The PAM also relates to some states of the KAM.

© 0 N oG R DN

M3*N3

f—=N
Mf|—>N3 NEHM 3

(AfF(Ax.F(Ay.x)))(Ag-g(Az.g(Aw.2)))
(A F(Ax.fF(Ay.x)))(A\g.g(Az.g(Aw.2)))
(M. F(Ax.fF(Ay.x)))(Ag.g(Az.g(Aw.z)))
(M.F(Ax.f(Ay.x)))(Ag.g(Az.g(Aw.z2)))
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(M.F(Ax.f(Ay.x)))(Ag.g(Az.g(Aw.z2)))
(M.F(Ax.f(Ay.x)))(\g.g(Az.g(Aw.2)))
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The Krivine Abstract Machine

The PAM also relates to some states of the KAM.

0.

© 00 N ook

/b43 * /\[3

f—=N
Mf?—>N3 Ng’_’M 3

N MfHNfHMZ
(M. F(Ax.fF(Ay.x)))(Ag.g(Az.g(Aw.z)))
(M. F(Ax.f(Ay.x)))(Ag.g(Az.g(Aw.2)))
(A fF(Ax.fF(Ay.x)))(A\g.g(Az.g(Aw.2)))
(M.F(Ax.F(Ay.x)))(Ag.g(Az.g(Aw.z)))
(M.F(Ax.fF(Ay.x)))(Ag.g(Az.g(Aw.z2)))
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The Krivine Abstract Machine
The PAM also relates to some states of the KAM.

= o

>

© o N oo

/\/13 * /\/3
N3 x ME—Ns

fr—N
Mf,_,N3 Ng»—>l\/l 3

g»—>M;HN3

(A.F(Ax.f(Ay.x))
(AMF.F(Ax.f(Ay.x))
(Af.F(Ax.f(Ay.x))
(Af.F(Ax.f(Ay.x))
(Af.F(Ax.f(Ay.x))

(\g.g(\z.g
(\g.g(Az.g
(A\g.g(Az.g
(\g.g(Az.g
(Ag-8(

)
)
)
)
J(\e-g(A\z.g

~—~ o~~~
>
N
— ~— ' — ~—
~— ~— — ~— ~—
~— — — ~— ~—
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The Krivine Abstract Machine
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The PAM also relates to some states of the KAM.

0.

-/
)

[¢]

a
|

(@]

e e

M3*N3

fr— N
ME—Ms NgHM ’

X»—)Ng)_”\/lzf}—),\l3
/\[3 * /b4
f—N-
g—mi N XHNfH% ’
x— N, —M
My xNy



25/46

Agents

..which collapses to an operation on integers.

0. 3% 3

(o)
[\
N ,
1. /. 3% 5
3
2. o 3 2
2 * 2
3
[ )

| o
/

4. o ) 2 ) 2
1 L)
[ ]

/

/o
K\

e

CXNo O
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Agents

Definition J

An agent is a tree of integers.

Theorem
© This reduction bisimulates visible pointer structures

@ This reduction always terminates (very short proof)
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Corollaries

P-views correspond to branches of cut-free terms
Definition
© Finite strategies have a finite number of P-views
@ Bounded strategies have bounded P-views
© Nceetherian strategies have well-founded P-views

Theorem (Compacity)

In case of innocent strategies in finite arenas, the three notions are
equivalent.

Theorem

These three classes are stable by composition, and ensure
preservation of totality.
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III. INDUCTIVE AND COINDUCTIVE TYPES

1. A logic with fixpoints : ulJ
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uld = LJ 4 p-calculus

@ Formulas are built by the following grammar:
ST :=S=T|S+T|SXT | puX.T|vX.T|X|1]0

@ Bound type variables have to occur positively

Examples
bool = 1+1
nat = pX.1+X
list(A) = pX1+AxX
stream(A) = vX.1+AxX
tree = pX.(uY.1+XXxY)
tree(stream(bool)) = pX.(vZ.1+Dbool x Z)x (uY.1+X X Y)
? = uX.((X = bool) = bool)
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Deduction rules

Deduction rules are LJ's rules, plus :

— Fixpoints
Me TpX.T/X] rTIA/X]FA
Br  ———

M= uX. T FuX.THEA

i

MTWX.T/X][FB A TIA/X]
14 —_—
VXTEB | LAFuX.T

Functors
NNAFB NBEA

[T]
M, T(A) - T(B) [, N(A) - N(B)

[M]

Regarded as a very explicit total programming language.



Cut reduction

™2

T T TIA/X]F A
—— T
M- TpX.T/X]  TIA/X] - A m uX.THA
Br o~ [7]
M upX.T uX.TFA M- TpX.T/X]  TpX.T/X] - TIA/X] ™
Cut Cut _
r=A re= T[A/X] TA/X] - A
Cut
r=A

@ We add unfolding reductions for functors
@ Rules for v are dual

@ This is a 2-cell in the diagram of initial algebra !
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2. Games and recursive types
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McCusker's model of recursive types

The basic ingredients:

@ Type with free variables are interpreted
by strong functors

@ Recursive types are obtained by infinite
expansion of these functors
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Our model of recursive types

uX.T
The basic ingredients:
o Type with free variables are interpreted
by open arenas
T

@ Open arenas automatically give rise to
strong functors

@ Recursive types are then obtained by a
loop construction

The two resulting arenas are isomorphic by Laurent’s theorem.




Example

The cyclic arena of boolean lists

S
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Example

The cyclic arena of boolean lists

@

Cons
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The cyclic arena of boolean lists



Example

The cyclic arena of boolean lists

Q
4Q4§H@

Nil
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Example

The cyclic arena of boolean lists
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(Co)inductive types = recursive types + totality

A complete model of induction and coinduction should consist in
the following components:

@ A model of recursive types

@ A way to ensure totality

@ Then, recursive types should split into inductive and
coinductive types

We will use winning conditions, taking inspiration from parity
games.
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3. Winning conditions
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Winning for arena games

Definition
We define winning plays by:
@ s is winning if each of its threads is winning
@ s is winning on A X B or A+ B if it is winning on A and B
@ s is winning on A = B if (if it is winning on A then it is
winning on B)
A strategy o is winning if all its infinite plays are winning.

Theorem
Total winning strategies are stable under composition.
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Winning for arena games

For the moment, we get the same category of games:

Theorem

On finite games (without loops), winning strategies are exactly
ncetherian strategies.

How to extend winning to the loop construction ?
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Least fixed point

pX.A[X]
s is winning if and only if both these conditions
are satisfied :
A P @ There is N € N such that no path of s

crosses the external more than N times,
and
@ s is winning on A

This defines an initial algebra for A[X].
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Greatest fixed point

VX A[X]
s is winning if and only if one of these condi-
tions are satisfied :
o @ For any bound N € N, there is a path of
A s crossing the external loop more than N
times, or
\ @ s is winning on A

This defines an terminal coalgebra for A[X].
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Example

List(B) = uX.1+ (B x X) | Stream(B) = vX.1+ (B x X)
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Results

Theorem
Soundness and completeness:
© Winning games defines a sound model for ulLJ

@ The model is complete with respect to an infinitary extension
of ulJ

© However, it is not faithful

Theorem
Definability terminates on all formulas where
@ 1 only appears in positive position

@ v only appears in negative position

Thus on these formulas, cut is admissible.
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IV. CoNCLUSIONS & PERSPECTIVES
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Achievements

@ An account of totality in game semantics [CHQ9]

@ A games model of inductive and coinductive types [Cla09a]
@ Categories with strong types and p-closed categories [Cla09b]
@ Open functors

[CHO9] Pierre Clairambault and Russ Harmer. Totality in arena games. Annals
of Pure and Applied Logic, 2009.

[Cla09a] Pierre Clairambault. Least and greatest fixpoints in game semantics.
In FOSSACS, pages 16-31, 2009.

[Cla09b] Pierre Clairambault. Least and greatest fixpoints in game semantics.
In FICS, 2009.



Perspectives

Game semantics and pointer structures.

@ Use agents to evaluate lengths of linear head reduction
sequences

o Link agents with revealed game semantics
Fixed points.
@ Prove that winning conditions on P-views are sufficient

@ Improve and simplify the categorical model for fixed points
(the “strengthening conjecture”)

@ Generalize open functors
@ Try to achieve completeness
@ Investigate isomorphisms

Dependent types. ..
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Faithfullness

Consider the following programs:

let rec iter f n b =
if n = 0 then b
else iter £ (n-1) (f b)

let rec iter’ f n b =
if n = 0 then b
else not (iter’ f (n-1) (f (mot b)))

@ [not (iter £ n (not b))] = [iter’ £ n b]

@ But they cannot be convertible to each other.
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