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Abstract. We show that a version of Martin-Löf type theory with an extensional identity
type former I, a unit type N1, Σ-types, Π-types, and a base type is a free category with
families (supporting these type formers) both in a 1- and a 2-categorical sense. It follows
that the underlying category of contexts is a free locally cartesian closed category in a
2-categorical sense because of a previously proved biequivalence. We show that equality
in this category is undecidable by reducing it to the undecidability of convertibility in
combinatory logic. Essentially the same construction also shows a slightly strengthened
form of the result that equality in extensional Martin-Löf type theory with one universe
is undecidable.

1. Introduction

In previous work [5, 6] we showed the biequivalence of locally cartesian closed categories
(lcccs) and the I,Σ,Π-fragment of extensional Martin-Löf type theory. More precisely, we
showed the biequivalence of the following two 2-categories.

• The first has as objects lcccs, as arrows functors which preserve the lccc-structure
(up to isomorphism), and as 2-cells natural transformations.
• The second has as objects categories with families (cwfs) [8] which support exten-

sional identity types (I-types), Σ-types, Π-types, and are democratic, as arrows
pseudo cwf-morphisms (preserving structure up to isomorphism), and as 2-cells
pseudo cwf-transformations. A cwf is democratic iff there is an equivalence between
its category of contexts and its category of closed types.

This result is a corrected version of a result by Seely [13] concerning the equivalence of
the category of lcccs and the category of Martin-Löf type theories. Seely’s paper did not
address the coherence problem caused by the interpretation of substitution as pullbacks [7].
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As Hofmann showed [9], this coherence problem can be solved by extending a construction
of Bénabou [2]. Our biequivalence is based on this construction.

Cwfs are models of the most basic rules of dependent type theory; those dealing with
substitution, assumption, and context formation, the rules which come before any rules for
specific type formers. The distinguishing feature of cwfs, compared to other categorical
notions of model of dependent types, is that they are formulated in a way which makes the
connection with the ordinary syntactic formulation of dependent type theory transparent.
They can be defined purely equationally [8] as a generalised algebraic theory (gat) [3], where
each sort symbol corresponds to a judgment form, and each operator symbol corresponds to
an inference rule in a variable free formulation of Martin-Löf’s explicit substitution calculus
for dependent type theory [11, 15].

Cwfs provide a basic theory of dependently typed n-place functions. We remark that
non-dependent cwfs, in which there is a fixed set of types, are closely related to (cartesian)
multicategories, where the terms of the cwf correspond to multiarrows. A difference is
however that a multiarrow always comes with a finite list of input objects, whereas the
cwf-axioms do not force the input context of a term to be a list.

Cwfs are not only models of dependent type theory, but also suggest an answer to the
question what dependent type theory is as a mathematical object. Perhaps surprisingly,
this is a non-trivial question, and Voevodsky has remarked that “a type system is not a
mathematical notion”. There are numerous variations of Martin-Löf type theory in the
literature, even of the formulation of the most basic rules for dependent types. There are
systems with explicit and implicit substitutions, and there are variations in assumption,
context formation, and substitution rules. There are formulations with de Bruijn indices
and with ordinary named variables, etc. In fact, there are so many rules that most papers
do not try to provide a complete list; and if you do try to list all of them how can you
be sure that you have not forgotten any? Nevertheless, there is a tacit assumption that
most variations are equivalent and that a complete list of rules could be given if needed.
However, from a mathematical point of view this is neither clear nor elegant.

To remedy this situation we suggest to define Martin-Löf type theory (and other depen-
dent type theories) abstractly as the initial cwf (with extra structure). The category of cwfs
and morphisms which preserve cwf-structure on the nose was defined by Dybjer [8]. We
suggest that the correctness of a definition or an implementation of dependent type theory
means that it gives rise to an initial object in this category of cwfs (with extra structure).
Here we shall construct the initial object in this category explicitly in the simplest possible
way following closely the definition of the generalised algebraic theory of cwfs. Note however
that the notion of a generalised algebraic theory is itself based on dependent type theory,
that is, on cwf-structure. So just defining the initial cwf as the generalised algebraic theory
of cwfs would be circular.

Instead we construct the initial cwf explicitly by giving grammar and inference rules
which follow closely the operators of the gat of cwfs. However, we must also make equality
reasoning explicit. To decrease the number of rules, we present a “per-style” system rather
than an ordinary one. We will mutually define four partial equivalence relations (pers): for
the judgments of context equality Γ = Γ′, substitution equality ∆ ` γ = γ′ : Γ, type equality
Γ ` A = A′, and term equality Γ ` a = a′ : A. The ordinary judgments will be defined as
the reflexive instances. For example, Γ ` a : A will be defined as Γ ` a = a : A. There are
altogether 32 inference rules for the pure theory of cwfs: the first 8 rules express that we
define four families of pers; the second 3 rules that judgments preserve equality of contexts
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and types; the next 10 rules express the typing and congruence of the 10 cwf-operations;
and the final 11 rules are the conversion rules for these operations. In addition to the pure
theory of cwfs, we have 1 rule for the base type.

Our only optimisation is the elimination of some redundant arguments of operators.
For example, the composition operator in the gat of cwfs has five arguments: three objects
and two arrows. However, the three object arguments can be recovered from the arrows,
and can hence be omitted.

The goal of the present paper is to prove the undecidability of equality in the free lccc.
To this end we extend our formal system for cwfs with rules for extensional I-types, N1,Σ,Π,
and a base type. (Note that we have added the unit type N1 to the type formers needed
for the proof of biequivalence with lcccs. This is because we need to construct a democratic
cwf, where there is a bijection between types and contexts (see above). Therefore we need
the type N1 which corresponds to the empty context.) There are 5 rules for I-types, 3 rules
for N1, 11 rules for Σ, and 8 rules for Π. We want to show that this yields a free lccc
on one object, by appealing to our biequivalence theorem. However, in order to use our
biequivalence it does not suffice to show that we get a free cwf in the 1-category of cwfs
and strict cwf-morphisms: we must show that it is also free (“bifree”) in the 2-category
of cwfs and pseudo cwf-morphisms. This proof is technically more involved because of the
complexity of the notion of pseudo cwf-morphism.

Once we have constructed the free lccc (as a cwf-formulation of Martin-Löf type theory
with extensional I-types, N1,Σ,Π, and one base type) we will be able to prove undecidability.
It is a well-known folklore result that extensional Martin-Löf type theory with one universe
has undecidable equality, and we only need to show that a similar construction can be
made without a universe, provided we have a base type. We do this by encoding untyped
combinatory logic as a context, and use the undecidability of equality in this theory.

Related work. Palmgren and Vickers [12] show how to construct free models of essentially
algebraic theories in general. We could use this result to build a free cwf, but this only shows
freeness in the 1-categorical sense. We also think that the explicit construction of the free
(and bifree) cwf is interesting in its own right.

Plan. In Section 2 we prove a few undecidability theorems, including the undecidability of
equality in Martin-Löf type theory with extensional I-types, Π-types, and one base type. In
Section 3 we construct a free cwf on one base type. We show that it is free and bifree. In
Section 4 we construct a free and bifree cwf with extensional identity types, N1,Σ,Π, and
one base type. Since this cwf is democratic we can use the biequivalence result to conclude
that this yields a free lccc in a 2-categorical sense.

2. Undecidability in Martin-Löf type theory

Like any other single-sorted first order equational theory, combinatory logic can be encoded
as a context in Martin-Löf type theory with I-types, Π-types, and a base type o. The
context ΓCL for combinatory logic is the following:

k : o,

s : o,

· : o→ o→ o,

axk : Πxy : o. I(o, k · x · y, x),
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axs : Πxyz : o. I(o, s · x · y · z, x · z · (y · z))
The left-associative binary infix symbol “·” stands for application. Note that k, s, ·, axk, axs
are all variables.

Theorem 2.1. Type-inhabitation in Martin-Löf type theory with (intensional or exten-
sional) identity-types, Π-types and a base type is undecidable.

This follows from the undecidability of convertibility in combinatory logic, since the
type

ΓCL ` I(o, M, M ′)

is inhabited iff the closed combinatory terms M and M ′ are convertible. Clearly, if the
combinatory terms are convertible, it can be formalised in this fragment of type theory. For
the other direction we build a model of the context ΓCL where o is interpreted as the set of
combinatory terms modulo convertibility.

Theorem 2.2. Judgmental equality in Martin-Löf type theory with extensional identity-
types, Π-types and a base type is undecidable.

With extensional identity types [10] the above identity type is inhabited iff the corre-
sponding equality judgment is valid:

ΓCL `M = M ′ : o

This theorem also holds if we add N1 and Σ-types to the theory. The remainder of the
paper will show that the category of contexts of the resulting fragment of Martin-Löf type
theory is bifree in the 2-category of lcccs (Theorem 4.25). Our main result follows:

Theorem 2.3. Equality of arrows in the bifree lccc on one object is undecidable.

We remark that the following folklore theorem can be proved in the same way.

Theorem 2.4. Judgmental equality in Martin-Löf type theory with extensional identity-
types, Π-types and a universe U is undecidable.

If we have a universe we can instead work in the context

X : U,

k : X,

s : X,

· : X → X → X,

axk : Πxy : X. I(X, k · x · y, x),

axs : Πxyz : X. I(X, s · x · y · z, x · z · (y · z))
and prove undecidability for this theory (without a base type) in the same way as above.

Note that we don’t need any closure properties at all for U – only the ability to quantify
over small types. Hence we prove a slightly stronger theorem than the folklore theorem
which assumes that U is closed under function types and uses the context

X : U,

x : I(U, X,X → X)

so that X is a model of the untyped lambda calculus.
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3. A free category with families

In this section we define a free cwf syntactically, as a term model consisting of derivable
well-formed contexts, substitutions, types and terms modulo derivable equality. To this
end we give syntax and inference rules for a cwf-calculus, that is, a variable-free explicit
substitution calculus for dependent type theory.

We first prove that this calculus yields a free cwf in the category where morphisms
preserve cwf-structure on the nose. The free cwf on one object is a rather degenerate
structure, since there are no non-trivial dependent types. However, we have nevertheless
chosen to present this part of the construction separately. Cwfs model the common core of
dependent type theory, including all generalised algebraic theories, pure type systems [1],
and fragments of Martin-Löf type theory. The construction of a free pure cwf is thus the
common basis for constructing free and initial cwfs with appropriate extra structure for
modelling specific dependent type theories.

In Section 3.1 we start by recalling the definition of cwfs, the associated morphisms –
both those preserving structure in the strict sense and up to isomorphism – and some related
definitions and notations. In Section 3.2, we introduce our syntax and inference rules. In
Section 3.3, we show that these inference rules give rise to a free cwf, in the category of
cwfs and strict cwf-morphisms. Finally, in Section 3.4 we prove that our free cwf is also
bifree in the 2-category of cwf-morphisms preserving structure up to isomorphism.

3.1. The 2-category of categories with families. The 2-category of cwfs and pseudo-
morphisms which preserve cwf-structure up to isomorphism was defined in [5, 6]. Here we
only give an outline.

Notations. We write Fam for the category of families of sets: objects are families of sets
(Xi)i∈I and maps from (Xi)i∈I to (Yj)j∈J are pairs (f : I → J, (fi : Xi → Yf(i))i∈I). In a
category with families, contexts and substitutions form the objects and arrows of a category
C. The set of objects will be written CtxC and the set of morphisms from ∆ to Γ will be
written SubC(∆,Γ). Types and terms over a context Γ form a family (TmC(Γ, A))A∈TyCΓ,
and substitution gives rise to a functorial action on such a family. Thus we have a functor

T : Cop → Fam

The action of T on objects is TΓ = (TmC(Γ, A))A∈TyCΓ, and its action on a type A
is written A[ ]: if γ ∈ SubC(Γ,∆) and A ∈ TyC(∆), then A[γ] ∈ TyC(Γ). Similarly, if
a ∈ TmC(∆, A), we write a[γ] ∈ TmC(Γ, A[γ]) for the functorial action of T on a.

Definition 3.1 (Category with families). A cwf is given by a category C and a functor
T : Cop → Fam together with the following chosen structure:

• (Empty context) C has a terminal object 1.
• (Context comprehension) For each ∆ ∈ CtxC and A ∈ TyC(∆) there is the extended

context ∆.A ∈ CtxC with a substitution pA ∈ SubC(∆.A,∆) and a term qA ∈
TmC(∆.A,A[pA]), such that for every pair γ ∈ SubC(Γ,∆) and a ∈ TmC(Γ, A[γ])
there exists a unique

〈γ, a〉 ∈ SubC(Γ,∆.A)

such that pA ◦ 〈γ, a〉 = γ and qA[〈γ, a〉] = a.

When talking about cwfs, we will often refer only to the base category C and keep the
rest of the structure implicit.
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Note that with the notation TyC and TmC there is no need to explicitly mention the
functor T when working with categories with families, and we will often keep it implicit.
Given a substitution γ : ∆ → Γ, and A ∈ TyC(Γ), we write γ ↑ A or γ+ (when A can be
inferred from the context) for the lifting of γ to A: 〈γ ◦ p, q〉 : ∆.A[γ]→ Γ.A.

The indexed category. In [5, 6] it is shown that any cwf C induces a functor T :
Cop → Cat assigning to each context Γ the category whose objects are types in TyC(Γ) and
morphisms from A to B are substitutions ϕ : Γ.A→ Γ.B such that p ◦ϕ = p – those are in
bijection with terms of type Γ ·A ` B[p]. The functorial action of T is given by

T(γ)(ϕ) = 〈p, q[ϕ ◦ (γ ↑ A)]〉 : ∆.A[γ]→ ∆.B[γ]

for γ : ∆→ Γ.
Any morphism ϕ in TΓ from a type A to a type B induces a function {ϕ} : TmC(Γ, A)→

TmC(Γ, B) which is defined by

{ϕ}(a) = q[ϕ ◦ 〈id, a〉]
We will use this construction when transporting terms through isomorphism of types

θ : A ∼=Γ B, that is, isomorphisms in TΓ. We note the following:

Lemma 3.2. For any γ : ∆→ Γ, ϕ : Γ.A→ Γ.B in TΓ, and a ∈ TmC(∆, A[γ]),

{T(γ)(ϕ)}(a) = q[ϕ ◦ 〈γ, a〉]

Proof. Immediate from the definition.

Definition 3.3 (Pseudo cwf-morphisms). A pseudo-cwf morphism from a cwf C to a cwf
C′ is a pair (F, σ) where F : C → C′ is a functor and for each Γ ∈ CtxC , σΓ is a Fam-
morphism from TΓ to T ′FΓ preserving the structure up to isomorphism. In particular
there are isomorphisms

ρΓ,A : F (Γ.A) ∼= FΓ.FA
θA,γ : FA[Fγ] ∼=FΓ F (A[γ]) (for γ : Γ→ ∆)

!F : 1 ∼= F1

satisfying some coherence diagrams, see [6] for the complete definition.

Since σΓ is a Fam-morphism from (TmC(Γ, A))A∈TyC(Γ) to (TmD(FΓ, B))B∈TyD(FΓ) it
has an action both on types and on terms. We write FA for the image of A by the function
TyC(Γ) → TyD(FΓ) induced by σΓ, and Fa for the image of a ∈ TmC(Γ, A) through the
function TmC(Γ, A) → TmD(FΓ, FA) induced by σΓ. As for cwfs, we will often refer to
a pseudo cwf-morphism (F, σ) just by F , keeping σ implicit. This goes in line with the
notations introduced above, which do not mention σ.

A pseudo cwf-morphism is strict whenever θA,γ and ρΓ,A are both identities and F1 = 1.
Cwfs and strict cwf-morphisms form a category CwFs.

Definition 3.4 (Pseudo cwf-transformation). A pseudo cwf-transformation between pseudo
cwf-morphisms F and G is a pair (ϕ,ψ) where ϕ : F ⇒ G is a natural transformation, and
for each Γ ∈ CtxC and A ∈ TyC(Γ), ψΓ,A is a type isomorphism FA ∼=FΓ GA[ϕΓ] satisfying:

ϕΓ.A = F (Γ.A)
ρFΓ,A−−−→ FΓ.FA

ψΓ,A−−−→ FΓ.GA[ϕΓ]
ϕ+

Γ−−→ GΓ.GA
ρGΓ,A

−1

−−−−→ G(Γ.A),
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This means in particular that ψ is uniquely determined from ϕ. However, it matches
our inductive proof later on to have both ϕ and ψ explicitely in the definition, with this
coherence diagram. This definition corrects the one given in [6]; see Appendix A for a
discussion on that. We will write CwF for the resulting 2-category.

3.2. Syntax and inference rules for the free category with families.

3.2.1. Raw terms. In this section we define the syntax and inference rules for a minimal
dependent type theory with one base type o. This theory is closely related to the generalised
algebraic theory of cwfs [8], but here we define it as a usual logical system with a grammar
and a collection of inference rules. The grammar has four syntactic categories: contexts
Ctx, substitutions Sub, types Ty and terms Tm.

Γ ∈ Ctx ::= 1 | Γ.A

γ ∈ Sub ::= γ ◦ γ | idΓ | 〈〉Γ | pA | 〈γ, a〉A
A ∈ Ty ::= o | A[γ]

a ∈ Tm ::= a[γ] | qA
These terms have as few annotations as possible, only what is necessary to recover the
domain and codomain of a substitution, the context of a type, and the type of a term:

dom(γ ◦ γ′) = dom(γ′) cod(γ ◦ γ′) = cod(γ)

dom(idΓ) = Γ cod(idΓ) = Γ

dom(〈〉Γ) = Γ cod(〈〉Γ) = 1

dom(pA) = ctx-of(A).A cod(pA) = ctx-of(A)

dom(〈γ, a〉A) = dom(γ) cod(〈γ, a〉A) = cod(γ).A

ctx-of(o) = 1 type-of(a[γ]) = (type-of(a))[γ]

ctx-of(A[γ]) = dom(γ) type-of(qA) = A[pA]

These functions will be used to define the interpretation.

3.2.2. Inference rules. We simultaneously inductively define four families of partial equiv-
alence relations (pers) for the four forms of equality judgments:

Γ = Γ′ ` Γ ` A = A′ ∆ ` γ = γ′ : Γ Γ ` a = a′ : A

In the inference rules which generate these pers we will use the following abbreviations for
the basic judgment forms: Γ ` abbreviates Γ = Γ `, Γ ` A abbreviates Γ ` A = A, ∆ ` γ : Γ
abbreviates ∆ ` γ = γ : Γ, and Γ ` a : A abbreviates Γ ` a = a : A. The inferences rules are
divided into four kinds: per-rules, which axiomatise symmetry and transitivity of equality;
preservation rules, which express that equality preserves judgments; congruence rules for
operators with respect to equality, and conversion rules.

Note that our syntax is annotated in order to ensure that a raw term has a unique (up
to judgmental equality) type given by the function type-of, and that a type has a unique
(up to judgemental equality) context given by the function ctx-of. Similarly, dom and cod
return the unique domain and codomain of a substitution.
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Per-rules for the four forms of judgments
Γ = Γ′ ` Γ′ = Γ′′ `

Γ = Γ′′ `
Γ = Γ′ `
Γ′ = Γ `

∆ ` γ = γ′ : Γ ∆ ` γ′ = γ′′ : Γ

∆ ` γ = γ′′ : Γ

∆ ` γ = γ′ : Γ

∆ ` γ′ = γ : Γ

Γ ` A = A′ Γ ` A′ = A′′

Γ ` A = A′′
Γ ` A = A′

Γ ` A′ = A

Γ ` a = a′ : A Γ ` a′ = a′′ : A

Γ ` a = a′′ : A

Γ ` a = a′ : A

Γ ` a′ = a : A

Preservation rules for judgments
Γ = Γ′ ` ∆ = ∆′ ` Γ ` γ = γ′ : ∆

Γ′ ` γ = γ′ : ∆′
Γ = Γ′ ` Γ ` A = A′

Γ′ ` A = A′

Γ = Γ′ ` Γ ` A = A′ Γ ` a = a′ : A

Γ′ ` a = a′ : A′

Congruence rules for operators and the base type

1 = 1 `
Γ = Γ′ ` Γ ` A = A′

Γ.A = Γ′.A′ ` 1 ` o = o

Γ ` A = A′ ∆ ` γ = γ′ : Γ

∆ ` A[γ] = A′[γ′]

Γ = Γ′ `
Γ ` idΓ = idΓ′ : Γ

Γ = Γ′ `
Γ ` 〈〉Γ = 〈〉Γ′ : 1

Γ ` δ = δ′ : ∆ ∆ ` γ = γ′ : Θ

Γ ` γ ◦ δ = γ′ ◦ δ′ : Θ

Γ ` A = A′

Γ.A ` pA = pA′ : Γ

Γ ` A = A′ ∆ ` γ = γ′ : Γ ∆ ` a = a′ : A[γ]

∆ ` 〈γ, a〉A = 〈γ′, a′〉A′ : Γ.A

Γ ` a = a′ : A ∆ ` γ = γ′ : Γ

∆ ` a[γ] = a′[γ′] : A[γ]

Γ ` A = A′

Γ.A ` qA = qA′ : A[pA]

Conversion rules
∆ ` θ : Θ Γ ` δ : ∆ Ξ ` γ : Γ

Ξ ` (θ ◦ δ) ◦ γ = θ ◦ (δ ◦ γ) : Θ

Γ ` γ : ∆

Γ ` γ = id∆ ◦ γ : ∆

Γ ` γ : ∆

Γ ` γ = γ ◦ idΓ : ∆

Γ ` A ∆ ` γ : Γ Θ ` δ : ∆

Θ ` A[γ ◦ δ] = (A[γ])[δ]

Γ ` A
Γ ` A[idΓ] = A

Γ ` a : A ∆ ` γ : Γ Θ ` δ : ∆

Θ ` a[γ ◦ δ] = (a[γ])[δ] : (A[γ])[δ]

Γ ` a : A

Γ ` a[idΓ] = a : A

Γ ` γ : 1

Γ ` γ = 〈〉Γ : 1

Γ ` A ∆ ` γ : Γ ∆ ` a : A[γ]

∆ ` pA ◦ 〈γ, a〉A = γ : Γ

Γ ` A ∆ ` γ : Γ ∆ ` a : A[γ]

∆ ` qA[〈γ, a〉A] = a : A[γ]

∆ ` γ : Γ.A

∆ ` γ = 〈pA ◦ γ, qA[γ]〉A : Γ.A
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Lemma 3.5. We have the following:

• If Γ ` A is derivable, then Γ = ctx-of(A) ` is also derivable.
• If Γ ` a : A is derivable, then Γ = ctx-of(A) ` and Γ ` A = type-of(a) are derivable.
• If ∆ ` γ : Γ is derivable, then ∆ = dom(γ) ` and Γ = cod(γ) ` are derivable.

3.2.3. The syntactic cwf T . We can now define a term model as the syntactic cwf obtained
by the well-formed contexts, substitutions, types, and terms, modulo judgmental equality.
We use brackets for equivalence classes in this definition. (Note that brackets are also used
for substitution in types and terms. However, this should not cause confusion since we will
soon drop the equivalence class brackets.)

Definition 3.6. The term model T is given by:

• CtxT = {Γ | Γ `}/=c, where Γ =c Γ′ if Γ = Γ′ ` is derivable.
• SubT ([Γ], [∆]) = {γ | Γ ` γ : ∆}/=Γ

∆ where γ =Γ
∆ γ′ iff Γ ` γ = γ′ : ∆ is derivable.

Note that this makes sense since it only depends on the equivalence class of Γ
(morphisms and morphism equality are preserved by object equality).
• TyT ([Γ]) = {A | Γ ` A}/ =Γ where A =Γ B if Γ ` A = B.
• TmT ([Γ], [A]) = {a | Γ ` a : A}/ =Γ

A where a =Γ
A a
′ if Γ ` a = a′ : A.

The cwf-operations on T can now be defined in a straightforward way. For example, if
∆ ` θ : Θ, Γ ` δ : ∆, we define [θ] ◦T [δ] = [θ ◦ δ], which is well-defined since composition
preserves equality.

3.3. Freeness of T . We shall show that T is a free cwf on one base type, in the sense that
for an arbitrary cwf C and type oC ∈ TyC(1C), there exists a unique strict cwf morphism
T → C which maps [o] to oC . Such a morphism can be defined by first defining a partial
function for each sort of raw terms (where Ctx denotes the set of raw contexts, Sub the set
of raw substitutions, and so on defined by the grammar of Section 3.2.1), cf Streicher [14].

J−K : Ctx ⇀ CtxC

J−K : (γ : Sub) ⇀ SubC(dom(γ), cod(γ))

J−K : (A : Ty) ⇀ TyC(ctx-of(A))

J−K : (t : Tm) ⇀ TmC(ctx-of(type-of(t)), type-of(t))

We use the notation (x ∈ A) ⇀ B(x) for the partial dependent function space, that is,
the set of partial functions f which map x ∈ A to f(x) ∈ B(x) whenever f(x) is defined.

Note that we use the same notation for all four interpretation functions. These partial
interpretation functions are defined by mutual induction on the structure of raw terms:

J1K = 1C Jγ′ ◦ γK = Jγ′K ◦C JγK J〈〉ΓK = (〈〉C)JΓK
JΓ.AK = JΓK.CJAK JidΓK = (idC)JΓK Ja[γ]K = JaK[JγK]C

JoK = oC J〈γ, a〉AK = 〈JγK, JaK〉C JqAK = (qC)JAK
JA[γ]K = JAK[JγK]C JpAK = (pC)JAK

Partiality arises because, for instance, Jγ′K ◦C JγK is only defined when Jγ′K and JγK are
defined and dom(Jγ′K) = cod(JγK). However, we can prove by induction on the inference
rules that the interpretation of equal well-formed contexts, equal well-typed substitutions,
equal well-formed types, and equal well-typed terms are always defined and equal:
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Lemma 3.7.

• If Γ = Γ′ `, then both JΓK and JΓ′K are defined in CtxC, and equal.
• If ∆ ` γ = γ′ : Γ, then JγK = Jγ′K ∈ SubC(J∆K, JΓK) are defined and equal.
• If Γ ` A = A′, then JAK = JA′K ∈ TyC(JΓK) are defined and equal.
• If Γ ` a = a′ : A, then JaK = Ja′K ∈ TmC(JΓK, JAK) are defined and equal.

It follows in particular that if we have Γ ` (which abbreviated Γ = Γ `), then JΓK
is defined – and likewise for the other reflexive judgements. Hence, we can define total
interpretation functions on the term model by restricting the partial interpretation function
to the well-formed contexts, etc, and then lift it to the quotient:

J−K : CtxT → CtxC

J−K[Γ],[∆] : SubT ([Γ], [∆]) → SubC(J[Γ]K, J[∆]K)

J−K[Γ] : TyT ([Γ]) → TyC(J[Γ]K)

J−K[Γ],[A] : TmT ([Γ], [A]) → TmC(J[Γ]K, J[A]K[Γ])

by

J[Γ]K = JΓK

J[γ]K[Γ],[∆] = JγK

J[A]K[Γ] = JAK

J[a]K[Γ],[A] = JaK

which is well-defined by Lemma 3.5.
This defines a strict cwf morphism T → C which maps [o] to oC . In order to prove

that it is unique, we assume that F : T → C is another strict cwf morphism, and prove
by induction on the inference rules (the pers) that if Γ = Γ′ ` then F [Γ] = J[Γ]K, etc.

For example, 1 = 1 ` and we prove F [1] = 1C = J[1]K by preservation of the terminal
object. The other cases are similarly straightforward, since strict cwf-morphisms preserve
the structure on the nose.

This concludes the proof of our theorem:

Theorem 3.8. T is a free cwf on one object, that is, for every other cwf C and oC ∈ TyC(1C)
there is a unique strict cwf morphism T → C which maps [o] to oC.

It is in fact the free cwf on one object up to isomorphism, since any two free cwfs are
related by a unique isomorphism.

From now on we will uniformly drop the equivalence class brackets and for example write
Γ for [Γ]. There should be no risk of confusion, but we remark that proofs by induction on
syntax and inference rules are on representatives rather than equivalence classes.

3.4. Bifreeness of T . We eventually wish to add the type formers N1,Σ,Π and I, and
construct the free cwf which supports these type formers. However, as we explained in the
introduction, this freeness property will not transport to lcccs. Indeed, our correspondence
between cwfs (with support for these type formers) and lcccs is a biequivalence [6] rather
than an equivalence, and freeness is not preserved by biequivalence. Moreover, so far we
proved that T is free in the category of cwfs and strict cwf-morphisms which preserve cwf-
structure on the nose. In lcccs, finite limits and local exponents are usually not treated
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as extra structure, but as properties of categories. Thus functors can only preserve these
properties up to isomorphism, since it would not even make sense to say that these properties
are preserved on the nose. As a consequence, in our biequivalence result we moved to pseudo
cwf-morphisms (Definition 3.3) that only preserve structure up to coherent isomorphism.
The cwf T is not free in the category of cwfs with pseudo cwf-morphisms – in fact, there
is no free cwf in this category. However, we can move to a 2-categorical setting and show
that T is bifree.

We recall that an object I is bi-initial in a 2-category iff for any object A there exists
an arrow I → A and for any two arrows f, g : I → A there exists a unique 2-cell θ : f ⇒ g.
It follows that θ is invertible, and that bi-initial objects are equivalent.

Definition 3.9. A cwf C is bifree on one base type iff it is bi-initial in the 2-category CwFo:

• Objects: pairs (C, oC) where C is a cwf and oC ∈ TyC(1C).
• Morphisms between (C, oC) and (D, oD): pairs (F, αF ) of pseudo cwf-morphisms
F : C → D and isomorphisms αF : F (oC)[!F ] ∼= oD in the category of closed types
TD(1D) (recall that !F : 1→ F1).
• 2-cells between the morphisms (F, αF ), (G,αG) : (C, oC) → (D, oD): pseudo cwf-

transformations (ϕ,ψ) from F to G satisfying ψoC = α−1
G ◦ αF : F (oC)[!F ] ∼=1D

G(oC)[!G].

The rest of the section is dedicated to the proof of the following:

Theorem 3.10. T is a bifree cwf on one base type.

We have shown that for every cwf C, and oC ∈ TyC(1C), the interpretation J−K is a
strict cwf-morphism mapping o to oC . Hence it is a morphism in CwFo. It remains to
show that for any other morphism F : T → C in CwFo, there is a unique 2-cell (pseudo

cwf-transformation) (ϕ,ψ) : J−K → F , which is an isomorphism. This asymmetric version
of bi-initiality is equivalent to that given above.

3.4.1. Existence of (ϕ,ψ). We construct (ϕ,ψ) by induction on the inference rules and
simultaneously prove their naturality properties:

• If Γ = Γ′ `, then there exists an isomorphism ϕΓ = ϕΓ′ : JΓK ∼= FΓ.
• If Γ ` A = A′, then there exists an isomorphism ψA = ψA′ : JAK ∼=JΓK FA[ϕΓ].

• If Γ ` γ = γ′ : ∆, then Fγ ◦ ϕΓ = ϕ∆ ◦ JγK.
• If Γ ` a = a′ : A, then Fa[ϕΓ] = {ψA}(JaK).

It follows that (ϕ,ψ) is a pseudo cwf-transformation. We show some crucial cases:

Empty context. F preserves terminal objects and we let ϕ1 = !F : J1K = 1C ∼= F1.

Context extension. By induction, we have ψA : JAK ∼= FA[ϕΓ] in T(Γ). We define ϕΓ.A

as the following composition of isomorphisms:

JΓ.AK = JΓK.JAK ψA−−→ JΓK.FA[ϕΓ]
〈ϕΓ◦p,q〉−−−−−→ FΓ.FA

ρ−1
Γ,A−−−→ F (Γ.A)

We remark that this case of the induction concerns the rule that not only expresses the
well-formedness of context extension, but more generally, that context extension preserves
equality. So officially, we need to prove that ϕΓ = ϕΓ′ : JΓK ∼= FΓ and ψA = ψA′ : JAK ∼=JΓK
FA[ϕΓ] entail ϕΓ.A = ϕΓ′.A′ which follows immediately. We also remark that we have
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dropped the official index A in pA and qA in the above definition. Both remarks apply in
other cases too.

Base type. By definition, F is equipped with αF : JoK ∼= F (o)[!F ]. We define ψo = αF :

JoK ∼= F (o)[!F ] in TyC(1).

Type substitution. Let Γ ` γ : ∆ and ∆ ` A. The induction hypotheses are ϕ∆ ◦ JγK =

(Fγ) ◦ϕΓ and ψA : JAK ∼=J∆K FA[ϕ∆]. Since T is a contravariant functor, TJγK is a functor

from TJ∆K to TJΓK thus,

T(JγK)(ψA) : JA[γ]K ∼=JΓK FA[ϕ∆ ◦ JγK] = FA[Fγ][ϕΓ]

by induction hypothesis on γ. So we define

ψA[γ] = T(ϕΓ)(θA,γ) ◦T(JγK)(ψA) : JA[γ]K ∼=JΓK (F (A[γ]))[ϕΓ]

Projection. We have Γ.A ` pA : Γ and need to check that FpA ◦ ϕΓ.A = ϕΓ ◦ p. This is a
simple calculation:

FpA ◦ ϕΓ.A = Fp ◦ ρ−1
Γ,A ◦ 〈ϕΓ ◦ p, q〉 ◦ ψA (definition of ϕΓ.A)

= p ◦ 〈ϕΓ ◦ p, q〉 ◦ ψA (property of ρΓ,A)

= ϕΓ ◦ p ◦ ψA = ϕΓ ◦ p (because ψA is a map in TJΓK)

Extension. Assume we have Γ ` γ : ∆ and Γ ` t : A[γ] so that 〈γ, t〉A is a morphism from Γ
to ∆ ·A. Using Proposition 4 of [6], we get that F 〈γ, t〉A ◦ϕΓ = ρ−1

∆,A ◦〈Fγ, {θ
−1
A,γ}(Ft)〉◦ϕΓ.

After calculation, we get

F 〈γ, t〉A ◦ ϕΓ = ρ−1
∆,A ◦ 〈Fγ, {θ

−1
A,γ}(Ft)〉 ◦ ϕΓ

= ρ−1
∆,A ◦ 〈Fγ ◦ ϕΓ, {θ−1

A,γ}(Ft)[ϕΓ]〉
(Lemma 7 of [6])

= ρ−1
∆,A ◦ 〈Fγ ◦ ϕΓ, {T(ϕΓ)(θ−1

A,γ)}(Ft[ϕΓ])〉
(I.H. on γ and t)

= ρ−1
∆,A ◦ 〈ϕ∆ ◦ JγK, {T(ϕΓ)(θ−1

A,γ)}({ψA[γ]}(JtK))〉
(definition of ψA[γ])

= ρ−1
∆,A ◦ 〈ϕ∆ ◦ JγK, {T(JγK)(ψA)}(JtK)〉

(definition of T)

= ρ−1
∆,A ◦ 〈ϕ∆ ◦ JγK, q[ψA ◦ 〈JγK, JtK〉]〉

= ρ−1
∆,A ◦ 〈ϕ∆ ◦ p, q〉 ◦ ψA ◦ J〈γ, t〉AK

= ρ−1
∆,A ◦ ϕ

+
∆ ◦ ψA ◦ J〈γ, t〉AK

= ϕ∆.A ◦ J〈γ, t〉AK

Term substitution. Assume we have Γ ` γ : ∆ and ∆ ` t : A. Unfolding the definition of
ψA[γ], we get:
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{ψA[γ]}(Jt[γ]K) = {T(ϕΓ)(θA,γ)}({T(JγK)(ψA)}(Jt[γ]K))
= {T(ϕΓ)(θA,γ)}({T(JγK)(ψA)}(JtK[JγK]))

(Lemma 7 of [6])

= {T(ϕΓ)(θA,γ)}({ψA}(JtK)[JγK])
(I.H. on t)

= {T(ϕΓ)(θA,γ)}((Ft)[ϕ∆ ◦ JγK])
(I.H. on γ)

= {T(ϕΓ)(θA,γ)}((Ft)[Fγ ◦ ϕΓ])
(Lemma 7 of [6])

= {θA,γ}(Ft[Fγ])[ϕΓ]
(Definition of pseudo cwf-morphisms)

= F (t[γ])[ϕΓ]

Variable. Assume we have Γ ·A ` qA : A[p]. Unfolding the definition of ψA[p] yields, after
some simplifications:

{ψA[p]}(qA) = q[θA,p ◦ 〈ϕΓ, q[ψA ◦ 〈p, q〉]〉]
(〈p, q〉 = id)

= q[θA,p ◦ 〈ϕΓ·A, q[ψA]〉]
We need to prove that this is equal to:

Fq[ϕΓ·A] = {θA,p} (q [ρΓ,A]) [ϕΓ.A]

(definition of pseudo cwf-morphism)

= q[θA,p ◦ 〈id, q[ρΓ,A]〉 ◦ ϕΓ.A]

= q[θA,p ◦ 〈ϕΓ.A, q[ρΓ,A ◦ ϕΓ·A]〉]
(definition of ϕΓ.A)

= q[θA,p ◦ 〈ϕΓ.A, q[〈ϕΓ ◦ p, q〉 ◦ ψA〉]
= q[θA,p ◦ 〈ϕΓ.A, q[ψA]〉]

Thus the equality holds.

Functoriality of substitution. Assume we have Γ ` γ : ∆ and ∆ ` δ : Θ. We want to
show the equality ψA[δ][γ] = ψA[δ◦γ] and ψA[id] = ψA for Θ ` A. The second equation is

easy: by functoriality of T, T(JidK)(ψA) = ψA and properties of F , θA,id = id.
For the other equation, unfolding the definitions gives:

ψA[δ][γ] = T(JγK)(T(JδK)(ψA) ◦T(ϕ∆)(θA,δ)) ◦T(ϕΓ)(θA,γ)

= T(JγK)
(
T(JδK)(ψA)

)
◦T(JγK) (T(ϕ∆)(θA,δ)) ◦T(ϕΓ)(θA,γ)

(functoriality of T and induction hypothesis on γ)

= T(JδK ◦ JγK)(ψA) ◦T(ϕΓ)(T(Fγ)(θA,δ)) ◦T(ϕΓ)(θA,γ)

(functoriality of T(ϕΓ))

= T(JδK ◦ JγK)(ψA) ◦T(ϕΓ)(T(Fγ)(θA,δ) ◦ (θA,γ))

(coherence for θ)
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= T(JδK ◦ JγK)(ψA) ◦T(ϕΓ)(θA,δ◦γ)

= ψA[δ◦γ]

3.4.2. Uniqueness of (ϕ,ψ). Let (ϕ′, ψ′) : J·K→ F be another pseudo cwf-transformation in
CwFo. We prove the following by induction:

• If Γ = Γ′ `, then ϕΓ = ϕ′Γ
• If Γ ` A = A′, then ψA = ψ′A

Empty context. There is a unique morphism between the terminal objects J1K and F1,
so ϕ1 = ϕ′1.

Context extension. Assume by induction ϕΓ = ϕ′Γ and ψA = ψ′A. By the coherence law

of pseudo cwf-transformations, we have ϕ′Γ.A = ρ−1
Γ,A ◦ ϕ′Γ

+ ◦ ψ′A from which the equality

ϕΓ.A = ϕ′Γ.A follows.

Type substitution. Assume we have ∆ ` A and Γ ` γ : ∆, and consider ψA[γ] and ψ′A[γ].

By Lemma A.2, we have:

ψ′A[γ] = T(ϕ′Γ)(θA,γ) ◦T(JγK)(ψ′A)

and likewise for ψA[γ]. Since we know by induction hypothesis that ϕΓ = ϕ′Γ and ψA = ψ′A,
it follows that ψA[γ] = ψ′A[γ].

Base type. The definition of 2-cells in CwFo entails ψ′o = α−1
F : JoK→ F (JoK).

This concludes the proof that T is a bifree cwf on one object. In the next section, we
will prove that this result still holds in the presence of type constructors.

4. A free lccc

This section will basically follow the plan of Section 3. We will first recall what it means
for categories with families to support the extra structure for I, N1, Π and Σ-types. Then
we will extend our cwf-calculus with these type constructors. Finally, we will also extend
our proofs of freeness and bifreeness. In particular, bifreeness will be transported by our
biequivalence [6]. It follows that the underlying category of contexts of the syntactic cwf
with extra structure is a bifree lccc.

4.1. Cwfs which support I,N1,Σ,Π. We recall here from [8, 6] what it means for a cwf
to support type constructors and prove a few properties of the corresponding combinators.

Definition 4.1. A cwf C supports extensional identity types iff it is equipped with the
following extra structure:

• Formation. If A ∈ TyC(Γ) and a, a′ ∈ TmC(Γ, A), then there is I(A, a, a′) ∈ TyC(Γ).
• Introduction. If a ∈ TmC(Γ, A), then there is r(a) ∈ TmC(Γ, I(A, a, a)).
• Elimination. If c ∈ TmC(Γ, I(A, a, a

′)), then a = a′ and c = r(a).

such that the following laws with respect to substitution are satisfied, for any γ : ∆→ Γ:

I(A, a, a′)[γ] = I(A[γ], a[γ], a′[γ])

r(a)[γ] = r(a[γ])
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Definition 4.2. A cwf C supports Σ-types iff it is equipped with the following extra struc-
ture:

• Formation. If A ∈ TyC(Γ) and B ∈ TyC(Γ.A), there is Σ(A,B) ∈ TyC(Γ),
• Introduction. If a ∈ TmC(Γ, A) and b ∈ TmC(Γ, B[〈id, a〉]), there is pair(a, b) ∈

TmC(Γ,Σ(A,B)),
• Elimination. If c ∈ TmC(Γ,Σ(A,B)), there are fst(c) ∈ TmC(Γ, A) and snd(c) ∈

TmC(Γ, B[〈id, fst(c)〉]) such that

fst(pair(a, b)) = a

snd(pair(a, b)) = b

pair(fst(c), snd(c)) = c

and we also have stability under substitution. If γ : ∆→ Γ then

Σ(A,B)[γ] = Σ(A[γ], B[〈γ ◦ p, q〉])
pair(a, b)[γ] = pair(a[γ], b[γ])

fst(c)[γ] = fst(c[γ])

snd(c)[γ] = snd(c[γ])

Before going on to the definition of cwfs supporting Π-types, it is useful to recall a few
lemmas about Σ-types on cwfs. First we recall from [6]:

Lemma 4.3. For any A ∈ TyC(Γ) and B ∈ TyC(Γ.A), there is an isomorphism:

χA,B : Γ.A.B → Γ.Σ(A,B)

such that p ◦ χA,B = p ◦ p.

Proof. The isomorphism is defined by the following inverse substitutions:

〈p ◦ p, pair(q[p], q)〉 : Γ.A.B → Γ.Σ(A,B)

〈〈p, fst(q)〉, snd(q)〉 : Γ.Σ(A,B)→ Γ.A.B

An easy calculation shows that they are mutual inverses.

The type constructor Σ can also be extended to act on morphisms in the adequate
fibres, in a functorial way. This is formalized in the following lemma.

Lemma 4.4. Let A,A′ ∈ TyC(Γ), B ∈ TyC(Γ.A), and B′ ∈ TyC(Γ.A
′). Moreover, consider

morphisms fA : A → A′ in T(Γ) ( i.e. fA : Γ.A → Γ.A′ such that p ◦ fA = p), and
fB : B → B′[fA] in T(Γ.A) ( i.e. fB : Γ.A.B → Γ.A.B′[fA] such that p ◦ fB = p).

Then, defining:

Σ(fA, fB) : 〈p,pair(q[fA ◦ 〈p, fst(q)〉], q[fB ◦ 〈〈p, fst(q)〉, snd(q)〉])〉
we have Σ(fA, fB) : Σ(A,B)→ Σ(A′, B′) in T(Γ). Moreover, it is functorial in the following
sense. For fA, fB as above and gA : A′ → A′′, gB : B′ → B′′[gA], then:

Σ(gA, gB) ◦ Σ(fA, fB) = Σ(gA ◦ fA,T(fA)(gB) ◦ fB)

Proof. Direct verification.
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This strengthens Lemma 10 of [6], which states that the type constructor Σ preserves
isomorphisms of types. We will also use the following lemma, which states compatibility of
the functorial action of Σ with that of substitution.

Lemma 4.5. Let fA, fB be as in the lemma above. Then, for any γ : ∆→ Γ, we have:

T(γ)(Σ(fA, fB)) = Σ(T(γ)(fA),T(γ ↑ A)(fB))

Both are morphisms from Σ(A[γ], B[γ ↑ A]) to Σ(A′[γ], B′[γ ↑ A]) in T(∆).

Proof. Direct calculation.

Now, we go on to define what it means for a cwf to support Π-types.

Definition 4.6. A cwf C supports Π-types iff it is equipped with the following extra struc-
ture:

• Formation. If A ∈ TyC(Γ) and B ∈ TyC(Γ.A), there is Π(A,B) ∈ TyC(Γ).
• Introduction. If b ∈ TmC(Γ.A,B), there is λ(b) ∈ TmC(Γ,Π(A,B)).
• Elimination. If c ∈ TmC(Γ,Π(A,B)) and a ∈ TmC(Γ, A) then there is a term

app(c, a) ∈ TmC(Γ, B[〈id, a〉]) such that

app(λ(b), a) = b[〈id, a〉]
λ(app(c[p], q)) = c

and we also have stability under substitution. If γ : ∆→ Γ then

Π(A,B)[γ] = Π(A[γ], B[〈γ ◦ p, q〉])
(λ(b))[γ] = λ(b[〈γ ◦ p, q〉])

(app(c, a))[γ] = app(c[γ], a[γ])

Just like for Σ-types, Π-types can be given a functorial action on the fibres.

Lemma 4.7. Let A,A′ ∈ TyC(Γ), B ∈ TyC(Γ.A), and B′ ∈ TyC(Γ.A
′). Moreover, consider

morphisms fA : A′ → A in T(Γ) and fB : B[fA]→ B′ in T(Γ.A′).
Then, defining:

Π(fA, fB) = 〈p, λ(q[fB ◦ 〈〈p ◦ p, q〉, app(q[p], q[fA ◦ 〈p ◦ p, q〉])〉])〉
we have Π(fA, fB) : Π(A,B)→ Π(A′, B′) in T(Γ). Morever, the action of Π is functorial,
in the sense that for fA, fB as above and gA : A′′ → A′, gB : B′[gA]→ B′′, we have:

Π(gA, gB) ◦Π(fA, fB) = Π(fA ◦ gA, gB ◦T(gA)(fB))

Proof. Tedious calculations on cwf-combinators.

Just as for Σ-types, the functorial action of Π commutes with the functorial action of
substitution.

Lemma 4.8. Let fA, fB as in the lemma above, and γ : ∆→ Γ. Then, we have:

T(γ)(Π(fA, fB)) = Π(T(γ)(fA),T(γ ↑ A′)(fB))

where both terms are morphisms from Π(A[γ], B[γ ↑ A]) to Π(A′[γ], B′[γ ↑ A′]) in T(∆).

Proof. Direct calculation.
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Definition 4.9. A cwf C supports N1 iff it is equipped with the following extra structure:

• Formation. There is N1 ∈ TyC(1).
• Introduction. There is 01 ∈ TmC(1,N1).
• Elimination. For any c ∈ TmC(1,N1), c = 01.

We will be interested in cwfs that support N1. However, both the cwfs that come from
syntax (including T ) and the cwfs in correspondence with lcccs through our biequivalence
satisfy a stronger property: they are democratic.

Definition 4.10 (Democratic cwfs). A cwf C is democratic when for each context Γ there
is a type Γ ∈ TyC(1) with an isomorphism γΓ : Γ ∼= 1.Γ.

Lemma 4.11. Let C be a democratic cwf. Then, it supports N1.

Proof. We simply define N1 = 1. This type automatically has an inhabitant 01 = q[γ1] ∈
TmC(1, 1); its uniqueness is an easy consequence of the fact that 1 is terminal.

As a consequence we do not need to mention support for N1 for democratic cwfs . We
will show in Lemma 4.17 that in the presence of Σ-types and N1, the syntactically generated
cwf is democratic.

For each of these type constructors, it is easy to define what it means for strict cwf-
morphisms to preserve them. We simply ask that everything – both type constructors and
the associated combinators – is preserved on the nose. For instance, we ask that

F (Γ.Σ(A,B)) = FΓ.Σ(FA,FB)

and F (pair(a, b)) = pair(Fa, Fb), etc..
However, as emphasized before, for the correspondence with lcccs one needs notions of

cwf-morphisms that only preserve structure up to isomorphism.

4.2. Pseudo cwf-morphisms preserving structure up to isomorphism. We now re-
call the definitions of preservation of structure up to isomorphism for pseudo cwf-morphisms
from [6]. Note first that for cwfs which support Σ-types, pseudo cwf-morphisms automati-
cally preserve Σ-types.

Proposition 4.12. A pseudo cwf-morphism F from C to C′, where both cwfs support Σ-
types, also preserves them in the sense that there is an isomorphism:

sA,B : F (Σ(A,B)) ∼= Σ(FA,FB[ρ−1
Γ,A])

such that projections are preserved up to isomorphism. For any term c ∈ TmC(Γ,Σ(A,B)),
or terms a ∈ TmC(Γ, A) and b ∈ TmC(Γ, B[〈id, a〉]).

F (fst(c)) = fst({sA,B}(Fc))
F (snd(c)) = {θB,〈id,fst(c)〉}(snd({sA,B}(Fc)))

F (pair(a, b)) = {s−1
A,B}(pair(Fa, {θ−1

B,〈id,a〉}(Fb)))

Proof. Proposition 7 in [6].
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On the other hand, neither the preservation of the other type constructors nor the
preservation of democracy is automatic. We recall the following definitions from [6].

Definition 4.13. Let C, C′ be cwfs supporting identity types and F : C → C′ be a pseudo
cwf-morphism. Then, F preserves identity types provided there is an isomorphism:

F (I(A, a, a′)) ∼= I(FA,Fa, Fa′)

in T′(Γ).

Likewise, we have for democracy:

Definition 4.14. Let C, C′ be democratic cwfs, and F : C → C′ be pseudo cwf-morphisms.
Then, F preserves democracy provided there is an isomorphism

dΓ : F (Γ) ∼= FΓ[〈〉]
in T′(1) such that the following diagram commutes:

FΓ
FγΓ //

γFΓ ��

F (1.Γ)
ρ1,Γ��

1.FΓ oo
〈〈〉,q〉

F1.FΓ[〈〉] oo dΓ
F1.F (Γ)

We saw before that democratic cwfs automatically support N1 – likewise, pseudo cwf-
morphisms that preserve democracy automatically preserve N1 in the obvious sense.

Finally, we define preservation of Π-types.

Definition 4.15. Let C and C′ be cwfs supporting Π-types, and F a pseudo cwf-morphism.
Then F preserves Π-types iff for each types A ∈ TyC(Γ) and B ∈ TyC(Γ.A) there is an
isomorphism in T′(Γ):

iA,B : F (Π(A,B)) ∼= Π(F (A), F (B)[ρ−1
Γ,A])

such that for any substitution γ : ∆ → Γ, for any terms c ∈ TmC(∆,Π(A,B)[γ]) and
a ∈ TmC(Γ, A[γ]), we have:

F (app(c, a)) = {θB,〈γ,a〉}(app({T′(Fγ)(iA,B) ◦ θ−1
Π(A,B),γ}(Fc), {θ

−1
A,γ}(Fa)))

The definition of preservation of Π-types for pseudo cwf-morphisms only require them
to preserve application. In fact, as remarked in [6], it is sufficient to ensure that abstraction
is preserved as well.

Lemma 4.16. If F : C → C′ is a pseudo cwf-morphism preserving Π-types, then it preserves
the abstraction combinator, in the sense that for any b ∈ TmC(Γ.A,B),

F (λ(b)) = {i−1
A,B}(λ((Fb)[ρ−1

Γ,A]))

Proof. Immediate consequence of Lemma 2 of [6].

We now go on to extend our syntactic cwf T with all the extra structure mentioned
above, before proving that it is bifree.
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4.3. The syntactic cwf with extensional I, N1, Σ, and Π. We extend the grammar
and the set of inference rules with rules for I,N1,Σ, and Π-types:

A ::= · · · | I(a, a) | N1 | Σ(A,A) | Π(A,A)

a ::= · · · | r(a) | 01 | fst(A, a)| snd(A,A, a)| pair(A,A, a, a)| app(A,A, a, a)| λ(A, a)

For each type we define its context:

ctx-of(I(a, a′)) = ctx-of(type-of(a))

ctx-of(N1) = 1

ctx-of(Σ(A,B)) = ctx-of(A)

ctx-of(Π(A,B)) = ctx-of(A)

For each term we define its type:

type-of(01) = N1

type-of(fst(A, c)) = A

type-of(snd(A,B, c) = B [〈idctx-of(A), fst(A, c)〉A]

type-of(pair(A,B, a, b)) = Σ(A,B)

type-of(r(a)) = I(a, a)

type-of(λ(A, c)) = Π(A, type-of(c))

type-of(app(A,B, c, a)) = B [〈idctx-of(A), a〉A]

Rules for I-types
Γ ` a = a′ : A Γ ` b = b′ : A

Γ ` I(a, b) = I(a′, b′)

Γ ` a = a′ : A

Γ ` r(a) = r(a′) : I(a, a′)

Γ ` c : I(a, a′)

Γ ` a = a′ : type-of(a)

Γ ` c : I(a, a′)

Γ ` c = r(a) : I(a, a′)

Γ ` a : A Γ ` a′ : A ∆ ` γ : Γ

∆ ` I(a, a′)[γ] = I(a[γ], a′[γ])

Rules for N1

1 ` N1 = N1 1 ` 01 = 01 : N1

1 ` a : N1

1 ` a = 01 : N1
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Rules for Σ-types
Γ ` A = A′ Γ.A ` B = B′

Γ ` Σ(A,B) = Σ(A′, B′)

Γ ` A = A′ Γ ` c = c′ : Σ(A,B)

Γ ` fst(A, c) = fst(A′, c′) : A

Γ ` A = A′ Γ.A ` B = B′ Γ ` c = c′ : Σ(A,B)

Γ ` snd(A,B, c) = snd(A′, B′, c′) : B [〈idΓ, fst(A, c)〉A]

Γ ` A = A′ Γ.A ` B = B′ Γ ` a = a′ : A′ Γ ` b = b′ : B [〈idΓ, fst(A, c)〉A]

Γ ` pair(A,B, a, b) = pair(A′, B′, a′, b′) : Σ(A,B)

Γ ` A Γ.A ` B Γ ` a : A Γ ` b : B [〈idΓ, fst(A, c)〉A]

Γ : fst(A,pair(A,B, a, b)) = a : A

Γ ` A Γ.A ` B Γ ` a : A Γ ` b : B [〈idΓ, fst(A, c)〉A]

Γ ` snd(A,B,pair(A,B, a, b)) = b : B [〈idΓ, fst(A, c)〉A]

Γ ` c : Σ(A,B)

Γ ` c = pair(A,B, fst(A, c), snd(A,B, c)) : Σ(A,B)

Γ ` A Γ.A ` B ∆ ` γ : Γ

∆ ` Σ(A,B)[γ] = Σ(A[γ], B[γ+])

Γ ` A Γ ` c : Σ(A,B) ∆ ` γ : Γ

∆ ` fst(A, c)[γ] = fst(A[γ], c[γ]) : A

Γ ` A Γ.A ` B Γ ` c : Σ(A,B) ∆ ` γ : Γ

∆ ` snd(A,B, c)[γ] = snd(A[γ], B[γ+], c[γ]) : B[〈γ, fst(A, c)[γ]〉A]

Γ ` A Γ.A ` B Γ ` a : A Γ ` b : B[〈idΓ, fst(A, c)〉A] ∆ ` γ : Γ

∆ ` pair(A,B, a, b)[γ] = pair(A[γ], B[γ+], a[γ], b[γ]) : Σ(A,B)[γ]

Rules for Π-types
Γ ` A = A′ Γ.A ` B = B′

Γ ` Π(A,B) = Π(A′, B′)

Γ ` A = A′ Γ.A ` b = b′ : B

Γ ` λ(A, b) = λ(A′, b′) : Π(A,B)

Γ ` A = A′ Γ.A ` B = B′ Γ ` c = c′ : Π(A,B) Γ ` a = a′ : A

Γ ` app(A,B, c, a) = app(A′, B′, c′, a′) : B[〈idΓ, a〉A]

Γ.A ` b : B Γ ` a : A

Γ ` app(A,B, λ(A, b), a) = b[〈idΓ, a〉A] : B[〈idΓ, a〉A]

Γ ` c : Π(A,B)

Γ ` λ(A, app(c[p], q)) = c : Π(A,B)

Γ ` A Γ.A ` B ∆ ` γ : Γ

∆ ` Π(A,B)[γ] = Π(A[γ], A[γ+])

Γ ` c : Π(A,B) ∆ ` γ : Γ

∆ ` λ(A, b)[γ] = λ(A[γ], b[γ+]) : Π(A,B)[γ]

Γ ` c : Π(A,B) Γ ` a : A ∆ ` γ : Γ

∆ ` app(c, a)[γ] = app(c[γ], a[γ]) : B[〈γ, a[γ]〉A]

It is straightforward to extend the definition of the term model T with I,N1,Σ, and
Π-types to form a cwf T I,N1,Σ,Π supporting these type constructors. Although there are no
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grammatical construct and no inference rules corresponding to democracy we can prove the
following:

Lemma 4.17. The cwf T I,N1,Σ,Π is democratic.

Proof. For any well-formed context Γ ` we define a type Γ by induction on the inference
rules. For 1 `, we have 1 = N1 ∈ Ty(1). For Γ.A `, we set Γ.A = Σ(Γ, A[γ−1

Γ ]). Construct-
ing the required isomorphism is immediate by induction using Lemma 4.3.

It is straightforward to extend the interpretation functor and prove its uniqueness
(among strict cwf-morphisms). It is also easy to check that it preserves democracy.

Theorem 4.18. T I,N1,Σ,Π is the free democratic cwf supporting I,Σ,Π on one object.

We do not detail the proof of this theorem: in essence, it is a simplified version of the
proof of Theorem 4.19 where all key isomorphisms are replaced by identities. Instead, we
go on to prove that just as T , besides being free in the category of strict cwf-morphisms
(preserving structure), T I,N1,Σ,Π is also bifree in the 2-category of pseudo cwf-morphisms
(preserving structure).

4.4. Bifreeness of T I,N1,Σ,Π. We now prove the key result:

Theorem 4.19. T I,N1,Σ,Π is the bifree democratic cwf supporting I,Σ,Π on one object.

This means that T I,N1,Σ,Π is bi-initial in the 2-category CwFI,Σ,Π,o
d where objects are

democratic cwfs which support I,Σ,Π, and a base type o, and where morphisms preserve
these type formers up to coherent isomorphisms.

4.4.1. Existence of ϕ and ψ. We resume our inductive proof from Section 3.4.1, treating
the additional inference rules for I,N1,Σ and Π. We will first treat the type formation rules,
then the type substitution rules. The rules for conversion and substitution on terms are
straightforward, and not detailed.

Type formation rules. We start with the type formation rules for N1, I,Σ and Π.

Unit type: Since F preserves democracy and the terminal object it follows that:

1.1 ∼= 1 ∼= F1 ∼= 1.F1 ∼= 1.F (N1)[ϕ1]

Write ψ1 for this type isomorphism.
Identity type: Assume Γ ` a, b, a′, b′ : A. By induction hypothesis, we have ψA :

JAK ∼=JΓK FA[ϕΓ]. We know I-types preserve isomorphisms in the indexed category

(Lemma 10 of [6]) yielding (over JΓK):

ψI(a,b) : JI(a, b)K = I(JAK, JaK, JbK)
∼= I(FA[ϕΓ], {ψA}(JaK), {ψA}(JbK))
= I(FA[ϕΓ], F (a)[ϕΓ], F (b)[ϕΓ])

We also have ψI(a′,b′) defined in the same way. But ψI(a,b) and ψI(a′,b′) are two par-

allel type isomorphisms whose domain is an identity type – so q[ψI(a,b)]
−1, q[ψ−1

I(a′,b′)] ∈
TmC(JΓK.F (I(a, b))[ϕΓ], I(JAK[p], JaK[p], JbK[p]). It follows by the elimination rule for
identity types in a cwf that these are both equal to the reflexivity term, and that
ψI(a,b) = ψI(a′,b′).
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Σ-types: Assume that we have Γ ` A = A′ and Γ.A ` B = B′. By induction we
have the isomorphisms ψA = ψA′ : JAK ∼=JΓK FA[ϕΓ] and ψB = ψB′ : JBK ∼=JΓ.AK
FB[ϕΓ.A]. We let:

ψΣ(A,B) = JΓ.Σ(A,B)K
Σ(ψA,ψB)−−−−−−→ JΓK.Σ(FA[ϕΓ], FB[ρ−1

Γ,A ◦ ϕΓ
+])

T(ϕΓ)(s−1
A,B)

−−−−−−−−→ JΓK.F (Σ(A,B))[ϕΓ]

It is clear by construction that ψΣ(A,B) = ψΣ(A′,B′).
Π-types: Consider Γ ` A = A′ and Γ.A ` B = B′. Define ψΠ(A,B) as follows:

JΓ.Π(A,B)K
Π(ψ−1

A ,T(ψ−1
A )(ψB))

−−−−−−−−−−−−−→ JΓK.Π(FA[ϕΓ], FB[ρ−1
Γ,A ◦ ϕ

+
Γ ])

T(ϕΓ)(i−1
A,B)

−−−−−−−−→ JΓK.F (Π(A,B))[ϕΓ]

It is clear by construction that ψΠ(A,B) = ψΠ(A′,B′).

Type substitution rules. We now deal with the inference rules pertaining to the compat-
ibility of the types I,Σ and Π with substitution. There is no inference rule for compatibility
of N1 with substitution.

In order to deal with compatibility under substitution, it is convenient to start with a
few lemmas. In particular, we will use heavily the fact that θA,γ can be characterised with
a universal property.

Lemma 4.20. Let γ : Γ→ ∆. The type morphism θA,γ is the only type morphism to make
the following diagram commute:

FΓ.F (A[γ])
ρ−1

Γ,A[γ] // F (Γ.A[γ])
F (γ+) // F (∆.A)

ρ∆,A

��
FΓ.FA[Fγ]

θA,γ

OO

(Fγ)+
// F∆.FA

Proof. The diagram commutes by virtue of Lemma 8 of [6]. Moreover, by definition of type
substitution the following diagram is a pullback:

FΓ.FA[Fγ]

p

��

(Fγ)+

// F∆.FA

p

��
FΓ

Fγ
// F∆

Because θ is an isomorphism and the diagram above commutes, the following is also a
pullback:

FΓ.F (A[γ])

p

��

ρ∆,A◦F (γ+)◦ρ−1
Γ,A[γ] // F∆.FA

p

��
FΓ

Fγ
// F∆
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Thus it follows that there is a unique type morphism F∆.FA[Fγ] → F∆.F (A[γ]) that
makes the diagram of the lemma commute by the universal property of pullbacks.

Using that, we deduce two lemmas on the compatibility of Σ-types and Π-types under
substitution.

Lemma 4.21 (Compatibility of Σ-types with substitution). For any A ∈ TyC(∆), B ∈
TyC(∆.A) and γ : Γ→ ∆, the following diagram of type isomorphisms over FΓ commutes.

F (Σ(A,B))[Fγ]

T(Fγ)(sA,B)
��

θΣ(A,B),γ // F (Σ(A,B)[γ])

sA[γ],B[γ+]

��
Σ(FA,FB[ρ−1

∆,A])[Fγ]
Σ(θA,γ ,T(ρ−1

Γ,A[γ]
◦θA,γ)(θB,γ+ ))

// Σ(F (A[γ]), F (B[γ+])[ρ−1
Γ,A[γ]])

(It is well-typed because of the diagram of Lemma 4.20)

Proof. The diagram amounts to showing that θΣ(A,B),γ = s−1
A[γ],B[γ+]

◦ Σ(θA,γ ,T(ρ−1
Γ,A[γ] ◦

θA,γ)(θB,γ+)) ◦ T (Fγ)(sA,B). Hence by Lemma 4.20 it is enough to show that the right
hand side makes the corresponding diagram commute – which is an involved calculation.

Lemma 4.22 (Compatibility of Π-types with substitution). For any A ∈ TyC(∆), B ∈
TyC(∆.A) and γ : Γ→ ∆, the following diagram of type isomorphisms over FΓ commutes.

F (Π(A,B))[Fγ]

T (Fγ)(iA,B)
��

θΠ(A,B),γ // F (Π(A,B)[γ])

iA[γ],B[γ+]

��
Π(FA,FB[ρ−1

∆,A])[Fγ]
Π(θ−1

A,γ ,T(ρ−1
Γ,A[γ]

)(θB,γ+ ))

// Π(F (A[γ]), F (B[γ+])[ρ−1
Γ,A[γ]])

Again, it is well-typed by Lemma 4.20.

Proof. The (quite involved) proof appears in Appendix B.

We now resume the inductive proof, and check the inference rules for stability of types
under substitution. We only have to handle the cases for I,Σ and Π since N1 has no
substitution rule.

I-types: Assume we have ∆ ` a, a′ : A and Γ ` γ : ∆. Because identity types are
extensional, they can be at most one isomorphism between identity types, hence
ψI(A,a,a′)[γ] = ψI(A[γ],a[γ],a′[γ]).

Σ-types: Assume we have ∆.A ` B and Γ ` γ : ∆. We want to prove equality of
ψΣ(A,B)[γ] and ψΣ(A[γ],B[γ+]). Since T(ϕΓ)(sA[γ],B[γ+]) is an isomorphism, it is equiv-
alent to show the equality of T(ϕΓ)(sA[γ],B[γ+]) ◦ψΣ(A,B)[γ] and T(ϕΓ)(sA[γ],B[γ+]) ◦
ψΣ(A[γ],B[γ+]).

Calculating yields:

T(ϕΓ)(sA[γ],B[γ+]) ◦ ψΣ(A,B)[γ]

= T(ϕΓ)(sA[γ],B[γ+]) ◦T(ϕΓ)(θΣ(A,B),γ) ◦T(JγK)(ψΣ(A,B))

(functoriality of T(ϕΓ))

= T(ϕΓ)(sA[γ],B[γ+] ◦ θΣ(A,B),γ) ◦T(JγK)(ψΣ(A,B))



24 SIMON CASTELLAN, PIERRE CLAIRAMBAULT, AND PETER DYBJER

(Lemma 4.21)

= T(ϕΓ)(Σ(θA,γ ,T(ρ−1
Γ,A[γ] ◦ θA,γ)(θB,γ+)) ◦T(Fγ)(sA,B)) ◦T(JγK)(ψΣ(A,B))

(induction hypothesis on γ)

= T(ϕΓ)(Σ(θA,γ ,T(ρ−1
Γ,A[γ] ◦ θA,γ)(θB,γ+))) ◦T(JγK)(T(ϕ∆)(sA,B) ◦ ψΣ(A,B))

= T(ϕΓ)(Σ(θA,γ ,T(ρ−1
Γ,A[γ] ◦ θA,γ)(θB,γ+))) ◦T(JγK)(Σ(ψA, ψB))

(functoriality of Σ(·, ·) – Lemmas 4.4 and 4.5)

= Σ(T(ϕΓ)(θA,γ) ◦T(JγK)(ψA),

T(T(JγK)(ψA))(T(ϕ+
Γ )(T(ρ−1

Γ,A[γ] ◦ θA,γ)(θB,γ+))) ◦T(Jγ+K)(ψB))

(definition of ψA[γ] and functoriality of T)

= Σ
(
ψA[γ],T(ρ−1

Γ,A[γ] ◦ θA,γ ◦ ϕ
+
Γ ◦T(JγK)(ψA))(θB,γ+) ◦T(Jγ+K)(ψB)

)
(definition of ϕΓ.A[γ] + cwf calculations)

= Σ
(
ψA[γ],T(ϕΓ.A[γ])(θB,γ+) ◦T(Jγ+K)(ψB)

)
= Σ(ψA[γ], ψB[γ+])

Π-types.: The reasoning is analogous to the case of Σ above, using Lemmas 4.7, 4.8
and 4.22.

Term formation rules. The term formation rules are those for the introduction of 01,
r(−), pair, fst, snd, λ(−) and app.

Unit: We need to prove that {ψ1}(01) = F01[ϕ1], where 01 ∈ TmC(1, 1) is defined in
the proof of Lemma 4.11. This is straightforward by the universal property of the
terminal object.

Reflexivity: Assume that Γ ` a = a′ : A. We need to check that

{ψI(a,a′)}(r(JaK)) = F (r(a))[ϕΓ]

By preservation of I-types we have an iso

f : F (I(A, a, a))[ϕΓ] ∼= I(FA[ϕΓ], Fa[ϕΓ], Fa[ϕΓ]),

and by the reflection rule we must have {f}({ψI(a,a′)}(r(JaK))) = {f}(F r(a)[ϕΓ]) as
they are both inhabitants of the identity type.

First projection: Assume we have Γ ` A = A′, Γ ` c = c′ : Σ(A,B) from which we
deduce Γ ` fst(A, c) = fst(A′, c′) : A. First, we note that F (fst(c)) = fst({sA,B}(Fc))
by Proposition 4.12. Then, we calculate:

F (fst(c))[ϕΓ] = fst({sA,B}(F (c)))[ϕΓ]

(definition {·} + interaction fst/substitution)

= fst(q[sA,B ◦ 〈id, F (c)〉][ϕΓ])

(definition functorial action of T)

= fst({T(ϕΓ)(sA,B)}(F (c)[ϕΓ]))
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(induction hypothesis on c)

= fst({T(ϕΓ)(sA,B)}({ψΣ(A,B)}(JcK)))
(functoriality of {·})

= fst({T(ϕΓ)(sA,B) ◦ ψΣ(A,B)}(JcK)))
(Unfolding definition of ψΣ(A,B))

= fst({Σ(ψA, ψB)}(JcK))
(Lemma 4.4)

= q[ψA ◦ 〈p, fst(q)〉 ◦ 〈id, JcK〉〉]

= {ψA}(fst(JcK))
Second projection: Assume we have Γ ` A = A′,Γ.A ` B = B′,Γ ` c = c′ : Σ(A,B)

from which we deduce:

Γ ` snd(A,B, c) = snd(A′, B′, c′) : B[〈idΓ, fst(A, c)〉A]

The calculation follows the same pattern as the one for first projection: we first
apply preservation of the combinators by Proposition 4.12, then calculate.

F (snd(c))[ϕΓ] = {θB,〈idΓ,fst(c)〉A}(snd({sA,B}(Fc)))[ϕΓ]

(propagation of ϕΓ and definition of T(ϕΓ)(·))
= {T(ϕΓ)(θB,〈idΓ,fst(A,c)〉A)}(snd({T(ϕΓ)(sA,B)}(Fc[ϕΓ])))

(I.H. on c, and definition of ψΣ(A,B))

= {T(ϕΓ)(θB,〈idΓ,fst(A,c)〉A)}(snd({Σ(ψA, ψB)}(JcK)))
(unfolding the functorial action of Σ)

= {T(ϕΓ)(θB,〈idΓ,fst(A,c)〉A)}(q[ψB ◦ 〈〈id, fst(JcK)〉, snd(JcK)〉])
(definition T(·)(·))

= {T(ϕΓ)(θB,〈idΓ,fst(A,c)〉A)}({T(J〈idΓ, fst(A, c)〉AK)(ψB)}(snd(JcK)))
(folding definition ψB[〈idΓ,fst(A,c)〉A])

= {ψB[〈idΓ,fst(A,c)〉A]}(snd(JcK))

Pairing: Assume we have Γ ` A = A′,Γ.A ` B = B′,Γ ` a = a′ : A′, and Γ ` b = b′ :
B[〈idΓ, fst(A, c)〉A]. From that, we deduce:

Γ ` pair(A,B, a, b) = pair(A′, B′, a′, b′) : Σ(A,B)

We start by unfolding the definition of ψΣ(A,B), then calculate:

{ψΣ(A,B)}(pair(JaK, JbK)) = {T(ϕΓ)(s−1
A,B)}

(
{Σ(ψA, ψB)}(pair(JaK, JbK))

)
(Unfolding the definition of Σ(ψA, ψB))

= {T(ϕΓ)(s−1
A,B)}

(
pair({ψA}(JaK), q[ψB ◦ 〈〈id, JaK〉, JbK〉])

)
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= {T(ϕΓ)(s−1
A,B)}

(
pair({ψA}(JaK), {T(〈id, JaK〉)(ψB)}(JbK))

)
(definition of ψB[〈id,a〉]))

= {T(ϕΓ)(s−1
A,B)}

(
pair({ψA}(JaK), {T(ϕΓ)(θ−1

B,〈idΓ,a〉A)}({ψB[〈id,a〉]}(JbK)))
)

(induction hypothesis on a and b)

= {T(ϕΓ)(s−1
A,B)}

(
pair(Fa[ϕΓ], {T(ϕΓ)(θ−1

B,〈idΓ,a〉A)}(Fb[ϕΓ]))
)

(Lemma 3.2)

= {s−1
A,B}

(
pair(Fa, {θ−1

B,〈idΓ,a〉A)}(Fb))
)

[ϕΓ]

(Proposition 4.12)

= F (pair(a, b))[ϕΓ]

Abstraction: Assume we have Γ ` A = A′, Γ.A ` b = b′ : B, from which we deduce
Γ ` λ(A, b) = λ(A′, b′) : Π(A,B).

We first unfold the definition of ψΠ(A,B), and then calculate:

{ψΠ(A,B)}(λ(JbK)) = {T(ϕΓ)(i−1
A,B)}

(
{Π(ψ−1

A ,T(ψ−1
A )(ψB))}(λ(JbK))

)
(unfolding Π(−,−) and long simplifications)

= {T(ϕΓ)(i−1
A,B)}

(
λ(({ψB}(JbK))[ψ−1

A ])
)

(induction hypothesis on b)

= {T(ϕΓ)(i−1
A,B)}

(
λ((Fb[ϕΓ.A][ψ−1

A ])
)

(definition of ϕΓ.A)

= {T(ϕΓ)(i−1
A,B)}

(
λ(Fb[ρ−1

Γ,A ◦ ϕ
+
Γ ])
)

(cwf simplification)

= {i−1
A,B}(λ(Fb[ρ−1

Γ,A]))[ϕΓ]

(Lemma 4.16)

= F (λ(A, b))[ϕΓ]

Application: Assume that we have Γ ` A = A′,Γ.A ` B = B′,Γ ` c = c′ : Π(A,B),
and Γ ` a = a′ : A, from which we deduce:

Γ ` app(A,B, c, a) = app(A′, B′, c′, a′) : B[〈idΓ, a〉A]

First we use that F preserves Π-type (using also that θA,id = id, which is one of
the coherence laws for pseudo cwf-morphisms), then calculate:

F (app(c, a))[ϕΓ] = {θB,〈idΓ,a〉A} (app({iA,B}(Fc), Fa)) [ϕΓ]

(pushing the substitution by ϕΓ inside)

= {T(ϕΓ)(θB,〈idΓ,a〉A)} (app({T(ϕΓ)(iA,B)}(Fc[ϕΓ]), Fa[ϕΓ]))
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(induction hypothesis on c and a)

= {T(ϕΓ)(θB,〈idΓ,a〉A)}
(

app({T(ϕΓ)(iA,B)}({ψΠ(A,B)}(JcK), {ψA}(JaK))
)

(definition of ψΠ(A,B))

= {T(ϕΓ)(θB,〈idΓ,a〉A)}
(

app({Π(ψ−1
A ,T(ψ−1

A )(ψB))}(JcK), {ψA}(JaK))
)

(calculation of Π(ψ−1
A ,T(ψ−1

A )(ψB)))

= {T(ϕΓ)(θB,〈idΓ,a〉A)}
(
q
[
T(ψ−1

A )(ψB) ◦
〈
〈id, {ψA}(JaK)〉, app(JcK, JaK)

〉])
(cwf simplification)

= {T(ϕΓ)(θB,〈idΓ,a〉A)}
(
q
[
ψB ◦ 〈ψ−1

A ◦ 〈id, {ψA}(JaK)〉, app(JcK, JaK)〉
])

(cwf simplification)

= {T(ϕΓ)(θB,〈idΓ,a〉A)}
(
q
[
ψB ◦ 〈〈id, JaK〉, app(JcK, JaK)〉

])
(folding definitions)

= {T(ϕΓ)(θB,〈idΓ,a〉A)}
(
{T(〈id, JaK〉)(ψB)}(app(JcK, JaK))

)
(definition of ψB[〈idΓ,a〉A)

= {ψB[〈idΓ,a〉A]}(app(JcK, JaK)))

Conversion, and substitution on terms. The last rules left to check are the conversion
rules, and the substitution on terms. We do not detail them, as they are all immediate
consequences of the corresponding rules for equality and the substitution on terms in the
cwf structure.

4.4.2. Uniqueness of ϕ and ψ. We resume the uniqueness proof from Section 3.4.2.

Unit type. Since 1.N1
∼= 1, uniqueness follows from the terminal object universal property.

Identity types. We need to show ψ′I(A,a,a′) = ψI(A,a,a′) : Γ.I(A, a, a′)→ Γ.F (I(A, a, a′))[ϕΓ].

By post-composing with the coherence isomorphism F (I(A, a, a′)) ∼=FΓ I(FA,Fa, Fa′), we
get a morphism between identity types. In an extensional type theory, identity types are
either empty or singletons, thus there is at most one morphism between two identity types
(which is an isomorphism). This implies that ψI(A,a,a′) = ψ′I(A,a,a′).

Σ-types. By induction, we assume that ϕΓ.A.B = ϕ′Γ.A.B. By naturality of ϕ′, we have

ϕ′Σ(A,B) = F (χ−1
A,B) ◦ ϕ′Γ.A.B ◦ χA,B = ϕΓ.Σ(A,B). Because ϕ is also natural, we can derive a

similar equation, hence ψΣ(A,B) = ψ′Σ(A,B).

Π-types. By induction we assume ϕΓ.A.B = ϕ′Γ.A.B. It also follows from induction hypoth-
esis that ϕΓ = ϕ′Γ, ψA = ψ′A and ψB = ψ′B.

Let evA,B be the evaluation map, a morphism in Γ.A:

evA,B = 〈p, app(q, q[p])〉 : Π(A,B)[p]→ B
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Proposition 11 of [6] entails:

Lemma 4.23. Take B ∈ TyC(Γ.A) in any cwf C with Π-types. The only automorphism f
of Π(A,B) (in TΓ) such that T (p)(f) : Γ.A.Π(A,B)[p] ∼= Γ.A.Π(A,B)[p] satisfies evA,B ◦
T (p)(f) = evA,B is the identity.

We will exploit this, and show that ψ−1
Π(A,B) ◦ ψ

′
Π(A,B) satisfies the condition. But first,

we prove that the ψ component of a pseudo cwf-transformation from J−K to F automatically
preserves evaluation, in the following sense.

Lemma 4.24. Let (ϕ,ψ) be any pseudo cwf-transformation from J−K to F . Then, we have:

ev′A,B ◦T(p)(ψΠ(A,B)) = evA,B : JΓ.A.Π(A,B)[p]K→ JΓ.A.BK

where we use an alternative evaluation map:

ev′A,B = ϕ−1
Γ.A.B ◦ F (evA,B) ◦ ρ−1

Γ.A,Π(A,B)[p] ◦ θΠ(A,B),p ◦ ϕ+
Γ.A

: JΓ.AK.F (Π(A,B))[ϕΓ ◦ p]→ JΓ.A.BK

Proof. We calculate:

F (evA,B) ◦ ρ−1
Γ.A,Π(A,B)[p] ◦ θΠ(A,B),p ◦ ϕ+

Γ.A ◦ T (p)(ψΠ(A,B))

= F (evA,B) ◦ ρ−1
Γ.A,Π(A,B)[p] ◦ ϕ

+
Γ.A ◦ T (ϕΓ.A)(θΠ(A,B),p) ◦ T (p)(ψΠ(A,B))

(Lemma A.2)

= F (ev) ◦ ρ−1
Γ.A,Π(A,B)[p] ◦ ϕ

+
Γ.A ◦ ψΠ(A,B)[p]

(Coherence of pseudo-cwf transformations)

= F (ev) ◦ ϕΓ.A.Π(A,B)[p]

(Naturality of ϕ)

= ϕΓ.A.B ◦ evA,B
Importantly, this is proved not with the inductive definition of (ϕ,ψ), but only using general
properties of pseudo cwf-transformations.

Using that both ψΠ(A,B) and ψ′Π(A,B) satisfy the property above, their equality follows

easily. We calculate:

evA,B ◦T(p)(ψ−1
Π(A,B)) ◦T(p)(ψ′Π(A,B))

(Lemma 4.24 on ψΠ(A,B))

= ev′A,B ◦T(p)(ψ′Π(A,B))

(Lemma 4.24 on ψ′Π(A,B))

= evA,B

Hence, ψΠ(A,B) = ψ′Π(A,B) by Lemma 4.23.
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4.5. The free lccc. Let LCC be the 2-category of lcccs. Since biequivalences preserve

bi-initiality, the biequivalence of [6] CwFΣ,Π,I
d ' LCC allows us to turn the bi-initial cwf

into a bi-initial LCCC:

Theorem 4.25. The category of contexts of T I,N1,Σ,Π is a bifree lccc on one object, that is,
it is bi-initial in LCCo.

5. Conclusion

We have shown that a version of Martin-Löf Type Theory gives rise to the free cwf, with
and without I,N1,Σ and Π. We have proved this freeness result both in a 1-categorical sense
(with respect to strict cwf-morphisms), and in a 2-categorical sense (with respect to pseudo
cwf-morphisms). It follows that the category of contexts of our type theory T I,N1,Σ,Π is a
bifree lccc. We also proved that equality is undecidable in T I,Π (improving slightly on the
folklore result), hence showing undecidability of equality in a bifree lccc. There is only one
bifree lccc up to equivalence, so in that sense T I,N1,Σ,Π is the bifree lccc. However, note that
the undecidability statement is only about our particular presentation of the bifree lccc,
and not about an arbitrary one. We could introduce a notion of recursively presented lccc
and ask the more general question whether an arbitrary such recursively presented bifree
lccc has undecidable equality, but we will leave that for future work.

References

[1] Henk P. Barendregt. Lambda calculi with types. In Samson Abramsky, Dov Gabbay, and Tom Maibaum,
editors, Handbook of Logic in Computer Science, volume 2, pages 118–310. Oxford University Press,
1992.

[2] Jean Benabou. Fibered categories and the foundations of naive category theory. J. Symb. Log, 50(1):10–
37, 1985.

[3] John Cartmell. Generalized algebraic theories and contextual categories. Annals of Pure and Applied
Logic, 32:209–243, 1986.

[4] Simon Castellan, Pierre Clairambault, and Peter Dybjer. Undecidability of equality in the free lo-
cally cartesian closed category. In Thorsten Altenkirch, editor, 13th International Conference on Typed
Lambda Calculi and Applications, TLCA 2015, July 1-3, 2015, Warsaw, Poland, volume 38 of LIPIcs,
pages 138–152. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015.

[5] Pierre Clairambault and Peter Dybjer. The biequivalence of locally cartesian closed categories and
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Appendix A. On pseudo cwf-transformations (erratum for [6])

In [6], pseudo cwf-transformations (2-cells in the 2-category of cwfs) are defined as follows.

Definition A.1. [Pseudo cwf-transformation – version of [6]] Let F andG be cwf-morphisms
from (C, T ) to (C′, T ′). A pseudo cwf-transformation from F to G is a pair (ϕ,ψ) where
ϕ : F ⇒ G is a natural transformation, and ψA : FA→ GA[ϕ∆] is a morphism in T′(F∆)
for each ∆ in C and A ∈ TyC(∆). Furthermore, ψA is natural in A and the following
diagram commutes:

FA[Fγ]
T′(Fγ)(ψA) //

θFA,γ
��

GA[ϕ∆F (γ)]

T′(ϕΓ)(θGA,γ)
��

F (A[γ])
ψA[γ]

// G(A[γ])[ϕΓ]

Here θ and θ′ are the isomorphisms witnessing preservation of substitution in types in the
definition of pseudo cwf-morphisms.

When working on the present paper, we discovered a shortcoming of this definition: the
component ψ is not constrained enough by ϕ. This causes a mismatch with the 2-cells in
LCC (where only the ϕ remains), and as a consequence the family of cwf-transformations
ε used in the biequivalence (see [6]) fails to satisfy the required condition of pseudonatural
transformations.

What is missing from the definition of pseudo cwf-transformation is the following co-
herence diagram which must commute for the biequivalence to hold:

F (∆.A)
ϕ∆.A //

ρF∆,A
��

G(∆.A)

ρG∆,A
��

F∆.FA
ψA // F∆.FA[ϕ∆]

ϕ+
∆ // G∆.GA

This diagram shows that ψ can be defined from ϕ. Hence we could simply define pseudo
cwf-transformations as natural transformations ϕ : F ⇒ G. However, we have not done so,
because pseudo cwf-transformations are most naturally presented with the ψ, reflecting the
second component of cwfs and cwf-morphisms. Moreover, in our proof of bifreeness, the
construction of the unique cwf-transformation between the interpretation and an arbitrary
pseudo cwf-functor naturally constructs ϕ and ψ by mutual induction.

With the addition of the coherence diagram above, the naturality requirement and the
coherence diagram of Definition A.1 become redundant, as we establish here. The following
lemma is a mild generalization of Lemma 5 of [6].

Lemma A.2. Let F,G : C → C′ be pseudo cwf-morphisms, and let (ϕ,ψ) be a pseudo cwf-
transformation from F to G, in the sense of Definition 3.4. Then, (ϕ,ψ) is also a pseudo
cwf-transformation in the sense of Definition A.1, i.e. it satisfies the coherence law:

FA[Fγ]
T′(Fγ)(ψA) //

θA,γ
��

GA[ϕ∆F (γ)]

T′(ϕΓ)(θ′A,γ)
��

F (A[γ])
ψA[γ]

// G(A[γ])[ϕΓ]
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Proof. We first check that ψA is natural in A. More explicitely, recall from [6] that each
cwf-transformation F : C → C′ induces, for any context Γ of C, a functor:

FΓ : T(Γ)→ T′(FΓ)

Its action on types is obvious. Recall that a morphism f : A → B in T(Γ) is a morphism
f : Γ.A→ Γ.B in C such that p ◦ f = p. Its action on FΓ is simply:

ρFΓ,B ◦ F (f) ◦ (ρFΓ,A)−1 : FΓ.FA→ FΓ.FB

The naturality of ψA in A follows directly from the naturality of ϕ.

We also need to check that the coherence law of Definition A.1 holds. We follow the
proof of Lemma 5 in [6], and consider the following composition of squares:

FΓ.G(A[γ])[ϕΓ]
ϕ+

Γ //

p

��

GΓ.G(A[γ])
ρG∆,A◦G(γ+)◦(ρG

Γ,A[γ]
)−1

//

p

��

G∆.G(A)

p

��
FΓ ϕΓ

// GΓ
Gγ

// G∆

The left hand side square is a pullback – the standard substitution pullback of pG(A[γ]) along
ϕΓ. In [6], it is noted that the right hand side square is also a pullback, as the image of
a substitution pullback through G; which is there assumed to preserve pullbacks. For us
though F does not in general preserve pullbacks, but it preserves this one. Indeed, by the
commutation property of Lemma 4.20 it is straightforward to prove it to be isomorphic to
the substitution pullback of pGA along Gγ.

Therefore, the composition of the two squares is a pullback as well. Once we have
established this, the proof follows exactly as in the proof of Lemma 5 in [6]. We exploit that
the two paths T(ϕΓ)(θGA,γ) ◦T(Fγ)(ψA) and ψA[γ] ◦ θFA,γ of the coherence diagram behave
in the same way with respect to this pullback, and therefore are equal by the universal
property. The calculations are given in detail in [6], so we do not repeat them here.

Thus all pseudo cwf-transformations in the sense of Definition 3.4 are also pseudo cwf-
transformations in the sense of Definition A.1. Moreover, all pseudo cwf-transformations
used in the biequivalence [6] trivially obey this stronger condition. In fact, all the pseudo
cwf-transformations (ϕ,ψ) used in the biequivalence were defined by their ϕ component,
whereas the ψ component was defined a posteriori via the equation of Definition 3.4.

Appendix B. Proof of Lemma 4.22

Although the proof should be doable through direct calculation, the details have proved
intricate. So instead we present a proof using more high-level arguments.

If g : A→ B and f : B → C are morphisms in a category C, a dependent product of g
along f is a diagram of the form:

P
ev

�� ��

// D

Πf (g)
��

A
g // B

f // C
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which is universal among all such diagrams in g and f in the following sense:

P ′

�� ��

��

// D′

��

��
P

�� ��

// D

��
A // B // C

It follows from the universal property that dependent products of g along f are unique up
to isomorphism.

If C is a cwf supporting Π-types, then for all A ∈ TyC(∆), B ∈ TyC(Γ.A), there is a
chosen dependent product diagram:

Γ.A.Π(A,B)[p]
evA,B

{{
p

��

p+

// Γ.Π(A,B)

p

��
Γ.A.B

p // Γ.A
p // Γ

where evA,B = 〈p, app(q, q[p])〉. It is quite easy to show that this is indeed a dependent
product diagram, see e.g. Proposition 11 of [6]. Moreover, it is also proved in [6] (Lemma
2) that, for two cwfs C and C′ which both support Π-types, a pseudo cwf-morphism F
from C to C′ preserves Π-types iff the image of a dependent product diagram on projections
Γ.A.B → Γ.A→ Γ is still a dependent product diagram.

The proof of Lemma 4.22 uses the notion of dependent product diagram and in partic-
ular the corresponding universal property – both paths around the diagram will be proved
to preserve the structure of some dependent product diagrams. Their equality will imme-
diately follow from the uniqueness component of the universal property. We now inspect
in turn all four morphisms of the diagram of Lemma 4.22, and prove that they preserve
dependent product structure.

In the remainder of this section, we consider cwfs C, C′ supporting Π-types, F from C to
C′ preserving Π-types, a substitution γ : Γ→ ∆ of C and types A ∈ TyC(∆), B ∈ TyC(∆.A).
We first note:

Lemma B.1. The following is a dependent product diagram.

F∆.FA.F (Π(A,B))[p]
evF (Π(A,B))

ww
p

��

p+

// F∆.FΠ(A,B)

p

��
F∆.FA.FB[ρ−1

∆,A]
p // F∆.FA

p // F∆

where evF (Π(A,B)) = ρ+
∆,A ◦ ρ∆.A,B ◦ F (evA,B) ◦ ρ−1

∆.A,Π(A,B)[p] ◦ θΠ(A,B),p ◦ (ρ−1
∆,A)+.

This means that there is a unique isomorphism to the chosen dependent product diagram
of FA and FB[ρ−1

∆,A], which is given by the morphism:

iA,B : F (Π(A,B))→ Π(FA,FB[ρ−1
∆,A])



34 SIMON CASTELLAN, PIERRE CLAIRAMBAULT, AND PETER DYBJER

involved in the definition of pseudo cwf-morphisms preserving Π-types. The fact that it
yields a morphism of dependent product diagrams means that we also have:

evFA,FB[ρ−1
∆,A] ◦T(p)(iA,B) = evF (Π(A,B))

Proof. By Lemma 2 of [6], the image by F of the chosen dependent product diagram of A
and B is a dependent product diagram. From this diagram we can obtain the diagram above
by applying structural isomorphisms ρ and θ on the nodes. Being obtained by transporting
a dependent product diagram along isomorphisms, it is itself a dependent product diagram.
Its evaluation morphism, evF (Π(A,B)), is obtained by going through the isomorphisms. The
fact that iA,B corresponds to the canonical dependent product diagram morphism is a direct
verification, which appearing in the proof of Lemma 2 of [6].

From that follows immediately:

Lemma B.2. The following is a morphism between two dependent product diagrams:

FΓ.FA[Fγ].F (Π(A,B))[(Fγ) ◦ p]
T(Fγ)(evF (Π(A,B)))

uu

T((Fγ)◦p)(iA,B)

��

p

��

p+

// FΓ.FΠ(A,B)[Fγ]

p

��

T(Fγ)(iA,B)

��

FΓ.FA[Fγ].FB[ρ−1
∆,A][(Fγ)+]

p // FΓ.FA[Fγ]
p // FΓ

FΓ.FA[Fγ].Π(FA,FB[ρ−1
∆,A])[(Fγ) ◦ p]

evFA[Fγ],FB[(Fγ)+]

uu

p

��

p+

// FΓ.Π(FA,FB[ρ−1
∆,A])[Fγ]

p

��
FΓ.FA[Fγ].FB[ρ−1

∆,A][(Fγ)+]
p // FΓ.FA[Fγ]

p // FΓ

where all arrows not explicitely displayed are identities.

Proof. This diagram is obtained by pulling back that of Lemma B.1 along Fγ – it is straight-
forward that this operation preserves dependent product diagrams.

Thus we have proved that the left hand side and the right hand side (instantiating
Lemma B.1 with A[γ], B[γ+]) maps of Lemma 4.22 correspond as required to morphisms of
dependent product diagrams. This remains to be done for the upper and lower maps. We
start with the lower map.
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Lemma B.3. The following is a morphism between two dependent product diagrams:

FΓ.FA[Fγ].Π(FA,FB[ρ−1
∆,A])[(Fγ) ◦ p]

evFA[Fγ],FB[(Fγ)+]

tt

T(p)(Π(θ−1
A,γ ,T(ρ−1

Γ,A[γ]
)(θB,γ+ )))◦θ+

A,γ

��

p

��

p+

// FΓ.Π(FA,FB[ρ−1
∆,A])[Fγ]

p

��

Π(θ−1
A,γ ,T(ρ−1

Γ,A[γ]
)(θB,γ+ ))

��

FΓ.FA[Fγ].FB[ρ−1
∆,A][(Fγ)+]

p //

T(ρ−1
Γ,A[γ]

)(θB,γ+ )◦θ+
A,γ

��

FΓ.FA[Fγ]
p //

θA,γ

��

FΓ

FΓ.F (A[γ]).Π(F (A[γ]), F (B[γ+])[ρ−1
Γ,A[γ]])[p]

evF (A[γ]),F (B[γ+])

tt

p

��

p+

// FΓ.Π(F (A[γ]), F (B[γ+])[ρ−1
Γ,A[γ]])

p

��
FΓ.F (A[γ]).F (B[γ+])[ρ−1

Γ,A[γ]]
p // FΓ.F (A[γ])

p // FΓ

where all arrows not explicitely displayed are identities.

Proof. The only non-trivial equality to prove is that the morphism preserves evaluation, i.e.
that

ev ◦T(p)(Π(θ−1
A,γ ,T(ρ−1

Γ,A[γ])(θB,γ+))) ◦ θ+
A,γ = T(ρ−1

Γ,A[γ])(θB,γ+) ◦ θ+
A,γ ◦ ev

which is a direct (if somewhat intricate) calculation on cwf combinators. Note that both ev

are evaluation morphisms for chosen dependent product diagrams, i.e. 〈p, app(q, q[p])〉.

Finally, the last thing we have to prove is that the upper morphism of the diagram
of Lemma 4.22, i.e. θΠ(A,B),γ , induces as well a canonical morphism between dependent
product diagrams.

Lemma B.4. The following is a morphism between two dependent product diagrams:

FΓ.FA[Fγ].F (Π(A,B))[(Fγ) ◦ p]
T((Fγ)+)(evF (Π(A,B)))

uu

T(p)(θΠ(A,B),γ)◦θ+
A,γ

��

p

��

p+

// FΓ.FΠ(A,B)[Fγ]

p

��

θΠ(A,B),γ

��

FΓ.FA[Fγ].FB[ρ−1
∆,A][(Fγ)+]

p //

T(ρ−1
Γ,A[γ]

)(θB,γ+ )◦θ+
A,γ

��

FΓ.FA[Fγ]
p //

θA,γ

��

FΓ

FΓ.F (A[γ]).F (Π(A,B)[γ])[p]
evF (Π(A[γ],B[γ+]))

uu

p

��

p+

// FΓ.F (Π(A,B)[γ])

p

��
FΓ.F (A[γ]).F (B[γ+])[ρ−1

Γ,A[γ]]
p // FΓ.F (A[γ])

p // FΓ

where all arrows not explicitely displayed are identities.

Proof. Recall that θΠ(A,B),γ can be characterised as the unique morphism between two
candidate substitution pullbacks: one computed in C and transported via F , the other
computed in C′. The proof that θΠ(A,B),γ respects evaluation consists in redoing the same
reasoning, but with the whole dependent product diagram rather than just the type.

The following diagram represents the dependent product diagrams for Π(A,B) and
Π(A[γ], B[γ+]), along with the morphisms relating them together.
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∆.A.Π(A,B)[p]

�� ��

// ∆.Π(A,B)

��

Γ.A[γ].Π(A,B)[γ ◦ p]

ii

��

//

}}

Γ.Π(A,B)[γ]

gg

��

∆.A.B // ∆.A // ∆

Γ.A[γ].B[γ+] //

gg

Γ.A[γ] //

jj

Γ

hh

The front and back faces are both dependent product diagrams. We now map this
diagram to C′ via F , and silently apply the canonical isomorphisms of the pseudo cwf-
morphism structure, to obtain (the bottom part of) the following diagram. We do not
annotate the arrows to avoid cluttering the diagram too much, but they can be recovered
by carefully following the construction of the diagram.

FΓ.FA[Fγ].F (Π(A,B))[(Fγ) ◦ p])

		

xx

//

T(p)(θΠ(A,B),γ)

��

��

FΓ.F (Π(A,B))[Fγ]

{{

��

θΠ(A,B),γ

��

F∆.FA.F (Π(A,B))[p]

|| ��

// F∆.F (Π(A,B))

��

FΓ.FA[Fγ].F (Π(A,B)[γ])[p]

jj

��

//

{{

FΓ.F (Π(A,B)[γ])

hh

��

F∆.FA.FB[ρ−1
∆,A] // F∆.FA // F∆

FΓ.F (A[γ]).F (B[γ+])[ρ−1
Γ,A[γ]]

//

hh

FΓ.F (A[γ]) //

ii

FΓ

gg

The top part of the diagram is obtained (up to an obvious isomorphism) by pulling
back the dependent product diagram in the back along Fγ. By the universal property of
dependent products, the two morphisms from the top dependent product diagram to the
one in the back factor uniquely through the two dotted arrows. But for the right hand side
one, that exactly means that the condition of Lemma 4.20 is satisfied and that the right
hand side dotted map is θΠ(A,B),γ . Similarly, the left hand side dotted map is necessarily
T(p)(θΠ(A,B),γ). Therefore, it preserves the evaluation maps, since it was constructed by
the universal property of dependent product diagrams.

Annotating the morphisms following their construction, it becomes apparent that the
commutation we have proved is exactly the statement of the lemma.

To wrap things up, we note that by the lemmas above all four morphisms of Lemma
4.22 correspond to canonical morphisms between dependent product diagrams: iA[γ],B[γ+]

by Lemma B.1, T(Fγ)(iA,B) by Lemma B.2, Π(θ−1
A,γ ,T(ρ−1

Γ,A[γ])(θB,γ+)) by Lemma B.3,

and θΠ(A,B),γ by Lemma B.4. The corresponding morphisms between dependent product
diagrams are composable, and by uniqueness of the universal property it follows that the
two paths of the diagram of Lemma 4.22 coincide.
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