The Biequivalence of Locally Cartesian Closed Categories and Martin-Löf Type Theory

> Pierre Clairambault, Bath and Peter Dybjer, Chalmers

> > TLCA 2011

Conclusion

Categorical logic: key correspondences

- Cartesian closed categories \simeq simply typed λ -calculus
 - Hyperdoctrines \simeq first-order logic
 - Toposes \simeq Higher-order logic
 - ? ≃ Martin-Löf type theory

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

(日) (日) (日) (日) (日) (日) (日)

Seely's conjecture

R. Seely (1984), Locally cartesian closed categories and type theory:

6.3. THEOREM. The categories **ML** and **LCC** are equivalent.

- **ML** is the category of "Martin-Löf theories" with types $\prod_{x \in A} B[x], \sum_{x \in A} B[x]$, and I(a, b).
- LCC is the category of locally cartesian closed categories.

Extensional type theory

We consider *extensional* intuitionistic type theory of Martin-Löf (1979, 1984), *i.e.* identity types satisfy:

$$\frac{\vdash p: I_A(m, n)}{\vdash m = n: A} \qquad \frac{\vdash p: I_A(m, n)}{\vdash p = r_A(m): I_A(m, n)}$$

Note that these rules are *not* derivable in intensional type theory (and break decidability of type checking).

Locally cartesian closed categories

A category *C* is *locally cartesian closed (lccc)* iff either of the following equivalent conditions hold:

- All slice categories *C*/*A* are cartesian closed (and *C* has a terminal object),
- *C* has finite limits and the functor $f^* : C/B \to C/A$ has a right adjoint Π_f for $f : A \to B$. (The left adjoint Σ_f always exists.)

Seely's **LCC** is the category of lcccs and lccc-structure preserving functors.

(日) (日) (日) (日) (日) (日) (日)

Martin-Löf theory and Iccc - correspondences

- Contexts are objects of C.
- Types in context Γ are morphisms A : dom(A) → Γ (objects of C/Γ), called display maps,
- Terms of type A are sections of A, *i.e.* morphisms
 a : Γ → dom(A) such that A ∘ a = id_Γ.
- Type substitution is pullback:

- Extensional identity types are equalizers
- Σ -types are left adjoints $\Sigma_f \dashv f^*$
- Π -types are right adjoints $f^* \dashv \Pi_f$

Substitution up to isomorphism

Flaw in Seely's proof: pullbacks compose only up to isomorphism.

$$A[M/x][N/y] = A[M[N/y]/x]$$

・ロト ・ 同ト ・ ヨト ・ ヨト

-

It amounts to the fact that a locally cartesian closed category, as a fibration, is not necessarily split.

(ロ) (同) (三) (三) (三) (○) (○)

Curien and Hofmann

Two proposed solutions for the interpretation of MLTT \mathcal{T} in a LCCC C:

Curien (93) : $\mathcal{T}^* \rightarrow C$ Hofmann (95) : $\mathcal{T} \rightarrow \mathcal{B}(C)$

Where:

- \mathcal{T}^* is an extension of \mathcal{T} with *explicit substitutions*, and special terms for *type isomorphisms*.
- *B* is the *Bénabou construction*, which associates to any fibration an equivalent *split* fibration.

However only the interpretation is investigated, not whether this gives an *equivalence*.

Hofmann's solution: Bénabou's construction

A type A over Γ is no longer a *display map* $A : dom(A) \to \Gamma$, but a *family* \overrightarrow{A} of display maps:

$$\begin{array}{c} & \longrightarrow \\ & \downarrow \overrightarrow{\mathcal{A}}(\delta\gamma) & \downarrow \overrightarrow{\mathcal{A}}(\delta) & \downarrow \overrightarrow{\mathcal{A}}(id_{\Gamma}) \\ \Omega & \xrightarrow{\gamma} & \Delta & \xrightarrow{\delta} & \Gamma \end{array}$$

Such that all the squares are pullback squares.

Definition

A functorial family over Γ is a functor $\overrightarrow{A} : C/\Gamma \to C^{\to}$ satisfying some conditions.

Our contribution

Seely's statement

The categories LCC and ML are equivalent.

Theorem

The 2-categories **LCC** and $CwF_{dem}^{I_{ext}\Sigma\Pi}$ are biequivalent

- Instead of an equivalence, we have a weaker biequivalence,
- We use categories with families (CwF) with extra structure (I_{ext}, Σ, Π and dem) as a replacement for syntax.

What is a biequivalence?

When are two objects "abstractly the same"?

Equality (set)	a=b		
lsomorphism (category)	$a\congb$	a g b	$\begin{array}{l} fg = 1_b \\ gf = 1_a \end{array}$
Equivalence (bicategory)	$a\simeqb$	a g b	$\begin{array}{l} fg\cong 1_b\\ gf\cong 1_a \end{array}$
Biequivalence (tricategory)	$a\simb$	a g b	$\begin{array}{l} {\rm gf}\simeq 1_{\rm a} \\ {\rm fg}\simeq 1_{\rm b} \end{array}$

What is a biequivalence?

To define biequivalent 2-categories, we consider the tricategory of bicategories which components are:

- 0-cells: bicategories
- 1-cells: pseudofunctors between bicategories

• 2-cells: pseudonatural transformation of pseudofunctors

3-cells: modification of pseudonatural transformations.

Proving the biequivalence

We need to provide the following data (and check the appropriate properties):

- LCC: the 2-category of locally cartesian closed categories, structure-preserving functors, and natural transformations.
- $CwF_{dem}^{I_{ext}\Sigma\Pi}$: the 2-category of cwfs with extra structure.
- $U: \mathbf{CwF}_{dem}^{I_{ext}\Sigma\Pi} \to \mathbf{LCC}$ is a forgetful 2-functor.
- $H: LCC \to CwF_{dem}^{I_{ext}\Sigma\Pi}$ is a pseudofunctor based on the Bénabou-Hofmann construction.
- η : 1 → HU and ε : HU → 1: pseudonatural transformations, which are inverses up to invertible modifications φ, ψ.

Categories with families (cwfs)

A category with family (C, T) is the data of:

- C, a category of contexts.
- $T : C^{op} \to \mathbf{Fam}$, a functor where the object part $\Gamma \mapsto (\{a \mid \Gamma \vdash a : A\})_{A \in Type(\Gamma)}$ arrow part $\gamma \mapsto \begin{cases} A \mapsto A[\gamma] \\ a \mapsto a[\gamma] \end{cases}$
- A terminal object [] of C called the empty context.
- A context comprehension operation which to an object Γ of C and a type A ∈ Type(Γ) associates a context Γ·A satisfying a product-like universal property.

Cwfs can be presented as a generalised algebraic theory, and be seen as a variable-free syntax for Martin-Löf type theory with explicit substitutions.

Cwf-morphisms

Definition

A *strict cwf-morphism* from (C, T) to (\mathcal{D}, T') is a pair:

• $F: C \to \mathcal{D}$ is a functor;

• $\sigma: T \to T'F$ is a natural transformation.

It follows that $\sigma_{\Gamma}(A)[F\delta] = \sigma_{\Delta}(A[\delta])$

Definition

A pseudo cwf-morphism from (C, T) to (\mathcal{D}, T') is a pair:

• $F: C \to \mathcal{D}$ is a functor;

• $\sigma_{\Gamma} : T\Gamma \rightarrow T'F\Gamma$ is a family of **Fam**-morphism.

Such that $\sigma_{\Gamma}(A)[F\delta] \cong \sigma_{\Delta}(A[\delta])$, with coherence conditions.

The 2-category $CwF_{dem}^{I_{ext}\Sigma\Pi}$

Definition

There is a 2-category $\textbf{CwF}_{dem}^{I_{ext}\boldsymbol{\Sigma}\boldsymbol{\Pi}}$ with:

- 0-cells are cwfs supporting Σ , Π , I_{ext} and dem,
- 1-cells are pseudo cwf-morphisms which also preserve Σ , Π , I_{ext} and dem up to isomorphism,
- 2-cells are pseudo cwf-transformations.

The remaining components

- U(C, T) = C is a forgetful 2-functor,
- H(C) = (C, T_C) generalises the Bénabou-Hofmann construction to a *pseudofunctor*.

・ロ ・ ・ 一 ・ ・ 日 ・ ・ 日 ・

The remaining components

- η_(C,T) = (Id, σ) where σ(A) associates to any substitution δ the display map of A[δ],
- $\epsilon_{(C,T)} = (Id, \tau)$ where $\tau(\vec{A}) = \sum_{y:\Delta} I_{\Gamma}(\vec{A}(id)(y), x)(x:\Gamma)$ builds a syntactic representative type for \vec{A} .

(日) (日) (日) (日) (日) (日) (日)

Conclusion

Theorem

The 2-categories LCC and $CwF_{dem}^{I_{ext}\Sigma\Pi}$ are biequivalent.

Removing everything related to Π in the proof yields the following result:

Theorem

The 2-categories **FL** and $\mathbf{CwF}_{dem}^{\mathbf{I}_{ext}\Sigma}$ are biequivalent.