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Categorical logic: key correspondences

Cartesian closed categories ' simply typed λ-calculus

Hyperdoctrines ' first-order logic

Toposes ' Higher-order logic

? ' Martin-Löf type theory
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Seely’s conjecture

R. Seely (1984), Locally cartesian closed categories and type
theory:

6.3. THEOREM. The categories ML and LCC are
equivalent.

ML is the category of ”Martin-Löf theories” with types∏
x∈A B[x],

∑
x∈A B[x], and I(a,b).

LCC is the category of locally cartesian closed categories.
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Extensional type theory

We consider extensional intuitionistic type theory of Martin-Löf
(1979, 1984), i.e. identity types satisfy:

` p : IA (m,n)

` m = n : A

` p : IA (m,n)

` p = rA (m) : IA (m,n)

Note that these rules are not derivable in intensional type
theory (and break decidability of type checking).
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Locally cartesian closed categories

A category C is locally cartesian closed (lccc) iff either of the
following equivalent conditions hold:

All slice categories C/A are cartesian closed (and C has a
terminal object),
C has finite limits and the functor f ∗ : C/B → C/A has a
right adjoint Πf for f : A → B. (The left adjoint Σf always
exists.)

Seely’s LCC is the category of lcccs and lccc-structure
preserving functors.
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Martin-Löf theory and lccc - correspondences

Contexts are objects of C.
Types in context Γ are morphisms A : dom(A)→ Γ
(objects of C/Γ), called display maps,
Terms of type A are sections of A , i.e. morphisms
a : Γ→ dom(A) such that A ◦ a = idΓ.
Type substitution is pullback:

//

f ∗A
��

A
��

∆
f

// Γ

Extensional identity types are equalizers
Σ-types are left adjoints Σf a f ∗

Π-types are right adjoints f ∗ a Πf
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Substitution up to isomorphism

Flaw in Seely’s proof: pullbacks compose only up to
isomorphism.

A [M/x][N/y] = A [M[N/y]/x]

JNK∗(JMK∗(JAK))

��

//

JMK∗(JAK)

��

//

JAK

��
D

JNK
// C

JMK
// B

�

//

(JMK◦JNK)∗(JAK)

��

JAK

��
D

JMK◦JNK
// B

It amounts to the fact that a locally cartesian closed category,
as a fibration, is not necessarily split.



Seely Biequivalence Proving the biequivalence Conclusion

Curien and Hofmann

Two proposed solutions for the interpretation of MLTT T in a
LCCC C:

Curien (93) : T
∗
→ C

Hofmann (95) : T → B(C)

Where:
T
∗ is an extension of T with explicit substitutions, and

special terms for type isomorphisms.
B is the Bénabou construction, which associates to any
fibration an equivalent split fibration.

However only the interpretation is investigated, not whether this
gives an equivalence.
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Hofmann’s solution: Bénabou’s construction

A type A over Γ is no longer a display map A : dom(A)→ Γ,
but a family

−→
A of display maps:

//

−→
A (δγ)

��

//

−→
A (δ)

��
−→
A (idΓ)

��
Ω γ

// ∆
δ

// Γ

Such that all the squares are pullback squares.

Definition

A functorial family over Γ is a functor
−→
A : C/Γ→ C→ satisfying

some conditions.
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Our contribution

Seely’s statement
The categories LCC and ML are equivalent.

Theorem

The 2-categories LCC and CwFIextΣΠ
dem are biequivalent

Instead of an equivalence, we have a weaker
biequivalence,
We use categories with families (CwF) with extra structure
(Iext,Σ,Π and dem) as a replacement for syntax.
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What is a biequivalence?

When are two objects ”abstractly the same”?
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What is a biequivalence?

To define biequivalent 2-categories, we consider the tricategory
of bicategories which components are:

0-cells: bicategories
1-cells: pseudofunctors between bicategories

2-cells: pseudonatural transformation of pseudofunctors

FA
ηA //

Ff
��

GA

Gf
��

FB ηB
//

ηf
8@zzzzzzzz

zzzzzzzz
GB

3-cells: modification of pseudonatural transformations
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Proving the biequivalence

We need to provide the following data (and check the
appropriate properties):

LCC: the 2-category of locally cartesian closed categories,
structure-preserving functors, and natural transformations.
CwFIextΣΠ

dem : the 2-category of cwfs with extra structure.

U : CwFIextΣΠ
dem → LCC is a forgetful 2-functor.

H : LCC→ CwFIextΣΠ
dem is a pseudofunctor based on the

Bénabou-Hofmann construction.
η : 1→ HU and ε : HU → 1: pseudonatural
transformations, which are inverses up to invertible
modifications φ,ψ.
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Categories with families (cwfs)

A category with family (C,T) is the data of:
C, a category of contexts.
T : Cop

→ Fam, a functor where the
object part Γ 7→ ({a | Γ ` a : A })A∈Type(Γ)

arrow part γ 7→
{

A 7→ A [γ]
a 7→ a[γ]

A terminal object [] of C called the empty context.
A context comprehension operation which to an object Γ of
C and a type A ∈ Type(Γ) associates a context Γ·A
satisfying a product-like universal property.

Cwfs can be presented as a generalised algebraic theory, and
be seen as a variable-free syntax for Martin-Löf type theory
with explicit substitutions.
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Cwf-morphisms

Definition
A strict cwf-morphism from (C,T) to (D,T ′) is a pair:

F : C → D is a functor;
σ : T → T ′F is a natural transformation.

It follows that σΓ(A)[Fδ] = σ∆(A [δ])

Definition
A pseudo cwf-morphism from (C,T) to (D,T ′) is a pair:

F : C → D is a functor;
σΓ : TΓ→ T ′FΓ is a family of Fam-morphism.

Such that σΓ(A)[Fδ] � σ∆(A [δ]), with coherence conditions.
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The 2-category CwFIextΣΠ
dem

Definition

There is a 2-category CwFIextΣΠ
dem with:

0-cells are cwfs supporting Σ,Π, Iext and dem,
1-cells are pseudo cwf-morphisms which also preserve
Σ,Π, Iext and dem up to isomorphism,
2-cells are pseudo cwf-transformations.
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The remaining components

LCC CwFIextΣΠ
dem

(C,T)&
U

rrffffffffffffffffffff

η(C,T)

��

C �

H ,,XXXXXXXXXXXXXXXXXXXX

(C,TC)

ε(C,T)

YY

U(C,T) = C is a forgetful 2-functor,

H(C) = (C,TC) generalises the Bénabou-Hofmann
construction to a pseudofunctor.
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The remaining components

LCC CwFIextΣΠ
dem

(C,T)&
U

rrffffffffffffffffffff

η(C,T)

��

C �

H ,,XXXXXXXXXXXXXXXXXXXX

(C,TC)

ε(C,T)

YY

η(C,T) = (Id, σ) where σ(A) associates to any substitution δ
the display map of A [δ],

ε(C,T) = (Id, τ) where τ(
−→
A ) = Σy:∆IΓ(

−→
A (id)(y), x)(x : Γ)

builds a syntactic representative type for
−→
A .
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Conclusion

Theorem

The 2-categories LCC and CwFIextΣΠ
dem are biequivalent.

Removing everything related to Π in the proof yields the
following result:

Theorem

The 2-categories FL and CwFIext Σ
dem are biequivalent.
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