Quantales	Bilimit in DCPO	Bilimit in Q-DCPO	

The limit-colimit coincidence in Q-DCPO

Mateusz Kostanek

Joint work with Pawel Waszkiewicz

Jagiellonian University Theoretical Computer Science

Computational Logic and Applications 2009

Introduction	Quantales	Bilimit in DCPO	Bilimit in Q-DCPO	Summary
Outline				

Introduction

2 Quantales

3 Bilimit in DCPO

Bilimit in *Q*-DCPO

5 Summary

 Introduction
 Quantales
 Bilimit in DCPO
 Bilimit in Q-DCPO
 Summary

 Comparison of metrics and posets
 Summary

Ingredients of poset

A set X.

• Order function $X \times X \rightarrow \mathbf{2}$

Laws.

Ingredients of metric space

• A set X.

• Distance function $X \times X \to \mathbb{R}$

Laws.

Ingredients of poset

- A set X.
- Order function $X \times X \rightarrow \mathbf{2}$
- Laws.

Ingredients of metric space

- A set X.
- Distance function $X \times X \to \mathbb{R}$

Laws.

 Introduction
 Quantales
 Bilimit in DCPO
 Bilimit in Q-DCPO
 Summary

 Comparison of metrics and posets
 Summary

Ingredients of poset

- A set X.
- Order function $X \times X \rightarrow \mathbf{2}$
- Laws.

Ingredients of metric space

- A set X.
- Distance function $X \times X \to \mathbb{R}$
- Laws.

	Quantales	Bilimit in DCPO	Bilimit in Q-DCPO	
Outline				

1 Introduction



3 Bilimit in DCPO

5 Summary

The limit-colimit coincidence in Q-DCPO

Introduction	Quantales	Bilimit in DCPO	Bilimit in <i>Q</i> -DCPO	Summary
Quantal				

A $\mathcal{Q} = (Q, \leqslant, \otimes, 1)$ is a quantale if:

- (Q, \leq) is a complete lattice.
- Tensor ⊗: Q × Q → Q is an associative, commutative operation that preserves suprema.
- Unit 1 is a neutral element with respect to ⊗ and it is simultaneously the top element in Q.

Introduction	Quantales	Bilimit in DCPO	Bilimit in <i>Q</i> -DCPO	Summary
Quantal				

- A $\mathcal{Q} = (Q, \leqslant, \otimes, 1)$ is a quantale if:
 - (Q, \leqslant) is a complete lattice.
 - Tensor ⊗: Q × Q → Q is an associative, commutative operation that preserves suprema.
 - Unit 1 is a neutral element with respect to ⊗ and it is simultaneously the top element in Q.

Introduction	Quantales	Bilimit in DCPO	Bilimit in <i>Q</i> -DCPO	Summary
Quantal				

- A $\mathcal{Q}=(\mathsf{Q},\leqslant,\otimes,\textbf{1})$ is a quantale if:
 - (Q, \leqslant) is a complete lattice.
 - Tensor ⊗: Q × Q → Q is an associative, commutative operation that preserves suprema.
 - Unit 1 is a neutral element with respect to ⊗ and it is simultaneously the top element in Q.

	Quantales	Bilimit in DCPO	Bilimit in Q-DCPO	
Quantal				

- A $\mathcal{Q}=(\mathsf{Q},\leqslant,\otimes,\textbf{1})$ is a quantale if:
 - (Q, \leqslant) is a complete lattice.
 - Tensor ⊗: Q × Q → Q is an associative, commutative operation that preserves suprema.
 - Unit 1 is a neutral element with respect to ⊗ and it is simultaneously the top element in Q.

Introduction	Quantales	Bilimit in DCPO	Bilimit in <i>Q</i> -DCPO	Summar
Q-poset				

A Q-poset is a set X together with a function $X(-,-): X \times X \to Q$ satisfying:

- Reflexivity: X(x, x) = 1,
- Transitivity: $X(x, y) \otimes X(y, z) \leq X(x, z)$
- Antisymmetry: X(x, y) = 1 and X(y, x) = 1 imply x = y.

	Quantales	Bilimit in DCPO	Bilimit in Q-DCPO	Summary
Q-poset				

A Q-poset is a set X together with a function $X(-,-): X \times X \to Q$ satisfying:

• Reflexivity: X(x, x) = 1,

- Transitivity: $X(x, y) \otimes X(y, z) \leq X(x, z)$
- Antisymmetry: X(x, y) = 1 and X(y, x) = 1 imply x = y.

	Quantales	Bilimit in DCPO	Bilimit in <i>Q</i> -DCPO	
Q-poset				

A Q-poset is a set X together with a function $X(-,-): X \times X \to Q$ satisfying:

- Reflexivity: X(x, x) = 1,
- Transitivity: $X(x, y) \otimes X(y, z) \leq X(x, z)$
- Antisymmetry: X(x, y) = 1 and X(y, x) = 1 imply x = y.

	Quantales	Bilimit in DCPO	Bilimit in <i>Q</i> -DCPO	Summary
Q-poset				

A Q-poset is a set X together with a function $X(-,-): X \times X \to Q$ satisfying:

- Reflexivity: X(x, x) = 1,
- Transitivity: $X(x, y) \otimes X(y, z) \leq X(x, z)$
- Antisymmetry: X(x, y) = 1 and X(y, x) = 1 imply x = y.

	Quantales	Bilimit in DCPO	Bilimit in <i>Q</i> -DCPO	
Q-poset				

A Q-poset is a set X together with a function $X(-,-): X \times X \to Q$ satisfying:

- Reflexivity: X(x, x) = 1,
- Transitivity: $X(x, y) \otimes X(y, z) \leq X(x, z)$
- Antisymmetry: X(x, y) = 1 and X(y, x) = 1 imply x = y.

Introduction					

Bilimit in DCPC

Examples

Example (Posets)

- $Q := \{0, 1\}$
- $\wedge =: \otimes \bullet$
- 1 := 1
- $\bullet \leqslant := \leqslant$
- $X(x,y) \wedge X(y,z) \leqslant X(x,z)$

- $Q := [0, \infty]$
- $\bullet \ \otimes := +$
- 1 := 0
- $\bullet \, \leqslant := \, \geqslant_{\mathbb{R}}$
- $X(x,y) + X(y,z) \ge_{\mathbb{R}} X(x,z)$

Introduction		

Bilimit in DCPC

Examples

Example (Posets)

- $Q := \{0, 1\}$
- $\wedge =: \otimes \bullet$
- 1 := 1
- $\bullet \leqslant := \leqslant$
- $X(x,y) \wedge X(y,z) \leqslant X(x,z)$

- $Q := [0, \infty]$
- $\bullet \ \otimes := +$
- 1 := 0
- $\bullet \, \leqslant := \, \geqslant_{\mathbb{R}}$
- $X(x,y) + X(y,z) \ge_{\mathbb{R}} X(x,z)$

Quantales	Bilimit i

Examples

Example (Posets)

- $Q := \{0, 1\}$
- $\bullet \otimes := \land$
- 1 := 1
- $\bullet \leqslant := \leqslant$
- $X(x,y) \wedge X(y,z) \leqslant X(x,z)$

- $Q := [0, \infty]$
- $\bullet \ \otimes := +$
- 1 := 0
- $\bullet \, \leqslant := \, \geqslant_{\mathbb{R}}$
- $X(x,y) + X(y,z) \ge_{\mathbb{R}} X(x,z)$

ion

Bilimit in DCP

Examples

Example (Posets)

- $Q := \{0, 1\}$
- $\wedge =: \otimes \bullet$
- **1** := **1**
- $\bullet \leqslant := \leqslant$
- $X(x,y) \wedge X(y,z) \leqslant X(x,z)$

- $Q := [0, \infty]$
- $\bullet \ \otimes := +$
- 1 := 0
- $\bullet \, \leqslant := \, \geqslant_{\mathbb{R}}$
- $X(x,y) + X(y,z) \ge_{\mathbb{R}} X(x,z)$

	Quantales	Bilimit in DCPO	Bilimit in Q-DC
Exampl	es		

Example (Posets)

- $Q := \{0, 1\}$
- $\wedge =: \otimes \bullet$
- **1** := 1
- <:= <

• $X(x,y) \wedge X(y,z) \leqslant X(x,z)$

- $Q := [0, \infty]$
- $\bullet \ \otimes := +$
- 1 := 0
- $\bullet \, \leqslant := \, \geqslant_{\mathbb{R}}$
- $X(x,y) + X(y,z) \ge_{\mathbb{R}} X(x,z)$

	Quantales	Bilimit in DCPO	Bilimit in <i>Q</i> -DCPO	
Examples				

Example (Posets)

- $Q := \{0, 1\}$
- $\wedge =: \otimes \bullet$
- **1** := 1
- ≼:= ≼
- $X(x,y) \wedge X(y,z) \leq X(x,z)$

- $Q := [0, \infty]$
- $\bullet \ \otimes := +$
- 1 := 0
- $\bullet \leqslant := \geqslant_{\mathbb{R}}$
- $X(x,y) + X(y,z) \ge_{\mathbb{R}} X(x,z)$

Introduction					

Bilimit in DCPC

Examples

Example (Posets)

- $Q := \{0, 1\}$
- $\wedge =: \otimes \bullet$
- **1** := 1
- ≼:= ≼
- $X(x,y) \wedge X(y,z) \leqslant X(x,z)$

Example (Metric Spaces)

• $Q := [0,\infty]$

$$\bullet \ \otimes := +$$

$$\bullet \leqslant := \geqslant_{\mathbb{R}}$$

•
$$X(x,y) + X(y,z) \ge_{\mathbb{R}} X(x,z)$$

Introduction					

Bilimit in DCPC

Examples

Example (Posets)

- $Q := \{0, 1\}$
- $\wedge =: \otimes \bullet$
- **1** := 1
- ≼:= ≼
- $X(x,y) \wedge X(y,z) \leqslant X(x,z)$

•
$$Q := [0, \infty]$$

$$\bullet \otimes := +$$

$$\bullet \leqslant := \geqslant_{\mathbb{R}}$$

•
$$X(x,y) + X(y,z) \ge_{\mathbb{R}} X(x,z)$$

Introduction				

Bilimit in DCPC

Examples

Example (Posets)

- $Q := \{0, 1\}$
- $\wedge =: \otimes \bullet$
- **1** := 1
- ≼:= ≼
- $X(x,y) \wedge X(y,z) \leqslant X(x,z)$

•
$$Q := [0,\infty]$$

$$\bullet \otimes := +$$

$$\bullet \leq := \geq_{\mathbb{R}}$$

•
$$X(x,y) + X(y,z) \ge_{\mathbb{R}} X(x,z)$$

Intr		

Bilimit in DCPC

Examples

Example (Posets)

- $Q := \{0, 1\}$
- $\wedge =: \otimes \bullet$
- **1** := 1
- ≼:= ≼
- $X(x,y) \wedge X(y,z) \leqslant X(x,z)$

•
$$Q := [0,\infty]$$

$$\bullet \ \otimes := +$$

$$\bullet \leq := \geq_{\mathbb{R}}$$

•
$$X(x,y) + X(y,z) \ge_{\mathbb{R}} X(x,z)$$

Introductior	

Bilimit in DCPC

Examples

Example (Posets)

- $Q := \{0, 1\}$
- $\wedge =: \otimes \bullet$
- **1** := 1
- ≼:= ≼
- $X(x,y) \wedge X(y,z) \leqslant X(x,z)$

Example (Metric Spaces)

• $Q := [0,\infty]$

$$\bullet \ \otimes := +$$

 $\bullet \ \mathbf{1}:=\mathbf{0}$

$$\bullet \leq := \geq_{\mathbb{R}}$$

•
$$X(x,y) + X(y,z) \ge_{\mathbb{R}} X(x,z)$$

Introduction				

Bilimit in DCPC

Examples

Example (Posets)

- $Q := \{0, 1\}$
- $\wedge =: \otimes \bullet$
- **1** := 1
- ≼:= ≼
- $X(x,y) \wedge X(y,z) \leqslant X(x,z)$

•
$$Q := [0,\infty]$$

$$\bullet \ \otimes := +$$

$$\bullet \ \mathbf{1}:=\mathbf{0}$$

$$\bullet \leqslant := \geqslant_{\mathbb{R}}$$

•
$$X(x,y)+X(y,z) \geq_{\mathbb{R}} X(x,z)$$

Introduction	Quantales	Bilimit in DCPO	Bilimit in <i>Q</i> -DCPO	Summary
Examples				

Definition (Dual *Q*-poset)

$$X^{op} := X$$

 $X^{op}(x, y) := X(y, x)$

Example

If X is a Q-poset, then X^{op} is also a Q-poset.

Introduction	Quantales	Bilimit in DCPO	Bilimit in <i>Q</i> -DCPO	Summary
Examples				

Definition (Dual *Q*-poset)

$$X^{op} := X$$

 $X^{op}(x, y) := X(y, x)$

Example

If X is a Q-poset, then X^{op} is also a Q-poset.

Introduction	Quantales	Bilimit in DCPO	Bilimit in <i>Q</i> -DCPO	Summary
Q-functor				

A Q-functor is a function between Q-posets X and Y that satisfies $X(x, y) \leq Y(fx, fy)$.

Example (2-functor)

2-functors are monotone maps between posets.

Example ($[0,\infty]$ -functor)

 $[0,\infty]$ -functors are non expansive maps between metric spaces.

	Quantales	Bilimit in DCPO	Bilimit in <i>Q</i> -DCPO	
\mathcal{Q} -functor				

A Q-functor is a function between Q-posets X and Y that satisfies $X(x, y) \leq Y(fx, fy)$.

Example (2-functor)

2-functors are monotone maps between posets.

Example ($[0, \infty]$ -functor)

 $[0,\infty]$ -functors are non expansive maps between metric spaces.

	Quantales	Bilimit in DCPO	Bilimit in Q-DCPO	
Q-functor				

Interesting examples of Q-functors are those that have X^{op} as their domain

Example

A **2**-functor $X^{op} \rightarrow \mathbf{2}$ is a characteristic map of some lower subset of X.

Example (Yoneda)

For every x a function $y_x = X(-, x)$ is a Q-functor $X^{op} \to Q$.

	Quantales	Bilimit in DCPO	Bilimit in <i>Q</i> -DCPO	Summary
Q-functor				

Interesting examples of Q-functors are those that have X^{op} as their domain

Example

A **2**-functor $X^{op} \rightarrow \mathbf{2}$ is a characteristic map of some lower subset of X.

Example (Yoneda)

For every x a function $y_x = X(-, x)$ is a Q-functor $X^{op} \to Q$.

	Quantales	Bilimit in DCPO	Bilimit in <i>Q</i> -DCPO	Summary
Q-functor				

Interesting examples of Q-functors are those that have X^{op} as their domain

Example

A **2**-functor $X^{op} \rightarrow \mathbf{2}$ is a characteristic map of some lower subset of X.

Example (Yoneda)

For every x a function $y_x = X(-, x)$ is a Q-functor $X^{op} \to Q$.

Introduction

Q-POS

Quantales

Bilimit in DCP

Definition (Q-POS)

A Q-POS is a category with

- *Q*-posets as objects.
- *Q*-functors as morphisms.

Introduction

Q-POS

Quantales

Bilimit in DCP

Definition (Q-POS)

A $\mathcal{Q}\text{-}\text{POS}$ is a category with

- *Q*-posets as objects.
- *Q*-functors as morphisms.

Introduction

Q-POS

Quantales

Bilimit in DCP

Definition (Q-POS)

- A Q-POS is a category with
 - Q-posets as objects.
 - *Q*-functors as morphisms.

	Quantales	Bilimit in DCPO	Bilimit in <i>Q</i> -DCPO	
Ideals				

Definition (Cauchy net)

A net (c_i) in a Q-poset X is Cauchy if $\forall_{\varepsilon \prec 1} \exists_{n \ \forall i > j > n} \varepsilon \prec X(c_j, c_i)$.

Definition (Ideal)

A Q-distributor ϕ is an ideal if there exists a Cauchy net satisfying:

$$\phi(\mathbf{x}) = \bigvee_i \bigwedge_{j>i} X(\mathbf{x}, \mathbf{c}_j)$$

	Quantales	Bilimit in DCPO	Bilimit in <i>Q</i> -DCPO	Summary
Ideals				

Definition (Cauchy net)

A net (c_i) in a Q-poset X is Cauchy if $\forall_{\varepsilon \prec 1} \exists_{n \ \forall i > j > n} \varepsilon \prec X(c_j, c_i)$.

Definition (Ideal)

A Q-distributor ϕ is an ideal if there exists a Cauchy net satisfying:

$$\phi(\mathbf{x}) = \bigvee_i \bigwedge_{j>i} X(\mathbf{x}, \mathbf{c}_j)$$

Introduction	Quantales	Bilimit in
Ideals		

Example (2-ideal)

2-ideal is a characteristic map of an order ideal.

Example ($[0,\infty]$ -ideal)

In complete metric spaces a $[0,\infty]$ -ideal is the distance from the limit of a Cauchy net.

	Quantales	Bilimit in DCPO	Bilimit in Q-DCPO	
Suprema				

Definition (Supremum)

An ideal ϕ has a supremum $S\phi$ if for all x we have: $X(S\phi, x) = \widehat{X}(\phi, X(-, x))$

Example (2-supremum)

A **2**-supremum is just a supremum of a set.

Example ($[0,\infty]$ -supremum)

A $[0, \infty]$ -supremum is the limit of a Cauchy sequence.

	Quantales	Bilimit in DCPO	Bilimit in Q-DCPO	
Suprema				

Definition (Supremum)

An ideal ϕ has a supremum $S\phi$ if for all x we have: $X(S\phi, x) = \widehat{X}(\phi, X(-, x))$

Example (2-supremum)

A **2**-supremum is just a supremum of a set.

Example ($[0, \infty]$ -supremum)

A $[0,\infty]$ -supremum is the limit of a Cauchy sequence.

	Quantales	Bilimit in DCPO	Bilimit in <i>Q</i> -DCPO	
\mathcal{Q} -dcpo				

Definition (Q-dcpo)

A Q-poset X is a Q-dcpo iff every ideal over X has a supremum.

	Quantales	Bilimit in DCPO	Bilimit in Q -DCPO	
Continous	Q-functor			

Definition (Continous *Q*-functor)

A Q-functor f is continous iff it preservs suprema i.e.

$$f(\mathcal{S}\phi) = \mathcal{S}\underline{f}(\phi)$$

Introduction

Quantales

Bilimit in DCPC

Q-DCPO

Definition (Q-DCPO)

A Q-DCPO is a category with

- Q-dcpos as objects.
- Continous *Q*-functors as morphisms.

Introduction

Quantales

Bilimit in DCPC

Q-DCPO

Definition (Q-DCPO)

A Q-DCPO is a category with

- Q-dcpos as objects.
- Continous *Q*-functors as morphisms.

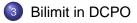
 \mathcal{Q} -DCPO

Definition (Q-DCPO)

- A Q-DCPO is a category with
 - Q-dcpos as objects.
 - Continous *Q*-functors as morphisms.

	Quantales	Bilimit in DCPO	Bilimit in Q-DCPO	
Outline				

1 Introduction



	Quantales	Bilimit in DCPO	Bilimit in <i>Q</i> -DCPO	
Bilimit tl	neorem			

We will see a generalisation of a theorem that is described as:

"One of the fundamental tools of domain theory, which plays its most prominent role in the solution of recursive domain equations."

Expanding sequence

Definition (Expanding sequence – informal)

An expanding sequence is an step by step growth of a poset with following constrains:

- The order is preserved.
- New points appear above existing ones.

Expanding sequence

Definition (Expanding sequence – informal)

An expanding sequence is an step by step growth of a poset with following constrains:

• The order is preserved.

New points appear above existing ones.

Expanding sequence

Definition (Expanding sequence – informal)

An expanding sequence is an step by step growth of a poset with following constrains:

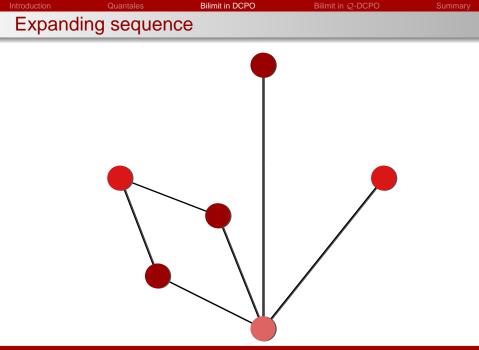
- The order is preserved.
- New points appear above existing ones.

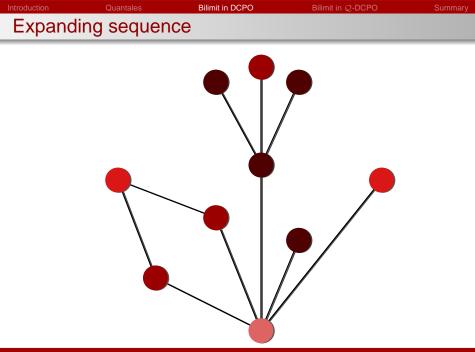
Introduction	Quantales	Bilimit in DCPO	Bilimit in <i>Q</i> -DCPO	Summary
Expandin	ig sequen	се		

 Introduction
 Quantales
 Bilimit in DCPO
 Bilimit in Q-DCPO
 Summary

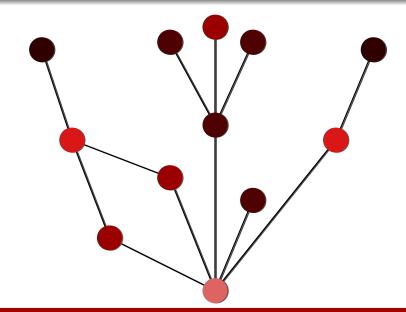
 Expanding sequence
 Summary
 Summary
 Summary
 Summary

The limit-colimit coincidence in Q-DCPO





Introduction Quantales Bilimit in DCPO Bilimit in Q-DCPO Summary Expanding sequence Expanding sequence



 Introduction
 Quantales
 Bilimit in DCPO
 Bilimit in Q-DCPO
 Summary

 Bilimit of an expanding sequence
 Summary

Definition (Bilimit – informal)

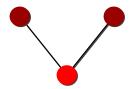
A bilimit of a given sequence is the smallest dcpo that contains (as induced subgraph) every element of the sequence.
 Introduction
 Quantales
 Bilimit in DCPO
 Bilimit in Q-DCPO
 Summary

 Example of a bilimit of an expanding sequence

The limit-colimit coincidence in Q-DCPO

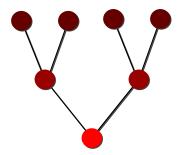
 Introduction
 Quantales
 Bilimit in DCPO
 Bilimit in Q-DCPO
 Summary

 Example of a bilimit of an expanding sequence



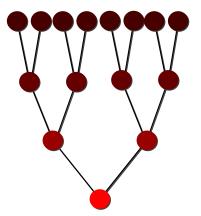
 Introduction
 Quantales
 Bilimit in DCPO
 Bilimit in Q-DCPO
 Summary

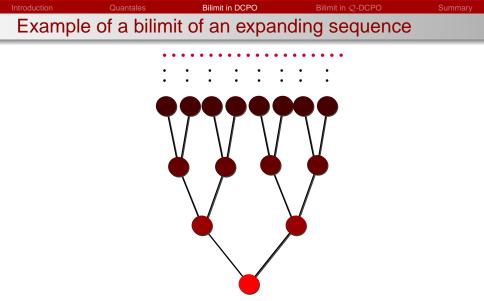
 Example of a bilimit of an expanding sequence



 Introduction
 Quantales
 Bilimit in DCPO
 Bilimit in Q-DCPO
 Summa

 Example of a bilimit of an expanding sequence
 Summa
 <td





	Quantales	Bilimit in DCPO	Bilimit in <i>Q</i> -DCPO	
Bilimit ir	n DCPO			

Theorem

Each expanding sequence in the category DCPO has a bilimit.

Introduction	Quantales	Bilimit in DCPO	Bilimit in <i>Q</i> -DCPO	Summary
Outline				

1 Introduction

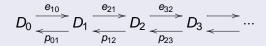
2 Quantales

3 Bilimit in DCPO

Bilimit in Q-DCPO

5 Summary

Expanding sequence in Q-DCPO



$$e_{kn} \circ e_{nm} = e_{km},$$

$$p_{mn} \circ p_{nk} = p_{mk},$$

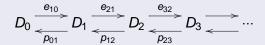
$$\ \, \bigcirc \ \, p_{mn} \circ e_{nm} = Id_{D_m}$$

$$\ \ \, \bullet_{nm} \circ p_{mn} \leqslant \mathsf{Id}_{D_n} \ ,$$

The limit-colimit coincidence in Q-DCPO

Definition

Expanding sequence in Q-DCPO



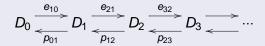
$$e_{kn} \circ e_{nm} = e_{km},$$

$$e_{nm} \circ p_{mn} \leq Id_{D_n}$$

The limit-colimit coincidence in Q-DCPO

Definition

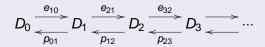
Expanding sequence in Q-DCPO



$$e_{kn} \circ e_{nm} = e_{km}, p_{mn} \circ p_{nk} = p_{mk}, p_{mn} \circ e_{nm} = Id_{D_m}. e_{nm} \circ p_{mn} \leq Id_{D_n},$$

Definition

Expanding sequence in Q-DCPO



$$\begin{array}{l} \bullet \ e_{kn} \circ e_{nm} = e_{km}, \\ \hline e_{mn} \circ p_{nk} = p_{mk}, \\ \hline e_{nm} \circ e_{nm} = Id_{D_m}. \\ \hline e_{nm} \circ p_{mn} \leqslant Id_{D_n}, \end{array}$$

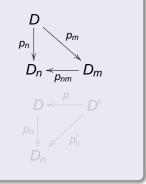
	Quantales	Bilimit in DCPO	Bilimit in <i>Q</i> -DCPO	
Limit –	Colimit			

Definition (Limit)

A Q-dcpo D is a limit of an expanding sequence iff

There exist *Q*-functors (*p_n*) such that following diagram commutes:

Furthermore any other candidate D' together with family of Q-functors (p'_n), that satisfies previous condition, factorises through (p_n)



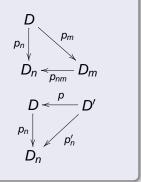
	Quantales	Bilimit in DCPO	Bilimit in <i>Q</i> -DCPO	
Limit –	Colimit			

Definition (Limit)

A Q-dcpo D is a limit of an expanding sequence iff

There exist *Q*-functors (*p_n*) such that following diagram commutes:

Surface Provide the end of the e



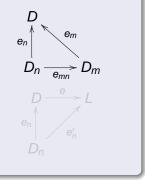
	Quantales	Bilimit in DCPO	Bilimit in <i>Q</i> -DCPO	
Limit – (Colimit			

Definition (Colimit)

A Q-dcpo D is a limit of an expanding sequence iff

There exist *Q*-functors (*e_n*) such that following diagram commutes:

Furthermore any other candidate D' together with family of Q-functors (e'_n), so that there exists Q-functor e such that following diagram commutes.



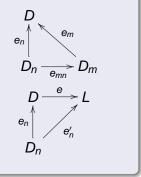
	Quantales	Bilimit in DCPO	Bilimit in Q-DCPO	
Limit –	Colimit			

Definition (Colimit)

A Q-dcpo D is a limit of an expanding sequence iff

There exist *Q*-functors (*e_n*) such that following diagram commutes:

Furthermore any other candidate D' together with family of Q-functors (e'_n), so that there exists Q-functor e such that following diagram commutes.



	Quantales	Bilimit in DCPO	Bilimit in <i>Q</i> -DCPO	
Product				

Theorem

The category Q-**DCPO** is closed under the categorical product. The distance in $\prod_{i \in I} X_i$ is given by:

$$\prod_{i\in I} X_i((\mathbf{x}_j)_{j\in I}, (\mathbf{y}_j)_{j\in I}) := \bigwedge_{i\in I} X_i(\mathbf{x}_i, \mathbf{y}_i)$$

	Quantales	Bilimit in DCPO	Bilimit in <i>Q</i> -DCPO	
Bilimit				

$$D := \Big\{ (x_0, x_1, ...) \in \prod_{i \in \mathbb{N}} D_i \ \Big| \ p_{ii+1}(x_{i+1}) = x_i \Big\}.$$

_emma

- D is a Q-dcpo.
- Functors e_n and p_n exist and commute as they should.
- Functors e_n and p_n are continuous.
- D is the limit and the colimit.

	Quantales	Bilimit in DCPO	Bilimit in <i>Q</i> -DCPO	
Bilimit				

$$D := \Big\{ (x_0, x_1, ...) \in \prod_{i \in \mathbb{N}} D_i \ \Big| \ p_{ii+1}(x_{i+1}) = x_i \Big\}.$$

- *D* is a *Q*-dcpo.
- Functors e_n and p_n exist and commute as they should.
- Functors e_n and p_n are continuous.
- D is the limit and the colimit.

	Quantales	Bilimit in DCPO	Bilimit in <i>Q</i> -DCPO	
Bilimit				

$$D := \Big\{ (x_0, x_1, ...) \in \prod_{i \in \mathbb{N}} D_i \ \Big| \ p_{ii+1}(x_{i+1}) = x_i \Big\}.$$

- *D* is a *Q*-dcpo.
- Functors *e_n* and *p_n* exist and commute as they should.
- Functors e_n and p_n are continuous.
- D is the limit and the colimit.

	Quantales	Bilimit in DCPO	Bilimit in <i>Q</i> -DCPO	
Bilimit				

$$D := \Big\{ (x_0, x_1, ...) \in \prod_{i \in \mathbb{N}} D_i \ \Big| \ p_{ii+1}(x_{i+1}) = x_i \Big\}.$$

- D is a Q-dcpo.
- Functors *e_n* and *p_n* exist and commute as they should.
- Functors *e_n* and *p_n* are continuous.
 - D is the limit and the colimit.

	Quantales	Bilimit in DCPO	Bilimit in <i>Q</i> -DCPO	
Bilimit				

$$D := \Big\{ (x_0, x_1, ...) \in \prod_{i \in \mathbb{N}} D_i \ \Big| \ p_{ii+1}(x_{i+1}) = x_i \Big\}.$$

- D is a Q-dcpo.
- Functors *e_n* and *p_n* exist and commute as they should.
- Functors *e_n* and *p_n* are continuous.
- D is the limit and the colimit.

	Quantales	Bilimit in DCPO	Bilimit in Q-DCPO	
Bilimit				

Theorem

The category Q-DCPO has bilimits of expanding sequences.

Corollary

The category of complete quasimetric spaces and nonexpansive maps have bilimits of ω -diagrams.

	Quantales	Bilimit in DCPO	Bilimit in <i>Q</i> -DCPO	
Bilimit				

Theorem

The category Q-DCPO has bilimits of expanding sequences.

Corollary

The category of complete quasimetric spaces and nonexpansive maps have bilimits of ω -diagrams.

Introduction	Quantales	Bilimit in DCPO	Bilimit in <i>Q</i> -DCPO	Summary
Outline				

1 Introduction

2 Quantales

3 Bilimit in DCPO

4 Bilimit in *Q*-DCPO

The limit-colimit coincidence in Q-DCPO

	Quantales	Bilimit in DCPO	Bilimit in <i>Q</i> -DCPO	Summary
Summary				

- The theorem is true for any quantale.
- For quasimetrics existence of bilimits is a new result.
- Unfortunately in the current shape this theorem trivialises in case of symmetric distances.

Quantales	Bilimit in DCPO	Bilimit in Q-DCPO	Summary

THANK YOU.