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k − SAT problem

k − SAT problem

Vm = {x1, x2, . . . , xm} - set of boolean variables,
C = ±xi1 ∨ . . . ∨ ±xik - k -clause,
F = (±x11 ∨ . . . ∨ ±x1k ) ∧ . . . ∧ (±xn1 ∨ . . . ∨ ±xnk ) -
k − CNF formula,
Ωk (n,m) - set of k − CNF formulas with n clauses over set
of m variables,
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k − SAT problem

Satisfiability probability

A : Vm → {0,1} - valuation,
A(φ) - set of all solutions for formula φ,
c = n

m - clause to variables density,
Sk (m, c) = Pr [φ ∈ Ωk (mc,m) satisfiable],
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Satisfiability threshold conjecture

Conjecture
For each k ≥ 2 there is ck such that for all ε > 0

lim
m→∞

Sk (m, ck − ε) = 1

and
lim

m→∞
Sk (m, ck + ε) = 0.
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Satisfiability threshold conjecture

The state of the art

For k = 2 it is known that c2 = 1,
For k ≥ 3 we don’t know. . .
Experiments show that: c3 ≈ 4.25± 0.05,
Lower and upper bounds for interval containig ck (if it
exists), eg. 3.42 < c3 < 4.506.
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New model

Variables permutation

Consider two formulas over V = {x , y , z}:

(x ∨ y) ∧ (y ∨ z)

and
(z ∨ x) ∧ (x ∨ y)

So far they were considered different, but actually they don’t
differ that much.
Take permutation σ : V → V such that:
σ(x) = z, σ(y) = x , σ(z) = y
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Attempt of attack

Sketch of proof

Construct a graph from each 2− CNF formula,
Describe all graphs constructed from unsatisfiable
formulas,
Count those graphs and show that the number tends to
zero.
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Graph construction

Graph construction

Every formula φ ∈ Φ(n,m) can be transformed into a directed
graph with coloring function Gφ = (V ,E , α), where:

V - vertex set, |V | = 4 · n
E - edge set,
α : V → {1 . . .m} - coloring function.

Gφ is made of 4-element gadgets.
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Graph construction

Gadgets

Consider formula φ. Every clause a = (x ∨ y) ∈ φ gives one
4-element gadget with vertices: ax ,ax ,ay ,ay , and two gadget
edges: ax → ay ,ay → ax .

Example

(x ∨ y)

q
q
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ax
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ay
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Graph construction

Mid-gadget edges

For all a,b ∈ φ, if y ∈ a ∧ y ∈ b, then take gadgets constructed
from a and b and join them with mid-gadget edges: ay → by
and by → ay

Example

φ = a ∧ b
a = (x ∨ y)
b = (y ∨ z)

q
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ay
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Graph construction

Graph coloring

Construct α : V → {1 . . .m} such that for all a,b ∈ φ if
(y ∈ a ∨ y ∈ a) and (y ∈ b ∨ y ∈ b), then
α(ay ) = α(ay ) = α(by ) = α(by ).

Example
(x1 ∨ x2)∧
(x2 ∨ x3)∧
(x3 ∨ x1)∧
(x4 ∨ x5)

x1 → 1
x2 → 2
x3 → 3
x4 → 4
x5 → 5
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Graph construction

Contradictory cycle

Definition
A cycle in Gφ is a contradictory cycle if it contains at least two
vertices marked with the same color, but with opposit signs.
Such vertices are called contradictory vertices. Mid-gadget
edges connecting contradictory vertices are called
contradictory edges.

Lemma

Formula φ ∈ Φ(n,m) is unsatisfiable if and only if Gφ contains
contradictory cycle.
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Graph construction

Example

(x1 ∨ x2)∧
(x2 ∨ x3)∧
(x3 ∨ x2)∧
(x2 ∨ x1)∧

x1 → 1
x2 → 2
x3 → 3
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Graph construction

Example

(x1 ∨ x2)∧
(x2 ∨ x3)∧
(x3 ∨ x4)∧
(x4 ∨ x1)∧

x1 → 1
x2 → 2
x3 → 3
x4 → 4 q
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Counting unsatisfiable formulas

Random variable

Definition
Let Xn,m : Φ(n,m)→ N be a random variable such that for a
formula φ ∈ Φ(n,m), Xn,m(φ) is equal to the number of
contradictory cycles in graph Gφ.
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Counting unsatisfiable formulas

Markov’s inequality

Since the random variable Xn,m(φ) gives the number of
contradictory cycles in random formula φ, by Lemma only those
formulas for which Xn,m(φ) ≥ 1 holds are unsatisfiable.
We can use Markov’s inequality:

Pr (φ ∈ Φ(n,m)|φ - unsatisfiable) =

= Pr (φ ∈ Φ(n,m)|Xn,m(φ) ≥ 1) ≤ E [Xn,m],

where:
E [Xn,m] - expected value of random variable Xn,m.
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The quest for E [Xn,m ]

All we have to do is:
Find E [Xn,m],
Show that E [Xn,m] = o(1), assuming n = c ·m, and c < 1.
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The quest for E [Xn,m ]

E [Xn,m] =
∑

φ∈Φ(n,m)

Xn,m(φ) · Pr (φ ∈ Φ (n,m)) =

=

∑
φ∈Φ(n,m) Xn,m(φ)

|Φ(n,m)|

The denominator of E [Xn,m] is easy:

|Φ(n,m)| =

{
2n
m

}
22n,

where:{2n
m

}
- Stirling number of the second kind.

The numerator requires more perspiration. . .
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The quest for E [Xn,m ]

Numerator of E [Xn,m]

Choose clauses for the
contradictory cycle.
Count all contradictory cycles
which can be built on those
clauses

?
6
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Contradictory cycle

Ordinary clauses



Some more details

The quest for E [Xn,m ]

Numerator of E [Xn,m]

Color ordinary clauses with
some variables and signs.

?
6
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??
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Contradictory cycle

Ordinary clauses
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The quest for E [Xn,m ]

Numerator of E [Xn,m]

Some variables from ordinary
clauses can be joined with
variables from contradictory
cycle.
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Contradictory cycle

Ordinary clauses
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The quest for E [Xn,m ]

Numerator of E [Xn,m]

Remember to count all
possible choices of clauses for
contradictory cycle, and all
lengths of those cycles.

?
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?
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??
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Contradictory cycle

Ordinary clauses
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The quest for E [Xn,m ]

A scary formula

∑
φ∈Φ(n,m)

Xn,m(φ) =

n∑
a=2

b a
2 c∑

b=1

a−b∑
r=0

na · a(2b) · (m − r)!

(m − a + b)!

(
a− b

r

){
2n − 2a
m − r

}
22n−2b,

where:
na = n!

(n−a)! - falling factorial power
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The quest for E [Xn,m ]

Even more scary formula

E [Xn,m] =

∑n
a=2

∑b a
2 c

b=1
∑a−b

r=0
na·a(2b)·(m−r)!
a·4b·(m−a+b)!

(a−b
r

){2n−2a
m−r

}{2n
m

} ,

where:{n
m

}
- Stirling number of the second kind,

na = n!
(n−a)!
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The quest for E [Xn,m ]

Since n = mc

E [Xmc,m] =

=
mc∑
a=2

b a
2 c∑

b=1

a−b∑
r=0

(mc)a · a(2b) · (m − r)!

a · 4b · (m − a + b)!

(
a− b

r

){2mc−2a
m−r

}{2mc
m

}
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The quest for E [Xn,m ]

What next?

What next?
1 Find upper bound for c2

2 Find upper and lower bound for ck , k ≥ 3
3 Attack conjecture



Thank you.
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