Satisfiability threshold for 2 – SAT in new model - work in progress

Mikołaj Pudo

Jagiellonian University Mathematics and Computer Science Faculty Foundations of Computer Science Department

CLA, 2009

Table of contents

Introduction

- *k SAT* problem
- Satisfiability threshold conjecture
- 2 Satisfiability threshold conjecture new approach
 - New model
 - Attempt of attack

3 Some more details

- Graph construction
- Counting unsatisfiable formulas
- The quest for *E*[*X_{n,m}*]

Table of contents

Introduction

- *k SAT* problem
- Satisfiability threshold conjecture
- Satisfiability threshold conjecture new approach
 - New model
 - Attempt of attack

3 Some more details

- Graph construction
- Counting unsatisfiable formulas
- The quest for *E*[*X_{n,m}*]

k - SAT problem

k - SAT problem

- $V_m = \{x_1, x_2, \dots, x_m\}$ set of boolean variables,
- $C = \pm x_{i_1} \vee \ldots \vee \pm x_{i_k}$ *k*-clause,
- $F = (\pm x_{1_1} \vee \ldots \vee \pm x_{1_k}) \wedge \ldots \wedge (\pm x_{n_1} \vee \ldots \vee \pm x_{n_k}) k CNF$ formula,
- $\Omega_k(n,m)$ set of k CNF formulas with *n* clauses over set of *m* variables,

k - SAT problem

k - SAT problem

• $V_m = \{x_1, x_2, \dots, x_m\}$ - set of boolean variables,

•
$$C = \pm x_{i_1} \vee \ldots \vee \pm x_{i_k}$$
 - *k*-clause,

- $F = (\pm x_{1_1} \vee \ldots \vee \pm x_{1_k}) \wedge \ldots \wedge (\pm x_{n_1} \vee \ldots \vee \pm x_{n_k}) k CNF$ formula,
- $\Omega_k(n, m)$ set of k CNF formulas with *n* clauses over set of *m* variables,

k - SAT problem

Satisfiability probability

- $\mathcal{A}: V_m \rightarrow \{0, 1\}$ valuation,
- $\mathcal{A}(\phi)$ set of all solutions for formula ϕ ,
- $c = \frac{n}{m}$ clause to variables density,
- $S_k(m, c) = Pr[\phi \in \Omega_k(mc, m) \text{ satisfiable}],$

k - SAT problem

Satisfiability probability

- $\mathcal{A} \colon V_m \to \{0,1\}$ valuation,
- $\mathcal{A}(\phi)$ set of all solutions for formula ϕ ,
- $c = \frac{n}{m}$ clause to variables density,
- $S_k(m, c) = Pr[\phi \in \Omega_k(mc, m) \text{ satisfiable}],$

Satisfiability threshold conjecture

Satisfiability threshold conjecture

Conjecture For each $k \ge 2$ there is c_k such that for all $\varepsilon > 0$

1

$$\lim_{m\to\infty}S_k(m,c_k-\varepsilon)=1$$

and

$$\lim_{m\to\infty} S_k(m,c_k+\varepsilon)=0.$$

Satisfiability threshold conjecture

The state of the art

- For k = 2 it is known that $c_2 = 1$,
- For $k \ge 3$ we don't know...
- Experiments show that: $c_3 \approx 4.25 \pm 0.05$,
- Lower and upper bounds for interval containig c_k (if it exists), eg. $3.42 < c_3 < 4.506$.

Satisfiability threshold conjecture

The state of the art

- For k = 2 it is known that $c_2 = 1$,
- For $k \ge 3$ we don't know...
- Experiments show that: $c_3 \approx 4.25 \pm 0.05$,
- Lower and upper bounds for interval containig c_k (if it exists), eg. 3.42 < c₃ < 4.506.

Table of contents

1) Introduction

- *k SAT* problem
- Satisfiability threshold conjecture
- 2 Satisfiability threshold conjecture new approach
 - New model
 - Attempt of attack

3 Some more details

- Graph construction
- Counting unsatisfiable formulas
- The quest for *E*[*X*_{*n*,*m*}]

Satisfiability threshold conjecture - new approach New model

Variables permutation

Consider two formulas over $V = \{x, y, z\}$:

 $(x \lor \overline{y}) \land (y \lor z)$

and

 $(z \lor \overline{x}) \land (x \lor y)$

So far they were considered different, but actually they don't differ that much. Take permutation $\sigma: V \to V$ such that: $\sigma(x) = z, \sigma(y) = x, \sigma(z) = y$ Satisfiability threshold conjecture - new approach New model

Variables permutation

Consider two formulas over $V = \{x, y, z\}$:

 $(x \lor \overline{y}) \land (y \lor z)$

and

$$(z \lor \overline{x}) \land (x \lor y)$$

So far they were considered different, but actually they don't differ that much.

Take permutation $\sigma: V \rightarrow V$ such that:

$$\sigma(\mathbf{x}) = \mathbf{z}, \sigma(\mathbf{y}) = \mathbf{x}, \sigma(\mathbf{z}) = \mathbf{y}$$

- $\Phi_k(n, m)$ set of k CNF formulas with *n* clauses over set of *m* variables,
- $S_k(m, c) = Pr[\phi \in \Phi_k(mc, m) \text{ satisfiable}],$
- For each $k \ge 2$ find c_k such that for all $\varepsilon > 0$

$$\lim_{m\to\infty}S_k(m,c_k-\varepsilon)=1$$

and

$$\lim_{m\to\infty}S_k(m,c_k+\varepsilon)=0$$

• Since 2 – SAT is always the easiest part of the game...

- $\Phi_k(n, m)$ set of k CNF formulas with *n* clauses over set of *m* variables,
- $S_k(m, c) = Pr[\phi \in \Phi_k(mc, m) \text{ satisfiable}],$
- For each $k \ge 2$ find c_k such that for all $\varepsilon > 0$

$$\lim_{m\to\infty}S_k(m,c_k-\varepsilon)=1$$

and

$$\lim_{m\to\infty}S_k(m,c_k+\varepsilon)=0$$

Since 2 – SAT is always the easiest part of the game...

Satisfiability threshold conjecture - new approach

Attempt of attack

Sketch of proof

- Construct a graph from each 2 *CNF* formula,
- Describe all graphs constructed from unsatisfiable formulas,
- Count those graphs and show that the number tends to zero.

Table of contents

Introduction

- *k SAT* problem
- Satisfiability threshold conjecture
- 2 Satisfiability threshold conjecture new approach
 - New model
 - Attempt of attack

3 Some more details

- Graph construction
- Counting unsatisfiable formulas
- The quest for *E*[*X_{n,m}*]

Graph construction

Every formula $\phi \in \Phi(n, m)$ can be transformed into a directed graph with coloring function $G_{\phi} = (V, E, \alpha)$, where:

- V vertex set, $|V| = 4 \cdot n$
- E edge set,
- $\alpha: V \rightarrow \{1 \dots m\}$ coloring function.

 G_{ϕ} is made of 4-element gadgets.

Gadgets

Consider formula ϕ . Every clause $a = (x \lor y) \in \phi$ gives one 4-element gadget with vertices: $a_x, a_{\overline{x}}, a_y, a_{\overline{y}}$, and two gadget edges: $a_{\overline{x}} \to a_y, a_{\overline{y}} \to a_x$.

Mid-gadget edges

For all $a, b \in \phi$, if $y \in a \land \overline{y} \in b$, then take gadgets constructed from *a* and *b* and join them with mid-gadget edges: $a_y \to b_y$ and $b_{\overline{y}} \to a_{\overline{y}}$

Graph construction

Graph coloring

Construct $\alpha : V \to \{1 \dots m\}$ such that for all $a, b \in \phi$ if $(y \in a \lor \overline{y} \in a)$ and $(y \in b \lor \overline{y} \in b)$, then $\alpha(a_y) = \alpha(a_{\overline{y}}) = \alpha(b_y) = \alpha(b_{\overline{y}})$.

Graph construction

Contradictory cycle

Definition

A cycle in G_{ϕ} is a *contradictory cycle* if it contains at least two vertices marked with the same color, but with opposit signs. Such vertices are called *contradictory vertices*. Mid-gadget edges connecting contradictory vertices are called *contradictory edges*.

Lemma

Formula $\phi \in \Phi(n, m)$ is unsatisfiable if and only if G_{ϕ} contains contradictory cycle.

Example

Example

Some more details Counting unsatisfiable formulas

Random variable

Definition

Let $X_{n,m} : \Phi(n,m) \to \mathbb{N}$ be a random variable such that for a formula $\phi \in \Phi(n,m)$, $X_{n,m}(\phi)$ is equal to the number of contradictory cycles in graph G_{ϕ} .

Markov's inequality

Since the random variable $X_{n,m}(\phi)$ gives the number of contradictory cycles in random formula ϕ , by Lemma only those formulas for which $X_{n,m}(\phi) \ge 1$ holds are unsatisfiable. We can use Markov's inequality:

> $Pr(\phi \in \Phi(n,m) | \phi - \text{unsatisfiable}) =$ $= Pr(\phi \in \Phi(n,m) | X_{n,m}(\phi) \ge 1) \le E[X_{n,m}],$

where:

 $E[X_{n,m}]$ - expected value of random variable $X_{n,m}$.

Markov's inequality

Since the random variable $X_{n,m}(\phi)$ gives the number of contradictory cycles in random formula ϕ , by Lemma only those formulas for which $X_{n,m}(\phi) \ge 1$ holds are unsatisfiable. We can use Markov's inequality:

$$\begin{aligned} & \Pr\left(\phi \in \Phi(n,m) | \phi \text{ - unsatisfiable}\right) = \\ & = \Pr\left(\phi \in \Phi(n,m) | X_{n,m}(\phi) \ge 1\right) \le E[X_{n,m}], \end{aligned}$$

where:

 $E[X_{n,m}]$ - expected value of random variable $X_{n,m}$.

All we have to do is:

- Find $E[X_{n,m}]$,
- Show that $E[X_{n,m}] = o(1)$, assuming $n = c \cdot m$, and c < 1.

$$E[X_{n,m}] = \sum_{\phi \in \Phi(n,m)} X_{n,m}(\phi) \cdot \Pr(\phi \in \Phi(n,m)) =$$
$$= \frac{\sum_{\phi \in \Phi(n,m)} X_{n,m}(\phi)}{|\Phi(n,m)|}$$

The denominator of $E[X_{n,m}]$ is easy:

$$|\Phi(n,m)| = \begin{cases} 2n \\ m \end{cases} 2^{2n},$$

where:

 $\binom{2n}{m}$ - Stirling number of the second kind.

The numerator requires more perspiration...

$$E[X_{n,m}] = \sum_{\phi \in \Phi(n,m)} X_{n,m}(\phi) \cdot \Pr(\phi \in \Phi(n,m)) =$$
$$= \frac{\sum_{\phi \in \Phi(n,m)} X_{n,m}(\phi)}{|\Phi(n,m)|}$$

The denominator of $E[X_{n,m}]$ is easy:

$$|\Phi(n,m)| = \begin{cases} 2n \\ m \end{cases} 2^{2n},$$

where:

 ${2n \atop m}$ - Stirling number of the second kind.

The numerator requires more perspiration...

$$E[X_{n,m}] = \sum_{\phi \in \Phi(n,m)} X_{n,m}(\phi) \cdot \Pr(\phi \in \Phi(n,m)) =$$
$$= \frac{\sum_{\phi \in \Phi(n,m)} X_{n,m}(\phi)}{|\Phi(n,m)|}$$

The denominator of $E[X_{n,m}]$ is easy:

$$|\Phi(n,m)| = \begin{cases} 2n \\ m \end{cases} 2^{2n},$$

where:

 ${2n \atop m}$ - Stirling number of the second kind. The numerator requires more perspiration...

Numerator of $E[X_{n,m}]$

Choose clauses for the contradictory cycle. Count all contradictory cycles which can be built on those clauses

Numerator of $E[X_{n,m}]$

Color ordinary clauses with some variables and signs.

Numerator of $E[X_{n,m}]$

Some variables from ordinary clauses can be joined with variables from contradictory cycle.

Numerator of $E[X_{n,m}]$

Remember to count all possible choices of clauses for contradictory cycle, and all lengths of those cycles.

Some more details

The quest for $E[X_{n,m}]$

A scary formula

$$\sum_{\phi\in\Phi(n,m)}^{n} X_{n,m}(\phi) =$$

$$\sum_{a=2}^{n} \sum_{b=1}^{\lfloor\frac{a}{2}\rfloor} \sum_{r=0}^{a-b} n^{\underline{a}} \cdot \underline{a}^{(\underline{2}b)} \cdot \frac{(m-r)!}{(m-a+b)!} {a-b \choose r} {2n-2a \choose m-r} 2^{2n-2b},$$

where: $n^{\underline{a}} = \frac{n!}{(n-a)!}$ - falling factorial power

Some more details

The quest for $E[X_{n,m}]$

Even more scary formula

$$E[X_{n,m}] = \frac{\sum_{a=2}^{n} \sum_{b=1}^{\lfloor \frac{a}{2} \rfloor} \sum_{r=0}^{a-b} \frac{n^{\underline{a}} \cdot \underline{a}^{(\underline{2b})} \cdot (m-r)!}{\underline{a} \cdot 4^{\underline{b}} \cdot (m-a+b)!} {a-b \choose r} {2n-2a \choose m-r}}{{2n \choose m}},$$

where: ${n \choose m}$ - Stirling number of the second kind, $n^{\underline{a}} = \frac{n!}{(n-a)!}$

Since n = mc

$$E[X_{mc,m}] =$$

$$= \sum_{a=2}^{mc} \sum_{b=1}^{\lfloor \frac{a}{2} \rfloor} \sum_{r=0}^{a-b} \frac{(mc)^{\underline{a}} \cdot \underline{a^{(2b)}} \cdot (m-r)!}{a \cdot 4^{b} \cdot (m-a+b)!} {a-b \choose r} \frac{\binom{2mc-2a}{m-r}}{\binom{2mc}{m}}$$

What next?

- Find upper bound for c₂
- 2 Find upper and lower bound for $c_k, k \ge 3$
- Attack conjecture

Thank you.