
Resource Augmentation for Buffer Management
with Bounded Delay

Jan Jeżabek

Theoretical Computer Science Department
Jagiellonian University, Cracow

June 5th 2009

Jan Jeżabek Resource Augmentation for Buffer Management with Bounded Delay



Introduction

We study a problem known as packet switching, buffer
management with bounded delay:

Input: non-empty set of jobs with:
release time, deadline (integers)
weight (also called value)

Execution of any job takes one unit of time
Jobs must be executed one at a time
Goal: to maximize the total weight of executed jobs

This is the off-line version of the problem – the complete input is
made available to the algorithm immediately.
In this version the optimal solution can be found easily (polynomial
time).

Jan Jeżabek Resource Augmentation for Buffer Management with Bounded Delay



Introduction

We study a problem known as packet switching, buffer
management with bounded delay:

Input: non-empty set of jobs with:
release time, deadline (integers)
weight (also called value)

Execution of any job takes one unit of time
Jobs must be executed one at a time
Goal: to maximize the total weight of executed jobs

This is the off-line version of the problem – the complete input is
made available to the algorithm immediately.
In this version the optimal solution can be found easily (polynomial
time).

Jan Jeżabek Resource Augmentation for Buffer Management with Bounded Delay



On-line version

More common scenario – there is no information about the future.
In the on-line version:

At each step the algorithm makes a decision which job to
execute
The jobs become “visible” after their respective release times
Each decision is irrevocable

In the on-line setting the algorithm seems to have a clear
disadvantage compared to the off-line setting.

Jan Jeżabek Resource Augmentation for Buffer Management with Bounded Delay



Example

1

1+√2

Consider the following example.

Jan Jeżabek Resource Augmentation for Buffer Management with Bounded Delay



Example

1

1+√2

Algorithm non-optimal by factor 2+
√

2
1+
√

2
=
√
2

Jan Jeżabek Resource Augmentation for Buffer Management with Bounded Delay



Example

1

1+√2

1+√2

Algorithm non-optimal by factor 2+2
√

2
2+
√

2
=
√
2

Jan Jeżabek Resource Augmentation for Buffer Management with Bounded Delay



Competitive ratio

How do we measure the quality of an on-line algorithm?

Definition
Let A be an on-line algorithm. The competitive ratio of A is
defined as follows

RA = sup
I

w(OPT1(I ))
w(A(I ))

We already know, that no on-line algorithm has a competitive ratio
lower than

√
2 ≈ 1.414.

But there is a better lower bound.

Jan Jeżabek Resource Augmentation for Buffer Management with Bounded Delay



Competitive ratio

How do we measure the quality of an on-line algorithm?

Definition
Let A be an on-line algorithm. The competitive ratio of A is
defined as follows

RA = sup
I

w(OPT1(I ))
w(A(I ))

We already know, that no on-line algorithm has a competitive ratio
lower than

√
2 ≈ 1.414.

But there is a better lower bound.

Jan Jeżabek Resource Augmentation for Buffer Management with Bounded Delay



Competitive ratio

How do we measure the quality of an on-line algorithm?

Definition
Let A be an on-line algorithm. The competitive ratio of A is
defined as follows

RA = sup
I

w(OPT1(I ))
w(A(I ))

We already know, that no on-line algorithm has a competitive ratio
lower than

√
2 ≈ 1.414.

But there is a better lower bound.

Jan Jeżabek Resource Augmentation for Buffer Management with Bounded Delay



Competitive ratio

How do we measure the quality of an on-line algorithm?

Definition
Let A be an on-line algorithm. The competitive ratio of A is
defined as follows

RA = sup
I

w(OPT1(I ))
w(A(I ))

We already know, that no on-line algorithm has a competitive ratio
lower than

√
2 ≈ 1.414.

But there is a better lower bound.

Jan Jeżabek Resource Augmentation for Buffer Management with Bounded Delay



Lower bound

Theorem (Hajek 2001)

Every on-line algorithm has a competitive ratio at least equal to
φ = 1+

√
5

2 ≈ 1.618.

The proof uses a remarkably simple class of jobs – with lengths at
most 2.
Consequently this lower bound holds also for many restricted
versions of the problem.

Jan Jeżabek Resource Augmentation for Buffer Management with Bounded Delay



Lower bound

Theorem (Hajek 2001)

Every on-line algorithm has a competitive ratio at least equal to
φ = 1+

√
5

2 ≈ 1.618.

The proof uses a remarkably simple class of jobs – with lengths at
most 2.
Consequently this lower bound holds also for many restricted
versions of the problem.

Jan Jeżabek Resource Augmentation for Buffer Management with Bounded Delay



Upper bounds

Progress in recent years:
2 (Kesselman et al. 2001, Hajek 2001)
64
33 ≈ 1.939 (Chrobak et al. 2004)
1.852... (Li et al. 2007)
2
√
2− 1 ≈ 1.828 (Englert and Westermann 2007)

Jan Jeżabek Resource Augmentation for Buffer Management with Bounded Delay



Agreeable deadlines

An interesting restriction of the problem: agreeable deadlines.

Definition
We say that the jobs forming the set S have agreeable deadlines if
and only if

∀i , j ∈ S : ri < rj ⇒ di 6 dj

In other words – the availability interval of one job is not contained
in the interior of the availability interval of another job.

Jan Jeżabek Resource Augmentation for Buffer Management with Bounded Delay



Agreeable deadlines

The construction of the lower bound of φ works even with the
restriction to instances with agreeable deadlines.
What about the upper bound?

Theorem (Li et al. 2005)

There exists an algorithm having a competitive ratio exactly
φ ≈ 1.618 in the agreeable deadlines setting.

Jan Jeżabek Resource Augmentation for Buffer Management with Bounded Delay



Agreeable deadlines

The construction of the lower bound of φ works even with the
restriction to instances with agreeable deadlines.
What about the upper bound?

Theorem (Li et al. 2005)

There exists an algorithm having a competitive ratio exactly
φ ≈ 1.618 in the agreeable deadlines setting.

Jan Jeżabek Resource Augmentation for Buffer Management with Bounded Delay



Resource augmentation

Resource augmentation – a different approach for analyzing the
hardness of an on-line scheduling problem.

The modification
The on-line algorithm may now execute more than one job per time
slot, given by the parameter k .

The “quick” on-line algorithm is compared to the “slow” off-line
algorithm using the competitive ratio.
Our task is to find some lower and upper bounds for this ratio
(depending on k).

Jan Jeżabek Resource Augmentation for Buffer Management with Bounded Delay



Resource augmentation

Resource augmentation – a different approach for analyzing the
hardness of an on-line scheduling problem.

The modification
The on-line algorithm may now execute more than one job per time
slot, given by the parameter k .

The “quick” on-line algorithm is compared to the “slow” off-line
algorithm using the competitive ratio.
Our task is to find some lower and upper bounds for this ratio
(depending on k).

Jan Jeżabek Resource Augmentation for Buffer Management with Bounded Delay



Upper bound

Natural first choice: greedy algorithm.

Fact

The competitive ratio of the greedy algorithm is equal to 1 + 1
k .

But we can do better than that.

Jan Jeżabek Resource Augmentation for Buffer Management with Bounded Delay



Upper bound

A better algorithm EG (k) is presented below. Let h denote the
heaviest available job (note that it may change during the step). In
each time slot the algorithm executes:

The most urgent available job with weight at least 2−kwh

The most urgent available job with weight at least 2−k+1wh

. . .

The most urgent available job with weight at least 2−1wh

“Most urgent” means the job whose deadline will be reached next.
Ties can be broken in an arbitrary way.

Jan Jeżabek Resource Augmentation for Buffer Management with Bounded Delay



Upper bound

Theorem (J. 2009)

The competitive ratio of EG (k) is 1 + 1
2k−1 .

The proof goes by a charging scheme.
For a given instance I we first take an optimal off-line schedule and
reorder it so that the sequence of executed jobs is similar to the
sequence generated by EG (k).
We define a charging function c : OPT1(I )→ Z such that

c(j) = min(tOPT1(j), tEGk (j))

Jan Jeżabek Resource Augmentation for Buffer Management with Bounded Delay



Upper bound

Theorem (J. 2009)

The competitive ratio of EG (k) is 1 + 1
2k−1 .

The proof goes by a charging scheme.
For a given instance I we first take an optimal off-line schedule and
reorder it so that the sequence of executed jobs is similar to the
sequence generated by EG (k).

We define a charging function c : OPT1(I )→ Z such that

c(j) = min(tOPT1(j), tEGk (j))

Jan Jeżabek Resource Augmentation for Buffer Management with Bounded Delay



Upper bound

Theorem (J. 2009)

The competitive ratio of EG (k) is 1 + 1
2k−1 .

The proof goes by a charging scheme.
For a given instance I we first take an optimal off-line schedule and
reorder it so that the sequence of executed jobs is similar to the
sequence generated by EG (k).
We define a charging function c : OPT1(I )→ Z such that

c(j) = min(tOPT1(j), tEGk (j))

Jan Jeżabek Resource Augmentation for Buffer Management with Bounded Delay



Upper bound

For every time slot t such that w(c−1(t)) > 0 we prove that

w(c−1(t)) <
(
1 +

1
2k − 1

)
w(t−1

EGk
(t))

Thus

w(OPT1(I )) <
(
1 +

1
2k − 1

)
w(EGk(I ))

This means that EG (k) is
(
1 + 1

2k−1

)
-competitive. It can be

shown easily that EG (k) is not competitive for any lower ratio.

Jan Jeżabek Resource Augmentation for Buffer Management with Bounded Delay



Upper bound

For every time slot t such that w(c−1(t)) > 0 we prove that

w(c−1(t)) <
(
1 +

1
2k − 1

)
w(t−1

EGk
(t))

Thus

w(OPT1(I )) <
(
1 +

1
2k − 1

)
w(EGk(I ))

This means that EG (k) is
(
1 + 1

2k−1

)
-competitive. It can be

shown easily that EG (k) is not competitive for any lower ratio.

Jan Jeżabek Resource Augmentation for Buffer Management with Bounded Delay



Lower bound

Question
Is there any k and an on-line algorithm executing k jobs per time
slot with competitive ratio equal to 1?

Theorem (J. 2009)

Every k-speed on-line algorithm has a competitive ratio higher than
1 + εk .

In fact this remains true if we strengthen the algorithm by allowing
it to conserve its processing power for the future – we call such an
algorithm cumulative.

Jan Jeżabek Resource Augmentation for Buffer Management with Bounded Delay



Lower bound

Question
Is there any k and an on-line algorithm executing k jobs per time
slot with competitive ratio equal to 1?

Theorem (J. 2009)

Every k-speed on-line algorithm has a competitive ratio higher than
1 + εk .

In fact this remains true if we strengthen the algorithm by allowing
it to conserve its processing power for the future – we call such an
algorithm cumulative.

Jan Jeżabek Resource Augmentation for Buffer Management with Bounded Delay



Lower bound – proof outline

We view the task as a game between Algorithm and Adversary.
Adversary creates new jobs that are presented to Algorithm.
We define a strategy Sk for Adversary recursively.

Modification
Algorithm can execute as many jobs as he wants.

Goal
Algorithm playing against strategy Sk will either execute more than
k jobs per step, or has lower throughput than OPT1 on the same
instance.

Jan Jeżabek Resource Augmentation for Buffer Management with Bounded Delay



Lower bound – proof outline

We view the task as a game between Algorithm and Adversary.
Adversary creates new jobs that are presented to Algorithm.
We define a strategy Sk for Adversary recursively.

Modification
Algorithm can execute as many jobs as he wants.

Goal
Algorithm playing against strategy Sk will either execute more than
k jobs per step, or has lower throughput than OPT1 on the same
instance.

Jan Jeżabek Resource Augmentation for Buffer Management with Bounded Delay



Lower bound – proof outline

We view the task as a game between Algorithm and Adversary.
Adversary creates new jobs that are presented to Algorithm.
We define a strategy Sk for Adversary recursively.

Modification
Algorithm can execute as many jobs as he wants.

Goal
Algorithm playing against strategy Sk will either execute more than
k jobs per step, or has lower throughput than OPT1 on the same
instance.

Jan Jeżabek Resource Augmentation for Buffer Management with Bounded Delay



Lower bound – proof outline

Key points of the strategy:
The game lasts at mosts lk steps
The total weight of created jobs is at most Mk

The game proceeds in phases, each of which lasts for lk−1
steps
We have two types of jobs

H-jobs, which are the heaviest jobs that appear during the
game
L-jobs are created using strategy Sk−1 as a subroutine

The idea is that on average the algorithm executes k − 1 L-jobs
and 1 H-job per step.

Jan Jeżabek Resource Augmentation for Buffer Management with Bounded Delay



Lower bound – proof outline

Key points of the strategy:
The game lasts at mosts lk steps
The total weight of created jobs is at most Mk

The game proceeds in phases, each of which lasts for lk−1
steps
We have two types of jobs

H-jobs, which are the heaviest jobs that appear during the
game
L-jobs are created using strategy Sk−1 as a subroutine

The idea is that on average the algorithm executes k − 1 L-jobs
and 1 H-job per step.

Jan Jeżabek Resource Augmentation for Buffer Management with Bounded Delay



Lower bound – proof outline

Key points of the strategy:
The game lasts at mosts lk steps
The total weight of created jobs is at most Mk

The game proceeds in phases, each of which lasts for lk−1
steps
We have two types of jobs

H-jobs, which are the heaviest jobs that appear during the
game
L-jobs are created using strategy Sk−1 as a subroutine

The idea is that on average the algorithm executes k − 1 L-jobs
and 1 H-job per step.

Jan Jeżabek Resource Augmentation for Buffer Management with Bounded Delay



Lower bound – proof outline

What are the values of lk , Mk and εk?

lk 6 222k

Mk 6 222
3(k−1)

εk > 1 +
1
Mk

> 1 +

(
1
2

)22
3(k−1)

The gap between the lower and upper bound is quite big.

Jan Jeżabek Resource Augmentation for Buffer Management with Bounded Delay



Lower bound – proof outline

What are the values of lk , Mk and εk?

lk 6 222k

Mk 6 222
3(k−1)

εk > 1 +
1
Mk

> 1 +

(
1
2

)22
3(k−1)

The gap between the lower and upper bound is quite big.

Jan Jeżabek Resource Augmentation for Buffer Management with Bounded Delay



Agreeable deadlines

It looks like normal competitive analysis (without resource
augmentation) is not able to make a distinction between the
general case and the restriction to agreeable deadlines.

This is different using resource augmentation:

Theorem (Jeżabek 2009+)

There is a 2-speed on-line algorithm having competitive ratio 1 for
inputs with agreeable deadlines.

Jan Jeżabek Resource Augmentation for Buffer Management with Bounded Delay



Agreeable deadlines

It looks like normal competitive analysis (without resource
augmentation) is not able to make a distinction between the
general case and the restriction to agreeable deadlines.
This is different using resource augmentation:

Theorem (Jeżabek 2009+)

There is a 2-speed on-line algorithm having competitive ratio 1 for
inputs with agreeable deadlines.

Jan Jeżabek Resource Augmentation for Buffer Management with Bounded Delay



Proof idea

We may regard a 2-speed algorithm as two algorithms with speed 1.
In our case these algorithms are syntactically similar, but have very
different characteristics.

The first algorithm:
Looks at all jobs seen so far – even those that have expired or
that have been collected
Pretends that all deadlines are no later than after the next
time slot
Computes the optimal off-line schedule and executes any job
from it that is available

Observation
This algorithm makes no mistakes – the jobs executed by it are
always in the optimal off-line schedule.

The algorithm may however miss some jobs.

Jan Jeżabek Resource Augmentation for Buffer Management with Bounded Delay



Proof idea

We may regard a 2-speed algorithm as two algorithms with speed 1.
In our case these algorithms are syntactically similar, but have very
different characteristics.
The first algorithm:

Looks at all jobs seen so far – even those that have expired or
that have been collected

Pretends that all deadlines are no later than after the next
time slot
Computes the optimal off-line schedule and executes any job
from it that is available

Observation
This algorithm makes no mistakes – the jobs executed by it are
always in the optimal off-line schedule.

The algorithm may however miss some jobs.

Jan Jeżabek Resource Augmentation for Buffer Management with Bounded Delay



Proof idea

We may regard a 2-speed algorithm as two algorithms with speed 1.
In our case these algorithms are syntactically similar, but have very
different characteristics.
The first algorithm:

Looks at all jobs seen so far – even those that have expired or
that have been collected
Pretends that all deadlines are no later than after the next
time slot

Computes the optimal off-line schedule and executes any job
from it that is available

Observation
This algorithm makes no mistakes – the jobs executed by it are
always in the optimal off-line schedule.

The algorithm may however miss some jobs.

Jan Jeżabek Resource Augmentation for Buffer Management with Bounded Delay



Proof idea

We may regard a 2-speed algorithm as two algorithms with speed 1.
In our case these algorithms are syntactically similar, but have very
different characteristics.
The first algorithm:

Looks at all jobs seen so far – even those that have expired or
that have been collected
Pretends that all deadlines are no later than after the next
time slot
Computes the optimal off-line schedule and executes any job
from it that is available

Observation
This algorithm makes no mistakes – the jobs executed by it are
always in the optimal off-line schedule.

The algorithm may however miss some jobs.

Jan Jeżabek Resource Augmentation for Buffer Management with Bounded Delay



Proof idea

We may regard a 2-speed algorithm as two algorithms with speed 1.
In our case these algorithms are syntactically similar, but have very
different characteristics.
The first algorithm:

Looks at all jobs seen so far – even those that have expired or
that have been collected
Pretends that all deadlines are no later than after the next
time slot
Computes the optimal off-line schedule and executes any job
from it that is available

Observation
This algorithm makes no mistakes – the jobs executed by it are
always in the optimal off-line schedule.

The algorithm may however miss some jobs.

Jan Jeżabek Resource Augmentation for Buffer Management with Bounded Delay



Proof idea

We may regard a 2-speed algorithm as two algorithms with speed 1.
In our case these algorithms are syntactically similar, but have very
different characteristics.
The first algorithm:

Looks at all jobs seen so far – even those that have expired or
that have been collected
Pretends that all deadlines are no later than after the next
time slot
Computes the optimal off-line schedule and executes any job
from it that is available

Observation
This algorithm makes no mistakes – the jobs executed by it are
always in the optimal off-line schedule.

The algorithm may however miss some jobs.

Jan Jeżabek Resource Augmentation for Buffer Management with Bounded Delay



Proof idea

The second algorithm:
Looks at all jobs seen so far

Computes the optimal off-line schedule and executes the first
job from it that is available

Observation
The second algorithm executes all jobs that are executed by OPT1
and that have been ‘missed’ by the first algorithm.

Consequence
The presented algorithm’s throughput is always at least equal to
the througput of the optimal 1-speed off-line algorithm.

Jan Jeżabek Resource Augmentation for Buffer Management with Bounded Delay



Proof idea

The second algorithm:
Looks at all jobs seen so far
Computes the optimal off-line schedule and executes the first
job from it that is available

Observation
The second algorithm executes all jobs that are executed by OPT1
and that have been ‘missed’ by the first algorithm.

Consequence
The presented algorithm’s throughput is always at least equal to
the througput of the optimal 1-speed off-line algorithm.

Jan Jeżabek Resource Augmentation for Buffer Management with Bounded Delay



Proof idea

The second algorithm:
Looks at all jobs seen so far
Computes the optimal off-line schedule and executes the first
job from it that is available

Observation
The second algorithm executes all jobs that are executed by OPT1
and that have been ‘missed’ by the first algorithm.

Consequence
The presented algorithm’s throughput is always at least equal to
the througput of the optimal 1-speed off-line algorithm.

Jan Jeżabek Resource Augmentation for Buffer Management with Bounded Delay



Proof idea

The second algorithm:
Looks at all jobs seen so far
Computes the optimal off-line schedule and executes the first
job from it that is available

Observation
The second algorithm executes all jobs that are executed by OPT1
and that have been ‘missed’ by the first algorithm.

Consequence
The presented algorithm’s throughput is always at least equal to
the througput of the optimal 1-speed off-line algorithm.

Jan Jeżabek Resource Augmentation for Buffer Management with Bounded Delay



Open problems

Find an even broader class of instances where resource
augmented on-line algorithms can achieve a comtetitive ratio
equal 1
Reduce the gap between the lower and upper bound in the
general k-speed scenario
Find the best possible competitive ratio for the 1-speed
scenario

Jan Jeżabek Resource Augmentation for Buffer Management with Bounded Delay



Thank you

Thank you!

Jan Jeżabek Resource Augmentation for Buffer Management with Bounded Delay


