
Motifs, modules and games in bacteria
Denise M Wolf� and Adam P Arkiny

Global explorations of regulatory network dynamics,

organization and evolution have become tractable thanks to

high-throughput sequencing and molecular measurement of

bacterial physiology. From these, a nascent conceptual

framework is developing, that views the principles of regulation in

term of motifs, modules and games. Motifs are small, repeated,

and conserved biological units ranging from molecular domains

to small reaction networks. They are arranged into functional

modules, genetically dissectible cellular functions such as the

cell cycle, or different stress responses. The dynamical

functioning of modules defines the organism’s strategy to survive

in a game, pitting cell against cell, and cell against environment.

Placing pathway structure and dynamics into an evolutionary

context begins to allow discrimination between those physical

and molecular features that particularize a species to its

surroundings, and those that provide core physiological function.

This approach promises to generate a higher level understanding

of cellular design, pathway evolution and cellular bioengineering.
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Abbreviations
JNK c-Jun amino-terminal kinase

MAPK mitogen activated protein kinase

TBP TATA-binding protein

Introduction
Whole-genome/high-throughput techniques open ques-

tions about entire organismal function and make feasible

comparisons of the behavior of different organisms and

their mutants. The number of computational tools used to

perform and quantify these comparisons has multiplied

[1–11]. This new fare is generating a more complete view

of cellular function, by exposing and investigating the

extensive networks of interconnections amongst cellular

components and processes.

Analysis and simulation of network dynamics can verify

that all the data on a particular pathway are consistent; it

can test and generate hypotheses about network struc-

ture, the fundamental operating principles governing

network function and the role of feedback and protein

modifications. It can also predict the effects of mutation,

environmental perturbation and pharmaceutical actions

[12]. Topological analyses look for metrics and patterns of

interconnections across and between networks [13�,14,

15,16�]. Evolutionary analysis on the level of networks

and pathways is also now possible, together with more

traditional physiological and molecular evolutionary

investigations. Dynamics, topology and evolution are

all interconnected, because evolutionary forces constrain

dynamics, and the functional imperatives of dynamics

canalize topology. Moreover, investigations into these

topics provide clues on network decomposition (the

identification of functionally significant subnetworks such

as motifs and modules or other, yet to be discovered,

organizational units besides operons and regulons) [17].

Network-oriented approaches have extended questions

of similarity and design far beyond the level of single

genes and proteins, to how networks translate perturba-

tions into dynamical behavior of the cell, how they are the

same and different across many different species, and

why behavior is different in one species from that in

another, despite a good deal of network homology.

In this review, we organize recent work on these network

topics into a framework for thinking about how intracel-

lular networks regulate cellular behavior and why they

do it the way they do. The framework is built on the

concepts of motifs, modules and games.

Motifs
Cellular regulation is achieved through the complex net-

work of interactions among biochemicals and cellular

structures. The challenge to understanding the dynamic

function of these networks, composed of perhaps tens of

thousands of reactions among thousands of distinct che-

mical species, lies in this very complexity. It is therefore

important to find ways of simplifying the description of

these networks to facilitate analysis. One such attempt is

in the identification of motifs (small, repeated, perhaps

evolutionarily conserved regulatory subnetworks, classifi-

able on the basis of function, architecture, dynamics, or

biochemical process) [17–19]. Regulatory motifs proposed

to date, with the help of mathematical systems theory and

complementary experiments, include switches, ampli-

tude filters, oscillators, frequency filters, noise filters and

amplifiers, combinatorial logic, homeostats, rheostats, logic
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gates and memory elements (Table 1; [18,20]). We

describe just a few of these examples below.

Switches

Regulatory switches enable cells to respond to environ-

mental or intercellular signals with an all-or-nothing

response. Switches control eukaryotic development

(e.g. vulvar development in Caenorhabditis elegans) and

many bacterial stress responses (e.g. alternative meta-

bolic pathways, pili expression, sporulation and compe-

tence). Switches can be memory-less, like a doorbell

(Figure 1a), or multistable, like a light switch. They

are randomly triggered or tightly controlled, and mani-

fested by single cells or populations, as in quorum sensing

[21,22]. Elementary memory-less switching mechanisms

include the cooperative activation or repression of gene

expression [23]; cascade ultrasensitivity, arising in mito-

gen-activated protein kinase (MAPK) cascades [24,25];

multi-input cascades, as found in glycolysis [26]; zero-

order ultrasensitivity, postulated for futile cycles operat-

ing near saturation [27] and observed in the formate/

lactic dehydrogenase cycle [28]; and ratio-controlled

Table 1

Proposed regulatory motifs classified on the basis of dynamic function.

Motif Function Mechanisms Examples

Switches Digital control Transcriptional control,

cooperativity [23,95],

fim in E. coli

Computation

Zero-order [26] cascades [24,25]

Phage lambda

Signal integration, amplification

and noise rejection Multi-input [26]

Quorum sensing

Cross-repressive feedback [30,31]

MAPK and c-Jun amino terminal

kinase (JNK) pathways in Xenopus

Synthetic switches [31,33��]Positive feedback [32,33��,35]

Invertible DNA and ratio-based

control [29�]

Oscillators Temporal/sequence loop Relaxation, harmonic, ring oscillators Cell cycle

Synchronize to environment Negative feedback with high gain
or a delay

cAMP
Reject noise

Positive feedback

Circadian rhythms

Carry signal

Combinations of positive and

negative feedback [42,45,54].

Glycolysis [43]

Cytosolic Ca2þ

Synthetic oscillators [46,96–98]

Biphasic

amplitude filters

Tune phenotype to

environmental niche

Differentially activating binding

affinity clusters [29�]

fim temperature tuning [29�,99,100]

Auto-regulation Scaffolds [41]

gltBDF [37]

Computation Concentration-dependent pathway

activation/repression [39]

TBP [38]

Amplitude multiplexing

Bandpass

frequency filters

Interpret dynamic signals Third-order chemical reactions Interleukin-2 activation by Ca2þ [52]

Filter noise Excitable media bandpass filter [53] Neural growth cones

Demodulate Integral feedback [55] cAMP frequency decoding

Demultiplex Saturated kinase and

phosphatase activity

Receptor desensitization [50,54,101]

Memory Event tracking Multi-stability Developmental switches

Sequencing DNA inversion Cell cycle Sic1 [103]

Process control Receptor methylation Shufflons

Temporal integration of signals DNA methylation [102] Type 1 piliation,

Histone acetylation Chemotaxis

Phosphorylation timers [103]

Hysteresis and delays [29�,63�]

Noise filters Precise regulation from

noisy components.

Negative feedback MAPK cascades [105]

Redundancy Cell cycle and flagellar

synthesis checkpoints;Cascades

Negative feedback [33��]Checkpoints

Delay lines [36,58,104]

Frequency filters [53]

Noise amplifiers Population heterogeneity,
antigenic variation.

Noise controlled bistability [30] Lambda phage [30]
DNA rearrangement pap

Slipped-strand mispairing [34] fim

his

Shufflons [34]
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activation, characterized by differential activation of a

process by two competing regulatory proteins, as found in

the network controlling the probability of type 1 pili

expression in Escherichia coli [29�].

Unlike memory-less switches, bistable switches are hys-

teretic and so can be ‘set’ (possibly irreversibly) to an ‘on’

or ‘off’ state by the transient application of a stimulus

(Figure 1b). Bistable switching motifs, particularly

important to developmental and transformational pro-

cesses, include cross-repressive feedback loops with

cooperativity, as found in the lambda phage [30] and

synthetically constructed in E. coli [31]; positive feedback

with cooperativity, as seen in c-Jun amino-terminal

kinase (JNK) circuits [32] and tested in the synthetic

yeast switch [33��]; site specific DNA inversion, found in

networks controlling surface structures like pili and fla-

gella [29�,34]; and many memory-less switching architec-

tures wrapped in feedback (for example, the autocatalytic

ultrasensitive MAPK cascade in Xenopus oocytes [35])

(Figure 2). Bistable switches are thought to control devel-

opmental and transformative processes because of their

ability to ‘remember’ a stimulus and maintain a state

indefinitely. Memory-less switches, however, are likely

to serve as signal-thresholding components in larger sys-

tems, or control processes requiring reversible on/off

control. Even in reversible control, however, a small

amount of hysteresis can prevent ‘switching chatter’,

rapid, unproductive cycling between ‘on’ and ‘off ’ states

triggered by intracellular noise [29�,36].

Biphasic amplitude filters

A biphasic amplitude filter is a device that amplifies an

input signal only if it is within a specific range, thereby

allowing a process to be triggered by a particular envir-

onmental or intracellular condition. In theory, the serial

connection of two oppositely oriented switches can

implement a biphasic response; however, recent analyses

have uncovered alternative mechanisms. One proposed

mechanism for biphasic control involves multiple DNA-

binding sites with differential affinities and regulatory

effects (Figure 3a). This motif was thought to tune type 1

Figure 1
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(a)

(b)

Memory-less (a) and bistable (b) switches. (a) A memory-less switch can

be ‘on’ or ‘off’ depending on the level of the input signal, but cannot

be ‘set’ by the transient application of a stimulus. (b) Bistable switches

are hysteretic, meaning that different stimulus-response curves are

generated depending on whether the system begins in the ‘on’ or ‘off’

state. These systems have memory, as a transient input stimulus can

potentially ‘set’ a bistable switch to an ‘on’ or ‘off’ state.

Figure 2
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Bistable switching mechanisms. Bistable switching mechanisms include

(a) cross-repressive feedback with cooperativity, in which A inhibits B

cooperatively and B inhibits A [30,31]; (b) cooperative

auto-activation of gene expression, for example if gene product A

activates its own expression in a cooperative manner; (c) ultrasensitive

cascades with feedback as postulated for a MAPK cascade switch in

Xenopus oocytes [35]; and (d) zero-order sensitivity with feedback, for

example in auto-catalyzed phosphorylation/dephosphorylation reaction

cycles operating near saturation.
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pili expression to mammalian body temperature [29�],
and appears to contribute to b-galactosidase operon con-

trol [37] and the control of a TATA-binding protein

(TBP) gene by TBP-promoter-binding factor (TBFP)

[38]. A biphasic response can also be achieved through

the interaction of two signaling pathways stimulated by

the same input signal (Figure 3b; [39]). This mechanism

was used to explain why Xbra is induced in a narrow

window of activin concentration during mesoderm

induction in Xenopus laevis [39,40]. Protein scaffolds, like

those associated with MAPK cascades, have been

hypothesized to serve the same purpose. For any generic

scaffold there exists a concentration value optimal for

signal propagation [41].

Clocks and oscillators

Cells are thought to have evolved clocks and oscillators to

control growth rate, to adapt to periodically varying envir-

onmental conditions (e.g. circadian rhythms), to control

information flow, for example in neurons, and perhaps to

facilitate crosstalk and carry multiple signals in the same

medium (similar to frequency modulated [FM] channels

on a radio) [20] or to bypass the desensitization brought

about by constant stimuli [42]. Neural and cardiac

rhythms are associated with ion channels; metabolic

oscillations in glycolytic flux in yeast depend upon

enzyme activity [43]; calcium oscillations and pulsatile

intercellular signals involve receptor activity or transport

process modulation; and circadian rhythms are dominated

by gene expression control. Although their means of

control differ, there are common regulatory themes in

the generation of oscillations: negative-feedback loops

with high gain and/or delays, destabilizing positive feed-

back, or combinations of the two [44].

A mechanism for cAMP oscillations in Dictyostelium has

been proposed to involve both positive-feedback and

negative-feedback loops [42,45]. Transport of extracel-

lular cAMP into the extracellular medium creates a posi-

tive-feedback loop that drives cAMP synthesis, creating a

sharp increase in production, upon which a negative-

feedback loop — created by cAMP-induced receptor

desensitization — allows cAMP to drop to minimal levels,

thus setting the stage for the beginning of the next cycle.

Circadian rhythms in Drosophila and cyanobacteria partly

originate from the negative feedback exerted by a protein

on the expression of its gene [46–49]. A positive-feedback

loop involving calcium-induced calcium release (CICR)

was used to explain cytosolic Ca2þ oscillations [50]. The

eukaryotic cell-cycle is also an oscillator, albeit an uncon-

ventional, quasi-digital one because of the existence of

checkpoints and composite switching modules [51].

Bandpass frequency filters

To interpret dynamic signals and function in the presence

of noise, cells must be able to filter, and perhaps demo-

dulate and de-multiplex frequency-domain signals.

Although it is clear that cells perform this type of proces-

sing, as demonstrated by the sensitivity of interleukin-2

expression to the frequency of cytosolic calcium oscilla-

tions [52], or the frequency-selective decoding of cAMP

pulses into slime-mold development, the mechanisms

responsible are largely unknown. However, modeling

studies have produced possible mechanisms, including

excitable biochemical enzyme networks and certain bimo-

lecular reactions [53], phospho-transfer cycles operating

near saturation [50,54], and integral feedback, like that

found in chemotaxis [55]. All of these architectures behave

like bandpass filters, amplifying a signal only if it oscillates

at a particular frequency. If multiple pathways act as

bandpass filters at different frequencies with respect to

the same signaling molecule, then the molecule could

potentially act like a FM channel, efficiently carrying

multiple signals and controlling different cellular processes.

Noise-related motifs

Whether considering regulatory dynamics dominated by

switching, oscillations, frequency or amplitude filtering,

or simple homeostasis, a central mystery in biology con-

cerns the dichotomy between noisy intracellular compo-

nents and precisely regulated cellular processes. Results

from computational studies [56] and laboratory experi-

ments [57] have suggested that intracellular noise is

sometimes a product of random bursts of protein produc-

tion, primarily arising during translation. Negative feed-

back, redundancy, cascades, checkpoints, delay elements

Figure 3
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Protein A
Chromosomal DNA

Biphasic amplitude filtering mechanisms. (a) A DNA-binding affinity

clustering mechanism. Protein A binds to chromosomal DNA, and

contributes to the regulation of a process, for example gene expression

or DNA inversion. Chromosomal DNA has several binding sites for A,

with varying binding affinities. When protein A occupies only the strong

binding sites (left, centre), the response is activated, whereas when

protein A occupies all the binding sites (strong plus weak, right), the

response is inhibited. (b) A pathway-level mechanism. Activating (B) and

inhibitory (C) signaling pathways are stimulated by the same signal (A)

and lead to the same response element (D). A biphasic response will

result if B is activated (ultrasensitively) at low levels of A, and if C is a

strong inhibitor and is activated only at high levels of A.
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and frequency filters are motifs that achieve reliability in

the face of this uncertainty [36,58].

There are also motifs that exploit noise. Antigenic diver-

sity and population heterogeneity that ‘spreads risk’ over

multiple phenotypes is produced by mechanisms that

couple intracellular noise to an ordered process, for exam-

ple noise-triggered bistability [30], DNA rearrangement

and shuffling, and slipped-strand mispairing mechanisms

[34]. Cells also appear to use noise to enhance a signal, as

in the phenomenon of stochastic resonance [59].

Interacting motifs control complex processes

Motifs do not function in isolation. Complex processes

such as growth, the cell cycle, maintenance, develop-

mental programs, motility and pathogenic processes are

controlled by motifs connected in elaborate hierarchical

and feedback structures. For example, Tyson and collea-

gues [51,60,61] proposed a mechanism for cell–cycle

regulation predicated on the serial, irreversible invocation

of three devices: a G1 ! S phase bistable switching

network composed of two cross-repressive feedback loops

(between Ste9 and Cdc2–Cdc13, and between Rum1 and

Cdc2–Cdc13); a G2 ! M phase bistable switch (imple-

mented by cross-repressive feedback between Wee1 and

Cdc2–Cdc13, and cross-activating feedback between

Cdc2–Cdc13 and Cdc25); and a mitotic oscillatory mod-

ule generated by a negative-feedback loop (Cdc2–Cdc13

activates Sp1, which destroys Cdc2–Cdc13). Each of

these switching and oscillatory loops is a regulatory motif.

Together, these motifs function as a ‘fuzzy’ digital oscil-

lator with intracellular-signal checkpoints and a system

‘re-set’ induced by cell division.

Motifs can be nested and overlapping, as demonstrated

by the network-controlling type 1 piliation in E. coli,
which creates piliated populations in the bladder through

the combined action of four motifs: an invertible DNA

element; a ratio-controlled switch; an amplitude tuner

capable of reading the temperature and increasing pilia-

tion at mammalian body temperature; and a delay line

using feedback as memory to prevent rapid cycling

between on and off switching states [29�]. This system

provides an example of how integrated regulatory motifs

in a network can function to both shape and filter intra-

cellular noise, thereby creating environmentally tuned

heterogeneity in a cell population.

Another example of how interconnected motifs generate

complex behavior can be found in the segment polarity

network in Drosophila, a collection of bistable switches

and a homeostat arranged to produce robust spatial

patterning [62�].

Motif searching via pattern recognition

Although we have called the architectures in Table 1

‘motifs’, it remains to be seen how pervasive or evolu-

tionarily conserved they really are. There is a need for

objective measures to identify regulatory motifs based on

over-representation and phylogeny, in addition to

dynamics. High-throughput technologies present this

opportunity. Alon and colleagues [15,63�] recently

searched an E. coli network connectivity database for

over-represented patterns and revealed just a few themes:

feedforward loops, single input modules and dense over-

lapping regulons, with feedback notably absent. These

studies were based, however, on the transcriptional

network alone. Many prokaryotic feedback structures

contain at least one protein–protein link, and thus would

not show up in a purely transcriptional network.

A similar approach with a strong experimental compo-

nent, applied by Young and colleagues [16�] to Sacchar-
omyces cerevisiae, identified six regulatory motifs:

autoregulation, multicomponent loops and regulator

chains in addition to the three patterns found in the E.
coli transcriptional network. Possible dynamics for these

patterns include reduced response time (positive feed-

back) or increased stability (negative feedback) of gene

expression for the autoregulatory loops, multistability or

oscillations for the multicomponent loops, transient-

rejecting switching for the feedforward architecture, sig-

nal integration and process control for the multi-input

motifs, and simple temporal logic for the regulatory

chains. It is difficult, however, to draw conclusions with-

out accounting for post-translational regulation and the

specific kinetics of DNA–protein interactions.

Diversity of dynamics and designs

Most of the architectures in Table 1 behave as advertized

in some parameter regimes, but not in others. For example,

cross-repression in itself is not adequate for bistability;

among other restrictions cooperativity is also required [35].

Moreover, depending on the gain and the delay, negative

feedback can stabilize a process or generate oscillations. If

we are to fruitfully use motifs to analyze large networks at a

higher ‘device’ level of abstraction, there is work to be done

deriving necessary and sufficient conditions on functional

parameter regimes for each motif, and in experimentally

determining if a proposed function of a motif is central to

the biology, or merely incidental. For example, is the

biphasic response of scaffolds [41] vital to their function

in larger networks, or secondary to their role in bringing

molecules into close proximity? Further experiments are

needed to determine this.

Although we have described and organized these net-

works in engineering terms, the use of the metaphor is

unproven, and the number of motifs that defy an engi-

neering lexicon is unknown. Examples like these spark a

question as to the purpose and genesis of such extensive

diversity. Are different designs implementing seemingly

identical functions selected on the basis of demand [64],

robustness to fluctuations in system parameters [65,66],
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evolvability [65], signal integration, optimization [67,68�],
or primarily by accident? Putting the diversity under a

single functional umbrella is a starting point for this sort

of inquiry.

Modules
Although most biologists believe life to be modular on

nearly every level, few agree on what constitutes a mod-

ule. Network-level modules are defined variously as

chemically isolated, operating on different time or spatial

scales, functionally buffered, robust, independently con-

trolled, plastic in composition and interconnection,

evolutionarily conserved, clustered in the graph-theory

sense, phenomenological, and any or all combinations of

the above. This definition is very similar to that of a

motif, and, according to some definitions, the two are

indistinguishable. For the moment, we distinguish the

two by emphasizing small size and recurrence for motifs,

endowing modules with larger size, and perhaps a com-

position dominated by interconnected motifs. Below,

we present some examples of modules, as defined by

different criteria.

Depending on one’s definition, modules can be identified

and tested by in vitro or in silico reconstructions, perturba-

tion studies, applications of graph theory to network dia-

grams, or phylogenetic analyses. Developmental networks,

such as the segment polarity network in Drosophila and

Notch–Delta signaling, are considered modular because in
silico experiments reveal them to be robustly capable of

generating their purported functions [62�,69]. The implicit

argument is that if such a network of ‘known’ components

and interconnections were not a module, it would be

unlikely to robustly exhibit the correct behavior. It remains

to be seen, however, if robustness implies modularity and

whether robustness is a result of stabilizing selection or

merely a biproduct of complexity and the need for devel-

opmental stability [66,70].

Another popular definition of network modularity (prob-

ably because it allows an analyst to use the most widely

available data — DNA sequence and microarray) involves

gene co-expression, with or without promoter region motif

correlations and environmental context dependence [71�,
72��,73]. The module-identification algorithm developed

by Barkai and colleagues [71�] implicitly assumes such a

definition (context-dependent co-expression). Applied to

yeast microarray data gathered in multiple environmental

conditions, their fixed-point algorithm revealed a modular

structure of context-dependent and potentially overlap-

ping transcription ‘modules’, a view complemented by the

nifty ‘combinograms’ of Church and colleagues [72��],
which combine gene expression and promoter-sequence

analyses. Interestingly, an analysis of yeast knockout

microarray data, analyzed by Vilo and colleagues [74] with

the construction and topological analysis of a ‘disruption

network’ graph, finds the network to be dominated by a

single connected component, and thus not modular in

topology. These seemingly contradictory results hint

at the plasticity of regulatory structures and a murky

relationship between network topology and dynamics.

Barabasi and colleagues [13�] tried to resolve this incon-

sistency by suggesting that metabolic networks are mod-

ular in the graph theoretic sense only if one allows for

hierarchical modularity. Many graph theoretic analyses

are handicapped, however, by neglect of the stoichio-

metry inherent to biochemical reactions, and by the

exclusion of enzymes and their different post-transla-

tional and complexation states.

Other approaches to module identification focus on evo-

lutionary conservation. Evolutionary arguments, in con-

junction with dynamical explication, contribute to the

identification of partner switching modules in the general

stress-response network in B. subtilis [75], and gated pore

modules in bacteria [76], although the former might be

better classified as a motif than a module. Applying

evolutionary analysis and gene-classification information,

Huynen and colleagues [77] found significant correlations

between modularity and patterns of gene gain and loss in

three different strains of Pyrococci, thus introducing a new

means for cross-validating modules on the basis of

sequence comparisons and providing an entrée for mod-

ule co-evolution and member ‘centrality’ studies. More

recently, Huyen and colleagues used conservation of

gene order in operons across unrelated genomes to iden-

tify 800 putative transcriptional modules [78�].

Why should networks be modular? One theory is that

modularity is necessary for robustness and evolvability,

reducing the potential lethality of mutations [79] and

facilitating the generation of variation [65,80]. This the-

ory predicts that lineages with relatively greater degrees

of modularity in given traits should exhibit higher rates of

diversification, a prediction borne out in studies of holo-

metabolous and hemimetabolous insects [81]. Modularity

could arise spontaneously in evolutionary systems in

response to environmental variation, as suggested by

Lipson and colleagues [82], or, as Fontana suggests

[83], from the properties of a space he calls a ‘pre-

topology’, a non-metric biophysical map between geno-

type and phenotype. Other possibilities are that modular

behavior need not imply modular organization at the

network level at all [84], or, at the other end of the

spectrum, that modular structure is a pervasive vestige

of early evolution as a communal project [85].

Games
Motifs and modules recur across many different organ-

isms and scales of networks. There is a high degree of —

but not perfect — conservation of the components of the

underlying networks. But which network components

and architectural features exist to ensure survival in a

particular environment? Which provide fundamental
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function? Which aid competition and commensalism?

And which are evolutionary spandrels? If, however, dif-

ferences in network design are primarily for survival, how

does one understand the relationship between design,

phenotype and environmental niche?

Evolutionary game theory [86], a merger between game

theory and population biology, provides a language for

this sort of inquiry and is becoming an increasingly

popular tool to explain phenotype-expression patterns

and the compositional dynamics of viral and bacterial

populations. In evolutionary games, microbes compete

for a larger share of descendants and thus long-term

survival by evolving strategies (inheritable traits) whose

payoff (Darwinian fitness — average reproductive suc-

cess) depends on the strategies of other microbes. This

framework can be used to explain and predict phenotype-

expression patterns as evolutionary stable strategies in a

game pitting microbe against microbe, and microbe

against nature.

Turner and Chao [87] used game theory to investigate

why it is that bacterial RNA phage populations have

different frequencies of the two genotypes phi6 (the

cooperator is able to manufacture shared intracellular

products) and phiH2 (the defector sequesters shared

intracellular products) at different multiplicities of infec-

tion [87]. They show experimentally that the fitness of

the high-multiplicity phage relative to their ancestors

generates a pay-off matrix conforming to the Prisoner’s

Dilemma strategy of game theory, in which selfish beha-

vior leads to a sub-optimal growth. Selfish behavior

arising in a Prisoner’s Dilemma game was also used to

explain E. coli mutant proliferation dynamics to a sub-

optimal state [88].

Another experimentally validated game, rock–paper–scis-

sors, where rock crushes scissors, scissors cuts paper and

paper covers rock, was used to explain why non-transitive,

competitive bacterial communities can coexist only if

ecological processes such as dispersal, movement and

interaction occur over small spatial scales [89��]. Other

theoretic interpretations of game include viral latency and

lambda-phage infection strategies as hedging bets [90,91]

and chromosome segregation subversion in sexual species

as a poison–antidote game [92].

Evolutionary game theory and optimization studies com-

bined with dynamical analysis have the potential for

linking genotype, regulatory dynamics, phenotype, cel-

lular behavior, population-level behavior and the vagaries

of environmental forces — all necessary pieces of the

‘whole organism biology’ puzzle.

Conclusions
In this review, we have organized recent network analysis

research into a conceptual framework for regulation com-

prising motifs, modules and games. The framework is

designed to tell the following story — motifs, small,

repeated, and conserved regulatory devices — are

arranged by evolutionary processes into modules, which

are larger, overlapping, and functionally significant sub-

networks. Dynamic themes, implemented by intercon-

nected regulatory motifs arranged into modules, include

signal-integrating switches, amplifiers, logic devices,

memory devices and oscillators that act on the single cell

or at the population level. Intracellular noise, produced

largely at the protein translation stage of gene expression,

is controlled (by motifs) precisely to regulate processes

that require tight control. The cell also exploits intracel-

lular noise (using other motifs) to produce survival-enhan-

cing population heterogeneity and to stabilize dynamics

and amplify signals. Many networks are robust, but this

robustness is balanced by fragility [19], and qualitative

behaviors such as adaptation and the ordering of events

appear to be more robust to perturbation than are time

responses [93,94].

The interconnection of functionally diverse motifs and

modules enable each cell to act as a sensor, taking in

environmental and intercellular signals. It also enables a

cell to act as a signal processor, amplifying, noise-reject-

ing, and integrating these signals; as a computer, transdu-

cing processed signals into the coordination of competing

cellular processes; and as a factory, implementing

deployed processes. Modules map onto phenotypes,

which are designed by evolution to play out evolutionarily

stable strategies in a game of survival, pitting cell against

cell, and cell against nature. Games microbes play —

using strategies implemented by modules coordinated

through shared components and global regulators – range

from the Prisoner’s Dilemma, to rock–paper–scissors, to

hedging bets for survival in uncertain, wildly fluctuating

environments. Although networks might not be opti-

mized for fitness, network design is constrained by the

functional imperatives imposed by these ‘games of life’

and the competing needs for robustness and flexibility in

the face of uncertainty.

If this story holds true, how might we uncover these

themes better in the network designs and phenotypic

behaviors of particular organisms in particular niches?

The answer must lie in the detailed comparison of homo-

logous motifs, modules and network organizations among

organisms that are competing within and across niches. By

looking for features of cellular networks that are con-

served across all niches, we might find the fundamental

units of ‘function’ that are the basic requirements for

survival. Differences in the implementation of these

functions among niches, but which are conserved within

a niche (or based on a niche property such as salinity, pH

or environmental variability), indicate features that have

been evolutionarily selected for adaptation to that envir-

onment. Differences in homologous networks among
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microbes within a niche are then either there for

commensalism, competition or evolutionary drift. Pro-

grams that aim to determine these differences will have

to use all three of the concepts described above — motifs,

modules and games — with their attendant levels of

detail ranging from molecular mechanisms through con-

trol and dynamics, to population structure and evolution.

Within each of these areas, there is still challenging

theory and experiment to be done, such as rigorously

defining motif and module, coming up with consistent

theories of network evolution, experimentally measuring

dynamics in single cells, tracking population heterogene-

ity under varying conditions, and quantifying fitness. In

any case, full elucidation of these themes is likely to

emerge from deep collaborations between experimental-

ists, computer scientists and mathematical-system theor-

ists, or from a new breed of biologist equally comfortable

at the bench and the computer.
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