Le calcul des prédicats

Pierre Lescanne

6 décembre 2004 - 13 h 38

Plan

Les structures

La syntaxe

La sémantique

Quelques propriétés

La déduction naturelle

L'approche à la Hilbert

Structures

Une structure est un quadruplet $\mathfrak{A} = \langle A, P, F, \{c_i \in I\} \rangle$ où

- A est un ensemble non vide (le support ou l'univers de la structure),
- ▶ P est un n-uple P₁,...,P_n de prédicats,
- **F** est un m-uple F_1, \ldots, F_m de fonctions totales,
- ▶ les c_i sont des éléments de A (les constantes).

Exemples

Exemples

- ▶ $\langle \mathbb{R}, +, \cdot, ^{-1}, 0, 1 \rangle$ est le corps des réels,
- ► ⟨N,<⟩ est l'ensemble ordonné des naturels.</p>

Le type de similarité

Le type de similarité d'une structure

$$\mathfrak{A} = \langle A, R_1, \dots R_n, F_1, \dots, F_m, \{c_i \in I\} \rangle$$
 est la suite $\langle r_1, \dots, r_n; a_1, \dots, a_m, \kappa \rangle$ où

- $ightharpoonup R_i \subseteq A^{r_i}$,
- $\blacktriangleright F_j:A^{a_j}\to A,$
- ▶ $\kappa = |\{c_i \in I\}|$ (le cardinal de I).

Chaque structure contient la relation binaire d'identité qui est notée =.

Exemples

Exemples

- $\langle \mathbb{R}, +, \cdot, ^{-1}, 0, 1 \rangle$ a pour type de similarité $\langle -; 2, 2, 1; 2 \rangle$,
- $\langle \mathbb{N}, < \rangle$ a pour type de similarité $\langle 2; -; 0 \rangle$.

Plan

Les structures

La syntaxe

La sémantique

Quelques propriétés

La déduction naturelle

L'approche à la Hilbert

La syntaxe 1/3

Supposons que l'on a un langage de type de similarité $\langle r_1, \ldots, r_n; a_1, \ldots, a_m; \kappa \rangle$.

Les entités syntaxiques sont

- 1. les symboles de prédicats $R_1, \ldots, R_n, Q, R, =$,
- 2. les symboles de fonctions f_1, \ldots, f_m ,
- 3. les symboles de constantes \overline{c}_i pour $i \in I$,
- 4. les variables x_0, x_1, x_2, \dots
- 5. les connecteurs $\vee, \wedge, \Rightarrow, \Leftrightarrow, \perp, \forall, \exists$

La syntaxe 2/3

Les termes sont

$$t,t'$$
 ::= $\overline{c}_i | x_j | f(t,\ldots,t)$

Les formules sont

$$\varphi, \psi ::= \bot |P(t, \dots, t)| t \doteq t'
|\varphi \lor \psi | \varphi \land \psi | \varphi \Rightarrow \psi | \varphi \Leftrightarrow \psi | \neg \varphi | (\forall x_i) \varphi | (\exists x_i) \varphi$$

La syntaxe 2/3

Les termes sont

$$t,t'$$
 ::= $\overline{c}_i | x_j | f(t,\ldots,t)$

Les formules sont

$$\phi, \psi ::= \bot |P(t, \dots, t)| t \doteq t'$$

$$|\phi \lor \psi| \phi \land \psi| \phi \Rightarrow \psi |\phi \Leftrightarrow \psi |\neg \phi| (\forall x_i) \phi |(\exists x_i) \phi$$

La syntaxe 3/3

Les notions de variables libres, de variables liées, de formules closes sont les mêmes qu'en lambda-calcul, sauf qu'ici les lieurs sont \forall et \exists

Les formules closes sont appelées des phrases ou des sentences.

Parenthèses et priorités

Les conventions sur les parenthèses sont les suivantes.

- On omet les parenthèses les plus externes.
- On enlève les parenthèses dans les négations.
- V et ∧ ont priorité sur ⇒ et ⇔.
- ¬ a priorité sur tout autre opérateur.
- ➤ On enlève les parenthèses autour des quantifications ∀x et ∃x chaque fois que c'est possible.
- Les quantificateurs ont priorité sur tous les connecteurs logiques.
- On fusionne les listes de quantificateurs identiques $\exists x_1 x_2 \forall x_3 x_4 x_5 \varphi$ au lieu de $\exists x_1 \exists x_2 \forall x_3 \forall x_4 \forall x_5 \varphi$.

Le cas du signe =

On peut vouloir utiliser le symbole = à la fois dans la théorie est la métathéorie. Pour faire la différence on emploie souvent

- ▶ ≡ pour l'égalité syntaxique des expressions dans la métathéorie,
- = comme symbole d'égalité dans la structure.
- et = comme symbole d'égalité du langage de la théorie,

Nous accepterons l'utilisation de = à la place de \doteq quand il n'y aura pas de confusion possible.

Substitutions de termes dans les termes

► $x[x := t] \equiv t$ ► $y[x := t] \equiv y$ ► $\overline{c}[x := t] \equiv \overline{c}$ ► $f(t_1, \dots, t_p)[x := t] \equiv f(t_1[x := t], \dots, t_p[x := t])$

Substitutions de termes dans les formules

On applique la convention de Barendregt

- $\blacktriangleright \perp [x := t] \equiv \perp$
- $ightharpoonup P[x:=t] \equiv P$
- $(t_1 \doteq t_2)[x := t] \equiv (t_1[x := t] \doteq t_2[x := t]$
- ► $P(t_1,...,t_p)[x:=t]$ \equiv $P(t_1[x:=t],...,t_p[x:=t])$
- $\qquad \qquad \bullet \quad (\phi \Box \gamma)[x := t] \quad \equiv \quad \phi[x := t] \ \Box \ \gamma[x := t]$
- $(\neg \varphi)[x := t] \equiv \neg (\varphi[x := t])$
- $(\forall y \varphi)[x := t] \equiv \forall y (\varphi[x := t])$
- $(\exists y \varphi)[x := t] \equiv \exists y (\varphi[x := t])$

Convention

Parfois pour mettre en évidence que x peut apparaître dans φ on écrit $\varphi(x)$.

Au lieu de $\varphi(x)[x := t]$, on écrit alors $\varphi(t)$.

Le langage étendu

Le langage étendu $L(\mathfrak{A})$ de \mathfrak{A} est obtenu en ajoutant au langage L du type de similarité de \mathfrak{A} des symboles de constantes pour tous les éléments de A (le support de \mathfrak{A}).

Substitutions de formules dans les formules

Pas difficile!

Plan

Les structures

La syntaxe

La sémantique

Quelques propriétés

La déduction naturelle

L'approche à la Hilbert

Un exemple

Considérons la structure $\mathfrak{Z}=\langle \mathbb{Z},<,+,-,0\rangle$. Le langage a son alphabet

- des symboles de prédicats =, L,
- des symboles de fonctions P, M,
- des symboles de constantes 0.
- $L(\mathfrak{Z})$ contient de plus un symbole de constante \overline{m} pour chaque $m \in \mathbb{Z}$.

Interprétation des termes dans 3

L'interprétation t^3 de chaque terme t de L(3) est un élément de \mathbb{Z} .

termes3	\mathbb{Z}
t	t ³
m	m
$P(t_1,t_2)$	$t_1^3 + t_2^3$
M(t)	$-t^3$

Grosso modo, on interprète

- m par «son nombre»,
- P par plus
- ▶ et *M* par moins.

Interprétation des phrases dans 3 1/2

Interprétation des phrases dans 3 2/2

On voit que $[\![\forall x \phi]\!]_{\mathfrak{A}}$ prend la valeur 1 si toutes les instances de $[\![\phi]\!]_{\mathfrak{A}}$ prennent la valeur 1.

C'est une généralisation de ∧.

De même $[\exists x \phi]_{\mathfrak{A}}$ est une généralisation de \vee .

Quand il n'y aura pas de confusion on écrira $\llbracket \phi \rrbracket$ au lieu de $\llbracket \phi \rrbracket_{\mathfrak{A}}$.

Interprétation des termes

Considérons $\mathfrak{A} = \langle A, P_1, \dots P_n, F_1, \dots, F_m, \{c_i \in I\} \rangle$ de type de similarité $\langle r_1, \dots, r_n; a_1, \dots, a_m, |I| \rangle$ On définit la fonction $(\cdot)^{\mathfrak{A}}$: termes $_{\mathfrak{A}} \to A$

$$\begin{array}{rcl} \overline{c}_i^{\mathfrak{A}} & = & c_i \\ \overline{a}^{\mathfrak{A}} & = & a \\ (\overline{F}_i(t_1, \dots t_p))^{\mathfrak{A}} & = & F_i(t_1^{\mathfrak{A}}, \dots, t_p^{\mathfrak{A}}). \end{array}$$

où $\overline{F_i}$ est le symbole correspondant à la fonction F_i et où $p = a_i$.

Interprétation des phrases 1/2

$$\begin{aligned}
& \begin{bmatrix} \bot \end{bmatrix}_{\mathfrak{A}} &= 0 \\
& \llbracket R \rrbracket_{\mathfrak{A}} &= R \\
\end{bmatrix} \\
& \llbracket \overline{R_i}(t_1, \dots t_p) \rrbracket_{\mathfrak{A}} &= \begin{cases}
1 \text{ si } \langle t_1^{\mathfrak{A}}, \dots, t_p^{\mathfrak{A}} \rangle \in R_i & \text{ où } p = r_i \\
0 \text{ sinon} \\
& \llbracket t_1 \doteq t_2 \rrbracket_{\mathfrak{A}} &= \begin{cases}
1 \text{ si } t_1^{\mathfrak{A}} = t_2^{\mathfrak{A}} \\
0 \text{ sinon}
\end{aligned}$$

Interprétation des phrases 2/2

```
 \begin{split} & \llbracket \phi \wedge \psi \rrbracket_{\mathfrak{A}} &= & \textit{min}(\llbracket \phi \rrbracket_{\mathfrak{A}}, \llbracket \psi \rrbracket_{\mathfrak{A}}) \\ & \llbracket \phi \vee \psi \rrbracket_{\mathfrak{A}} &= & \textit{max}(\llbracket \phi \rrbracket_{\mathfrak{A}}, \llbracket \psi \rrbracket_{\mathfrak{A}}) \\ & \llbracket \phi \Rightarrow \psi \rrbracket_{\mathfrak{A}} &= & \textit{max}(1 - \llbracket \phi \rrbracket_{\mathfrak{A}}, \llbracket \psi \rrbracket_{\mathfrak{A}}) \\ & \llbracket \phi \Leftrightarrow \psi \rrbracket_{\mathfrak{A}} &= & \begin{cases} 1 \text{ si } \llbracket \phi \rrbracket_{\mathfrak{A}} = \llbracket \psi \rrbracket_{\mathfrak{A}} \\ 0 \text{ sinon} \\ & \llbracket \neg \phi \rrbracket_{\mathfrak{A}} &= & 1 - \llbracket \phi \rrbracket_{\mathfrak{A}} \end{split}
```

Interprétation des phrases 2/2

À partir de maintenant, nous supposerons que toutes les structures ont les mêmes types de similarité.

```
On écrira \mathfrak{A} \models_{\kappa} \varphi pour \llbracket \varphi \rrbracket_{\mathfrak{A}} = 1.
```

Cela se lira la structure ${\mathfrak A}$ valide la phrase ϕ ou bien la phrase ϕ est valide dans la structure ${\mathfrak A}$

Interprétation des formules 1/4

Si
$$FV(\phi) = \{z_1, \dots z_k\}$$
, la clôture universelle de ϕ est

$$\textit{CI}(\phi) = \forall z_1 \dots z_k \phi.$$

$$\mathfrak{A} \vDash_{\kappa} \varphi \operatorname{ssi} \mathfrak{A} \vDash_{\kappa} CI(\varphi).$$

Interprétation des formules 2/4

 $\vDash_{\mathcal{K}} \varphi$ ssi $\mathfrak{A} \vDash_{\mathcal{K}} \varphi$ pour tout \mathfrak{A} de type adéquat.

 $\mathfrak{A} \vDash_{\mathcal{K}} \Gamma$ ssi $\mathfrak{A} \vDash_{\mathcal{K}} \psi$ pour tout $\psi \in \Gamma$,

 $\Gamma \vDash_{\mathcal{K}} \varphi$ ssi $\mathfrak{A} \vDash_{\mathcal{K}} \Gamma$ implique $\mathfrak{A} \vDash_{\mathcal{K}} \varphi$, si $\Gamma \cup \{\varphi\}$ est constitué de phrases.

Interprétation des formules 3/4

```
Lemme
```

```
\mathfrak{A} \vDash_{\mathcal{K}} \phi \land \psi \text{ si et seulement si } \mathfrak{A} \vDash_{\mathcal{K}} \phi \text{ et } \mathfrak{A} \vDash_{\mathcal{K}} \psi
\mathfrak{A} \vDash_{\mathcal{K}} \phi \lor \psi \text{ si et seulement si } \mathfrak{A} \vDash_{\mathcal{K}} \phi \text{ ou } \mathfrak{A} \vDash_{\mathcal{K}} \psi
\mathfrak{A} \vDash_{\mathcal{K}} \neg \phi \text{ si et seulement si } \mathfrak{A} \nvDash \phi
\mathfrak{A} \vDash_{\mathcal{K}} \phi \Rightarrow \psi \text{ si et seulement si } \mathfrak{A} \vDash_{\mathcal{K}} \phi \text{ implique } \mathfrak{A} \vDash_{\mathcal{K}} \psi
\mathfrak{A} \vDash_{\mathcal{K}} \phi \Leftrightarrow \psi \text{ si et seulement si } \mathfrak{A} \vDash_{\mathcal{K}} \phi
\text{est \'equivalent \`a } \mathfrak{A} \vDash_{\mathcal{K}} \psi
\mathfrak{A} \vDash_{\mathcal{K}} \forall x \phi \text{ si et seulement si } \mathfrak{A} \vDash_{\mathcal{K}} \phi[x := \overline{a}] \text{ pour tout } a \in A.
\mathfrak{A} \vDash_{\mathcal{K}} \exists x \phi \text{ si et seulement si } \mathfrak{A} \vDash_{\mathcal{K}} \phi[x := \overline{a}] \text{ pour un } a \in A.
```

Interprétation des formules 4/4

Démonstration.

On le fait dans deux cas seulement.

 $\mathfrak{A} \vDash_{\mathcal{K}} \phi \lor \psi$ équivaut à $\max(\llbracket \phi \rrbracket_{\mathfrak{A}}, \llbracket \psi \rrbracket_{\mathfrak{A}}) = 1$ ce qui équivaut à ce que $\llbracket \phi \rrbracket_{\mathfrak{A}} = 1$ ou $\llbracket \psi \rrbracket_{\mathfrak{A}} = 1$ ce qui équivaut donc à $\mathfrak{A} \vDash_{\mathcal{K}} \phi$ ou $\mathfrak{A} \vDash_{\mathcal{K}} \psi$.

 $\mathfrak{A} \vDash_{\mathcal{K}} \forall x \varphi$ équivaut à $\min\{\llbracket \varphi[x := \overline{a}] \rrbracket_{\mathfrak{A}} \mid a \in A\} = 1$ ce qui équivaut à ce que pour tout $a \in A$ on ait $\llbracket \varphi[x := \overline{a}] \rrbracket_{\mathfrak{A}} = 1$ ce qui revient donc à ce que pour tout $a \in A$ on ait $\mathfrak{A} \vDash_{\mathcal{K}} \varphi[x := \overline{a}]$.

Plan

Les structures

La syntaxe

La sémantique

Quelques propriétés

La déduction naturelle

L'approche à la Hilbert

Quantificateurs et négations

 $\vDash_{K} \neg \forall x \phi \Leftrightarrow \exists x \neg \phi$ $\vDash_{K} \neg \exists x \phi \Leftrightarrow \forall x \neg \phi$ $\vDash_{K} \forall x \phi \Leftrightarrow \neg \exists x \neg \phi$ $\vDash_{K} \exists x \phi \Leftrightarrow \neg \forall x \neg \phi$

Permutation et oubli de quantificateurs

```
\begin{split} & \vDash_{\mathcal{K}} \forall x \forall y \phi \Leftrightarrow \forall y \forall x \phi \\ & \vDash_{\mathcal{K}} \exists x \exists y \phi \Leftrightarrow \exists y \exists x \phi \\ & \vDash_{\mathcal{K}} \forall x \phi \Leftrightarrow \phi \text{ si } x \notin FV(\phi) \\ & \vDash_{\mathcal{K}} \exists x \phi \Leftrightarrow \phi \text{ si } x \notin FV(\phi) \end{split}
```

Formules prénexes

Une formule ϕ est en **forme prénexe**, on dit aussi que ϕ est **prénexe**, si ϕ consiste d'un suite (éventuellement vide) de quantificateurs suivie d'une formule sans quantificateurs.

Exemple

 $(\forall x)P(x) \Rightarrow (\exists y)P(y)$ n'est pas en forme prénexe, tandis que $(\exists y \ x)(P(x) \Rightarrow P(y))$ est en forme prénexe.

Formules en forme prénexe

Théorème

Pour chaque ϕ il existe une formule prénexe ψ telle que $\vDash_{\kappa} \phi \Leftrightarrow \psi$.

Plan

Les structures

La syntaxe

La sémantique

Quelques propriétés

La déduction naturelle

L'approche à la Hilbert

Les règles

On ajoute à la logique propositionelle les règles

$$\frac{\Gamma \vdash_{\kappa} \varphi(x)}{\Gamma \vdash_{\kappa} \forall x \varphi(x)} \forall I \qquad \frac{\Gamma \vdash_{\kappa} \forall x \varphi(x)}{\Gamma \vdash_{\kappa} \varphi(t)} \forall E$$

Complétude

Théorème $\Gamma \vDash_{\mathcal{K}} \varphi$ implique $\Gamma \vdash_{\mathcal{K}} \varphi$.

Complétude

Théorème

 $\Gamma \vDash_{\mathcal{K}} \varphi$ implique $\Gamma \vdash_{\mathcal{K}} \varphi$.

Autrement dit, la logique classique est complète pour les modèles à base de structures tel que nous venons de les présenter.

Complétude

Théorème

 $\Gamma \vDash_{\kappa} \varphi$ implique $\Gamma \vdash_{\kappa} \varphi$.

Autrement dit, la logique classique est complète pour les modèles à base de structures tel que nous venons de les présenter.

Je fais l'impasse!

Plan

Les structures

La syntaxe

La sémantique

Quelques propriétés

La déduction naturelle

L'approche à la Hilbert

Les axiomes et les règles

On a deux axiomes

Axiome

$$\frac{}{\vdash \forall x \; \varphi(x) \Rightarrow \varphi(t)} \, \forall_1$$

Axiome

$$\frac{}{\vdash (\forall x \; (\phi \Rightarrow \psi(x))) \Rightarrow \phi \Rightarrow \forall x \; \psi(x)} \, \forall_2 \quad x \notin FV(\phi)$$

et une règle

$$\frac{\vdash \varphi(x)}{\vdash \forall x \ \varphi(x)} \forall I$$