
The Leader Election Protocol (IEEE 1394)

J.R. Abrial, D. Cansell, D. Méry

July 2002



This Session

- Background :-)

- An informal presentation of the protocol :-)

- Step by step formal design :-|

- Short Conclusion. :-)
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IEEE 1394 High Performance Serial Bus (FireWire)

- It is an international standard

- There exists a widespread commercial interest in its correctness

- Sun, Apple, Philips, Microsoft, Sony, etc involved in its development

- Made of three layers (physical, link, transaction)

- The protocol under study is the Tree Identify Protocol

- Situated in the Bus Reset phase of the physical layer
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The Problem (1)

- The bus is used to transport digitized video and audio signals

- It is “hot-pluggable”

- Devices and peripherals can be added and removed at any time

- Such changes are followed by a bus reset

- The leader election takes place after a bus reset in the network

- A leader needs to be chosen to act as the manager of the bus
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The Problem (2)

- After a bus reset: all nodes in the network have equal status

- A node only knows to which nodes it is directly connected

- The network is connected

- The network is acyclic
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Informal Abstract Properties of the Protocol

- We are given a connected and acyclic network of nodes

- Nodes are linked by bidirectional channels

- We want to have one node being elected the leader in a finite time

- This is to be done in a distributed and non-deterministic way

- Next are two distinct abstract animations of the protocol
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Summary of Development Process

- Formal definition and properties of the network

- A one-shot abstract model of the protocol

- Presenting a (still abstract) loop-like centralized solution

- Introducing message passing between the nodes (delays)

- Modifying the data structure in order to distribute the protocol
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Let ND be a set of nodes (with at least 2 nodes)
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Let gr be a graph built and defined on ND
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gr  is  a symmetric and irreflexive graph
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gr is a graph built on ND gr ⊆ ND ×ND
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gr is a graph built on ND gr ⊆ ND ×ND

gr is defined on ND dom (gr) = ND
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gr is a graph built on ND gr ⊆ ND ×ND

gr is defined on ND dom (gr) = ND

gr is symmetric gr = gr−1
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gr is a graph built on ND gr ⊆ ND ×ND

gr is defined on ND dom (gr) = ND

gr is symmetric gr = gr−1

gr is irreflexive id (ND) ∩ gr = ∅
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gr is connected and acyclic
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A Little Detour Through Trees

- A tree is a special graph

- A tree has a root

- A tree has a, so-called, father function

- A tree is acyclic

- A tree is connected from the root
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the root

A tree  t  built on a set of nodes
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the root

t  is a function defined on ND except at the root
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Avoidind cycles

BAD

the root
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A cycle Its inverse image

in their inverse image
The nodes of a cycle are included
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- Given

- a set ND

- a subset p of ND

- a binary relation t built on ND

- The inverse image of p under t is denoted by t−1[p]

t−1[p] =̂ {x |x ∈ ND ∧ ∃ y · ( y ∈ p ∧ (x, y) ∈ t) }

- When t is a partial function, this reduces to

{x |x ∈ dom (t) ∧ t(x) ∈ p }
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- If p is included in its inverse image, we have then:

∀x · (x ∈ p ⇒ x ∈ dom (t) ∧ t(x) ∈ p )

- Notice that the empty set enjoys this property

∅ ⊆ t−1[∅]
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- The property of having no cycle is thus equivalent to:

The only subset p of ND s.t. p ⊆ t−1[p] is EMPTY

∀p ·



p ⊆ ND ∧
p ⊆ t−1 [p]
⇒
p = ∅


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The predicate tree (r, t)
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The predicate tree (r, t)

r is a member of ND r ∈ ND
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The predicate tree (r, t)

r is a member of ND r ∈ ND

t is a function t ∈ ND − {r} → ND
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The predicate tree (r, t)

r is a member of ND r ∈ ND

t is a function t ∈ ND − {r} → ND

t is acyclic ∀p ·



p ⊆ ND ∧
p ⊆ t−1 [p]
⇒
p = ∅


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t is acyclic: equivalent formulations

∀p ·



p ⊆ ND ∧
p ⊆ t−1 [p]
⇒
p = ∅


⇔ ∀q ·



q ⊆ ND ∧
r ∈ q ∧
t−1 [q] ⊆ q
⇒
ND ⊆ q


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This gives an Induction Rule

∀q ·



q ⊆ ND ∧
r ∈ q ∧
∀x· (x ∈ ND − {r} ∧ t(x) ∈ q ⇒ x ∈ q )
⇒
ND ⊆ q


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The predicate tree (r, t)

r is a member of ND r ∈ ND

t is a function t ∈ ND − {r} → ND

t is acyclic ∀q ·



q ⊆ ND ∧
r ∈ q ∧
t−1 [q] ⊆ q
⇒
ND ⊆ q


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A spanning tree  t  of the graph gr
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The predicate spanning (r, t, gr)

r, t is a tree tree (r, t)

t is included in gr t ⊆ gr
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The graph gr is connected and acyclic (1)

- Defining a relation fn linking a node to the possible

spanning trees of gr having that node as a root:

fn ⊆ ND × (ND 7→ ND)

∀(r, t) ·



r ∈ ND ∧
t ∈ ND 7→ ND

⇒
(r, t) ∈ fn ⇔ spanning (r, t, gr)


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The graph gr is connected and acyclic (2)

Totality of relation fn ⇒ Connectivity of gr

Functionality of relation fn ⇒ Acyclicity of gr
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Summary of constants gr and fn

gr ⊆ ND ×ND
dom (gr) = ND

gr = gr−1

id (ND) ∩ gr = ∅

fn ∈ ND → (ND 7→ ND)

∀(r, t) ·



r ∈ ND ∧
t ∈ ND 7→ ND

⇒
t = fn(r) ⇔ spanning (r, t, gr)


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Election in One Shot: Building a Spanning Tree

- Variables rt and ts

rt ∈ ND
ts ∈ ND ↔ ND

elect =̂
begin
rt, ts : spanning (rt, ts, gr)

end
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First Refinement (1)

- Introducing a new variable, tr, corresponding to the

"tree" in construction

- Introducing a new event: the progression event

- Defining the invariant

- Back to the animation : Observe the construction

of the tree
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- The green arrows correspond to the tr function

- The blue nodes are the domain of tr

- The function tr is a forest (multi-tree) on nodes

- The red nodes are the roots of these trees
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The predicate invariant (tr)

tr ∈ ND 7→ ND
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The predicate invariant (tr)

tr ∈ ND 7→ ND

∀p ·



p ⊆ ND ∧
ND − dom (tr) ⊆ p ∧
tr−1 [p] ⊆ p
⇒
ND ⊆ p


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The predicate invariant (tr)

tr ∈ ND 7→ ND

∀p ·



p ⊆ ND ∧
ND − dom (tr) ⊆ p ∧
tr−1 [p] ⊆ p
⇒
ND ⊆ p



dom (tr) C (tr ∪ tr−1) = dom (tr) C gr
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First Refinement (2)

- Introducing the new event "progress"

- Refining the abstract event "elect"

- Back to the animation : Observe the "guard" of progress
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When a red node x is connected to AT MOST one other

red node y then event "progress" can take place

progress =̂
any x, y where
x, y ∈ gr ∧
x /∈ dom (tr) ∧
y /∈ dom (tr) ∧
gr[{x}] = tr−1[{x}] ∪ {y}

then
tr := tr ∪ {x 7→ y}

end
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To be proved

invariant(tr) ∧
x, y ∈ gr ∧
x /∈ dom (tr) ∧
y /∈ dom (tr) ∧
gr[{x}] = tr−1[{x}] ∪ {y}
⇒
invariant(tr ∪ {x 7→ y})

77



78



79



When a red node x is ONLY connected to blue nodes then

event "elect" can take place

elect =̂
any x where
x ∈ ND ∧
gr[{x}] = tr−1[{x}]

then
rt, ts := x, tr

end
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elect =̂
begin
rt, ts : spanning (rt, ts, gr)

end

elect =̂
any x where
x ∈ ND ∧
gr[{x}] = tr−1[{x}]

then
rt, ts := x, tr

end
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To be proved

invariant(tr) ∧
x ∈ ND ∧
gr[{x}] = tr−1[{x}]
ts = tr

⇒
spanning(x, ts, gr)

82



Summary of First Refinement

- 15 proofs

- Among which 9 were interactive (one is a bit difficult !)
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Second Refinement

- Nodes are communicating with their neighbors

- This is done by means of messages

- Messages are acknowledged

- Acknowledgements are confirmed

- Next is a local animation
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gr
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tr

86



gr
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msg

Sending a message

88



msg
ack

Sending Acknowledgement

Receiving a message
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msg
ack
tr

Receiving Acknowledgement

Sending Confirmation
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msg
ack
tr

Receiving Confirmation
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Invariant (1)

- Each node sends AT MOST one message

- Each node receives AT MOST one acknowledgment

- Each node sends AT MOST one confirmation

msg ∈ ND 7→ ND

ack ∈ ND 7→ ND

tr ⊆ ack ⊆ msg ⊆ gr
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Node x sends a message to node y

send msg =̂
any x, y where
x, y ∈ gr ∧
x /∈ dom (tr) ∧
y, x /∈ tr ∧
gr[{x}] = tr−1[{x}] ∪ {y} ∧
y, x /∈ ack ∧
x /∈ dom (msg)

then
msg := msg ∪ {x 7→ y}

end
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Node y sends an acknowledgement to node x

send ack =̂
any x, y where
x, y ∈ msg − ack ∧
y /∈ dom (msg)

then
ack := ack ∪ {x 7→ y}

end
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Node x sends a confirmation to node y

progress =̂
any x, y where
x, y ∈ ack ∧
x /∈ dom (tr)

then
tr := tr ∪ {x 7→ y}

end
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Invariant (2)

∀ (x, y) ·



x, y ∈ msg − ack
⇒
x, y ∈ gr ∧
x /∈ dom (tr) ∧ y /∈ dom (tr) ∧
gr[{x}] = tr−1[{x}] ∪ {y}



∀ (x, y) ·



x, y ∈ ack ∧
x /∈ dom (tr)
⇒
x, y ∈ gr ∧
y /∈ dom (tr) ∧
gr[{x}] = tr−1[{x}] ∪ {y}


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Second Refinement: The problem of contention

- Explaining the problem

- Proposing a partial solution

- Towards a better treatment

- Back to the local animation
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gr
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msg

Sending a message
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msg

msg

Sending another message
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msg

Discovering Contention
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Discovering Contention
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Recovering from Contention
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msg

Sending a message
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msg

msg

Sending another message
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msg

Discovering Contention
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Discovering Contention
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Recovering from Contention

141



msg

Sending a Message
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msg

msg

Sending another message
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msg

Discovering Contention
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Discovering Contention
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Recovering from Contention
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msg

Sending a message

147



msg
ack

Sending Acknowledgement

Receiving a message
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msg
ack
tr

Receiving Acknowledgement

Sending Confirmation
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msg
ack
tr

Receiving Confirmation
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Discovering the Contention (1)

- Node y discovers the contention with node x because:

- It has sent a message to node x

- It has not yet received acknowledgment x

- It receives instead a message from node x
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Discovering the Contention (2)

- Node x also discovers the contention with node y

- Assumption: The time between both discoveries

IS SUPPOSED TO BE BOUNDED

BY τ ms

- The time τ is the maximum transmission time

between 2 connected nodes
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A Partial Solution

- Each node waits for τ ms after its own discovery

- After this, each node thus knows that the other

has also discovered the contention

- Each node then retries immediately

- PROBLEM: This may continue for ever

153



A Better Solution (1)

- Each node waits for τ ms after its own discovery

- Each node then choses with equal probability:

- either to wait for a short delay

- or to wait for a large delay

- Each node then retries
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A Better Solution (2)

- Question: Does this solves the problem ?

- Are we sure to eventually have one node winning ?

- Answer: Listen carefully to Caroll Morgan’s lectures
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Node y discovers a contention with node x

send ack =̂
any x, y where
x, y ∈ msg − ack ∧
y /∈ dom (msg)

then
ack := ack ∪ {x 7→ y}

end

contention =̂
any x, y where
x, y ∈ msg − ack ∧
y ∈ dom (msg)

then
cnt := cnt ∪ {x 7→ y}

end

- Introducing a dummy contention channel: cnt

cnt ∈ ND 7→ ND

cnt ⊆ msg

ack ∩ cnt = ∅
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Solving the contention (simulating the τ delay)

solve contention =̂
any x, y where
x, y ∈ cnt ∪ cnt−1

then
msg := msg − cnt ‖
cnt := ∅

end
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Summary of Second Refinement

- 73 proofs

- Among which 34 were interactive
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Third Refinement: Localization

- The representation of the graph gr is modified

- The representation of the tree tr is modified

- Other data structures are localized
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Localization (1)

The graph gr and the tree tr are now localized

nb ∈ ND → P(ND)

∀x · (x ∈ ND ⇒ nb(x) = gr[{x}] )

sn ∈ ND → P(ND)

∀x · (x ∈ ND ⇒ sn(x) ⊆ tr−1[{x}] )
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Localization (2)

bm ⊆ ND

bm = dom (msg)

bt ⊆ ND

bt = dom (tr)

ba ∈ ND → P(ND)

∀x · (x ∈ ND ⇒ ba(x) = ack−1[{x}] )
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- Node x is elected the leader

elect =̂
any x where
x ∈ ND ∧
nb(x) = sn(x)

then
rt := x

end
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- Node x sends a message to node y (y is unique)

send msg =̂
any x, y where
x ∈ ND − bm ∧
y ∈ ND − (ba(x) ∪ sn(x)) ∧
nb(x) = sn(x) ∪ {y}

then
msg := msg ∪ {x 7→ y} ‖
bm := bm ∪ {x}

end
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- Node y sends an acknowledgement to node x

send ack =̂
any x, y where
x, y ∈ msg ∧
x /∈ ba(y) ∧
y /∈ bm

then
ack := ack ∪ {x 7→ y} ‖
ba(y) := ba(y) ∪ {x}

end
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- Node x sends a confirmation to node y

progress =̂
any x, y where
x, y ∈ ack ∧
x /∈ bt

then
tr := tr ∪ {x 7→ y} ‖
bt := bt ∪ {x}

end

165



- Node y receives confirmation from node x

rcv cnf =̂
any x, y where
x, y ∈ tr ∧
x /∈ sn(y)

then
sn(y) := sn(y) ∪ {x}

end
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contention =̂
any x, y where
x, y ∈ cnt ∪ cnt−1 ∧
x /∈ ba(y) ∧
y ∈ bm

then
cnt := cnt ∪ {x 7→ y}

end
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solve contention =̂
any x, y where
x, y ∈ cnt ∪ cnt−1

then
msg := msg − cnt ‖
bm := bm− dom (cnt) ‖
cnt := ∅

end
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Summary of Third Refinement

- 29 proofs

- Among which 19 were interactive
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Main Summary

- 119 proofs

- Among which 63 were interactive

170



Conclusion: a Systematic Approach to Distribution

- Establishing the mathematical framework
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- Resolving the mathematical problem in one shot
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Conclusion: a Systematic Approach to Distribution

- Establishing the mathematical framework

- Resolving the mathematical problem in one shot

- Resolving the same problem on a step by step basis

- Involving communication by means of messages

- Towards the localization of data structures
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