
The Leader Election Protocol (IEEE 1394)

J.R. Abrial, D. Cansell, D. Méry

July 2002

This Session

- Background :-)

- An informal presentation of the protocol :-)

- Step by step formal design :-|

- Short Conclusion. :-)

1

IEEE 1394 High Performance Serial Bus (FireWire)

- It is an international standard

- There exists a widespread commercial interest in its correctness

- Sun, Apple, Philips, Microsoft, Sony, etc involved in its development

- Made of three layers (physical, link, transaction)

- The protocol under study is the Tree Identify Protocol

- Situated in the Bus Reset phase of the physical layer

2

The Problem (1)

- The bus is used to transport digitized video and audio signals

- It is “hot-pluggable”

- Devices and peripherals can be added and removed at any time

- Such changes are followed by a bus reset

- The leader election takes place after a bus reset in the network

- A leader needs to be chosen to act as the manager of the bus

3

The Problem (2)

- After a bus reset: all nodes in the network have equal status

- A node only knows to which nodes it is directly connected

- The network is connected

- The network is acyclic

4

References (1)

BASIC

- IEEE. IEEE Standard for a High Performance Serial Bus. Std 1394-

1995. 1995

- IEEE. IEEE Standard for a High Performance Serial Bus (supple-

ment). Std 1394a-2000. 2000

5

References (2)

GENERAL

- N. Lynch. Distributed Algorithms. Morgan Kaufmann. 1996

- R. G. Gallager et al. A Distributed Algorithm for Minimum Weight

Spanning Trees. IEEE Trans. on Prog. Lang. and Systems. 1983.

6

References (3)

MODEL CHECKING

- D.P.L. Simons et al. Mechanical Verification of the IEE 1394a Root

Contention Protocol using Uppaal2 Springer International Journal of

Software Tools for Technology Transfer. 2001

- H. Toetenel et al. Parametric verification of the IEEE 1394a Root

Contention Protocol using LPMC Proceedings of the 7th International

Conference on Real-time Computing Systems and Applications. IEEE

Computer Society Press. 2000

7

References (4)

THEOREM PROVING

- M. Devillers et al. Verification of the Leader Election: Formal Method

Applied to IEEE 1394. Formal Methods in System Design. 2000

- J.R. Abrial et al. A Mechanically Proved and Incremental Devel-

opment of IEEE 1394. To be published 2002

8

Informal Abstract Properties of the Protocol

- We are given a connected and acyclic network of nodes

- Nodes are linked by bidirectional channels

- We want to have one node being elected the leader in a finite time

- This is to be done in a distributed and non-deterministic way

- Next are two distinct abstract animations of the protocol

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

Summary of Development Process

- Formal definition and properties of the network

- A one-shot abstract model of the protocol

- Presenting a (still abstract) loop-like centralized solution

- Introducing message passing between the nodes (delays)

- Modifying the data structure in order to distribute the protocol

28

Let ND be a set of nodes (with at least 2 nodes)

29

Let gr be a graph built and defined on ND

30

gr is a symmetric and irreflexive graph

31

gr is a graph built on ND gr ⊆ ND ×ND

32

gr is a graph built on ND gr ⊆ ND ×ND

gr is defined on ND dom (gr) = ND

33

gr is a graph built on ND gr ⊆ ND ×ND

gr is defined on ND dom (gr) = ND

gr is symmetric gr = gr−1

34

gr is a graph built on ND gr ⊆ ND ×ND

gr is defined on ND dom (gr) = ND

gr is symmetric gr = gr−1

gr is irreflexive id (ND) ∩ gr = ∅

35

gr is connected and acyclic

36

A Little Detour Through Trees

- A tree is a special graph

- A tree has a root

- A tree has a, so-called, father function

- A tree is acyclic

- A tree is connected from the root

37

the root

A tree t built on a set of nodes

38

the root

t is a function defined on ND except at the root

39

Avoidind cycles

BAD

the root

40

A cycle Its inverse image

in their inverse image
The nodes of a cycle are included

41

- Given

- a set ND

- a subset p of ND

- a binary relation t built on ND

- The inverse image of p under t is denoted by t−1[p]

t−1[p] =̂ {x |x ∈ ND ∧ ∃ y · (y ∈ p ∧ (x, y) ∈ t) }

- When t is a partial function, this reduces to

{x |x ∈ dom (t) ∧ t(x) ∈ p }

42

- If p is included in its inverse image, we have then:

∀x · (x ∈ p ⇒ x ∈ dom (t) ∧ t(x) ∈ p)

- Notice that the empty set enjoys this property

∅ ⊆ t−1[∅]

43

- The property of having no cycle is thus equivalent to:

The only subset p of ND s.t. p ⊆ t−1[p] is EMPTY

∀p ·



p ⊆ ND ∧
p ⊆ t−1 [p]
⇒
p = ∅



44

The predicate tree (r, t)

45

The predicate tree (r, t)

r is a member of ND r ∈ ND

46

The predicate tree (r, t)

r is a member of ND r ∈ ND

t is a function t ∈ ND − {r} → ND

47

The predicate tree (r, t)

r is a member of ND r ∈ ND

t is a function t ∈ ND − {r} → ND

t is acyclic ∀p ·



p ⊆ ND ∧
p ⊆ t−1 [p]
⇒
p = ∅



48

t is acyclic: equivalent formulations

∀p ·



p ⊆ ND ∧
p ⊆ t−1 [p]
⇒
p = ∅


⇔ ∀q ·



q ⊆ ND ∧
r ∈ q ∧
t−1 [q] ⊆ q
⇒
ND ⊆ q



49

This gives an Induction Rule

∀q ·



q ⊆ ND ∧
r ∈ q ∧
∀x· (x ∈ ND − {r} ∧ t(x) ∈ q ⇒ x ∈ q)
⇒
ND ⊆ q



50

The predicate tree (r, t)

r is a member of ND r ∈ ND

t is a function t ∈ ND − {r} → ND

t is acyclic ∀q ·



q ⊆ ND ∧
r ∈ q ∧
t−1 [q] ⊆ q
⇒
ND ⊆ q



51

A spanning tree t of the graph gr

52

The predicate spanning (r, t, gr)

r, t is a tree tree (r, t)

t is included in gr t ⊆ gr

53

The graph gr is connected and acyclic (1)

- Defining a relation fn linking a node to the possible

spanning trees of gr having that node as a root:

fn ⊆ ND × (ND 7→ ND)

∀(r, t) ·



r ∈ ND ∧
t ∈ ND 7→ ND

⇒
(r, t) ∈ fn ⇔ spanning (r, t, gr)



54

The graph gr is connected and acyclic (2)

Totality of relation fn ⇒ Connectivity of gr

Functionality of relation fn ⇒ Acyclicity of gr

55

Summary of constants gr and fn

gr ⊆ ND ×ND
dom (gr) = ND

gr = gr−1

id (ND) ∩ gr = ∅

fn ∈ ND → (ND 7→ ND)

∀(r, t) ·



r ∈ ND ∧
t ∈ ND 7→ ND

⇒
t = fn(r) ⇔ spanning (r, t, gr)



56

Election in One Shot: Building a Spanning Tree

- Variables rt and ts

rt ∈ ND
ts ∈ ND ↔ ND

elect =̂
begin
rt, ts : spanning (rt, ts, gr)

end

57

First Refinement (1)

- Introducing a new variable, tr, corresponding to the

"tree" in construction

- Introducing a new event: the progression event

- Defining the invariant

- Back to the animation : Observe the construction

of the tree

58

59

60

61

62

63

64

65

66

67

- The green arrows correspond to the tr function

- The blue nodes are the domain of tr

- The function tr is a forest (multi-tree) on nodes

- The red nodes are the roots of these trees

68

The predicate invariant (tr)

tr ∈ ND 7→ ND

69

The predicate invariant (tr)

tr ∈ ND 7→ ND

∀p ·



p ⊆ ND ∧
ND − dom (tr) ⊆ p ∧
tr−1 [p] ⊆ p
⇒
ND ⊆ p



70

The predicate invariant (tr)

tr ∈ ND 7→ ND

∀p ·



p ⊆ ND ∧
ND − dom (tr) ⊆ p ∧
tr−1 [p] ⊆ p
⇒
ND ⊆ p



dom (tr) C (tr ∪ tr−1) = dom (tr) C gr

71

72

First Refinement (2)

- Introducing the new event "progress"

- Refining the abstract event "elect"

- Back to the animation : Observe the "guard" of progress

73

74

75

When a red node x is connected to AT MOST one other

red node y then event "progress" can take place

progress =̂
any x, y where
x, y ∈ gr ∧
x /∈ dom (tr) ∧
y /∈ dom (tr) ∧
gr[{x}] = tr−1[{x}] ∪ {y}

then
tr := tr ∪ {x 7→ y}

end

76

To be proved

invariant(tr) ∧
x, y ∈ gr ∧
x /∈ dom (tr) ∧
y /∈ dom (tr) ∧
gr[{x}] = tr−1[{x}] ∪ {y}
⇒
invariant(tr ∪ {x 7→ y})

77

78

79

When a red node x is ONLY connected to blue nodes then

event "elect" can take place

elect =̂
any x where
x ∈ ND ∧
gr[{x}] = tr−1[{x}]

then
rt, ts := x, tr

end

80

elect =̂
begin
rt, ts : spanning (rt, ts, gr)

end

elect =̂
any x where
x ∈ ND ∧
gr[{x}] = tr−1[{x}]

then
rt, ts := x, tr

end

81

To be proved

invariant(tr) ∧
x ∈ ND ∧
gr[{x}] = tr−1[{x}]
ts = tr

⇒
spanning(x, ts, gr)

82

Summary of First Refinement

- 15 proofs

- Among which 9 were interactive (one is a bit difficult !)

83

Second Refinement

- Nodes are communicating with their neighbors

- This is done by means of messages

- Messages are acknowledged

- Acknowledgements are confirmed

- Next is a local animation

84

gr

85

tr

86

gr

87

msg

Sending a message

88

msg
ack

Sending Acknowledgement

Receiving a message

89

msg
ack
tr

Receiving Acknowledgement

Sending Confirmation

90

msg
ack
tr

Receiving Confirmation

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

Invariant (1)

- Each node sends AT MOST one message

- Each node receives AT MOST one acknowledgment

- Each node sends AT MOST one confirmation

msg ∈ ND 7→ ND

ack ∈ ND 7→ ND

tr ⊆ ack ⊆ msg ⊆ gr

121

Node x sends a message to node y

send msg =̂
any x, y where
x, y ∈ gr ∧
x /∈ dom (tr) ∧
y, x /∈ tr ∧
gr[{x}] = tr−1[{x}] ∪ {y} ∧
y, x /∈ ack ∧
x /∈ dom (msg)

then
msg := msg ∪ {x 7→ y}

end

122

Node y sends an acknowledgement to node x

send ack =̂
any x, y where
x, y ∈ msg − ack ∧
y /∈ dom (msg)

then
ack := ack ∪ {x 7→ y}

end

123

Node x sends a confirmation to node y

progress =̂
any x, y where
x, y ∈ ack ∧
x /∈ dom (tr)

then
tr := tr ∪ {x 7→ y}

end

124

Invariant (2)

∀ (x, y) ·



x, y ∈ msg − ack
⇒
x, y ∈ gr ∧
x /∈ dom (tr) ∧ y /∈ dom (tr) ∧
gr[{x}] = tr−1[{x}] ∪ {y}



∀ (x, y) ·



x, y ∈ ack ∧
x /∈ dom (tr)
⇒
x, y ∈ gr ∧
y /∈ dom (tr) ∧
gr[{x}] = tr−1[{x}] ∪ {y}



125

Second Refinement: The problem of contention

- Explaining the problem

- Proposing a partial solution

- Towards a better treatment

- Back to the local animation

126

127

128

129

130

gr

131

msg

Sending a message

132

msg

msg

Sending another message

133

msg

Discovering Contention

134

Discovering Contention

135

Recovering from Contention

136

msg

Sending a message

137

msg

msg

Sending another message

138

msg

Discovering Contention

139

Discovering Contention

140

Recovering from Contention

141

msg

Sending a Message

142

msg

msg

Sending another message

143

msg

Discovering Contention

144

Discovering Contention

145

Recovering from Contention

146

msg

Sending a message

147

msg
ack

Sending Acknowledgement

Receiving a message

148

msg
ack
tr

Receiving Acknowledgement

Sending Confirmation

149

msg
ack
tr

Receiving Confirmation

150

Discovering the Contention (1)

- Node y discovers the contention with node x because:

- It has sent a message to node x

- It has not yet received acknowledgment x

- It receives instead a message from node x

151

Discovering the Contention (2)

- Node x also discovers the contention with node y

- Assumption: The time between both discoveries

IS SUPPOSED TO BE BOUNDED

BY τ ms

- The time τ is the maximum transmission time

between 2 connected nodes

152

A Partial Solution

- Each node waits for τ ms after its own discovery

- After this, each node thus knows that the other

has also discovered the contention

- Each node then retries immediately

- PROBLEM: This may continue for ever

153

A Better Solution (1)

- Each node waits for τ ms after its own discovery

- Each node then choses with equal probability:

- either to wait for a short delay

- or to wait for a large delay

- Each node then retries

154

A Better Solution (2)

- Question: Does this solves the problem ?

- Are we sure to eventually have one node winning ?

- Answer: Listen carefully to Caroll Morgan’s lectures

155

Node y discovers a contention with node x

send ack =̂
any x, y where
x, y ∈ msg − ack ∧
y /∈ dom (msg)

then
ack := ack ∪ {x 7→ y}

end

contention =̂
any x, y where
x, y ∈ msg − ack ∧
y ∈ dom (msg)

then
cnt := cnt ∪ {x 7→ y}

end

- Introducing a dummy contention channel: cnt

cnt ∈ ND 7→ ND

cnt ⊆ msg

ack ∩ cnt = ∅

156

Solving the contention (simulating the τ delay)

solve contention =̂
any x, y where
x, y ∈ cnt ∪ cnt−1

then
msg := msg − cnt ‖
cnt := ∅

end

157

Summary of Second Refinement

- 73 proofs

- Among which 34 were interactive

158

Third Refinement: Localization

- The representation of the graph gr is modified

- The representation of the tree tr is modified

- Other data structures are localized

159

Localization (1)

The graph gr and the tree tr are now localized

nb ∈ ND → P(ND)

∀x · (x ∈ ND ⇒ nb(x) = gr[{x}])

sn ∈ ND → P(ND)

∀x · (x ∈ ND ⇒ sn(x) ⊆ tr−1[{x}])

160

Localization (2)

bm ⊆ ND

bm = dom (msg)

bt ⊆ ND

bt = dom (tr)

ba ∈ ND → P(ND)

∀x · (x ∈ ND ⇒ ba(x) = ack−1[{x}])

161

- Node x is elected the leader

elect =̂
any x where
x ∈ ND ∧
nb(x) = sn(x)

then
rt := x

end

162

- Node x sends a message to node y (y is unique)

send msg =̂
any x, y where
x ∈ ND − bm ∧
y ∈ ND − (ba(x) ∪ sn(x)) ∧
nb(x) = sn(x) ∪ {y}

then
msg := msg ∪ {x 7→ y} ‖
bm := bm ∪ {x}

end

163

- Node y sends an acknowledgement to node x

send ack =̂
any x, y where
x, y ∈ msg ∧
x /∈ ba(y) ∧
y /∈ bm

then
ack := ack ∪ {x 7→ y} ‖
ba(y) := ba(y) ∪ {x}

end

164

- Node x sends a confirmation to node y

progress =̂
any x, y where
x, y ∈ ack ∧
x /∈ bt

then
tr := tr ∪ {x 7→ y} ‖
bt := bt ∪ {x}

end

165

- Node y receives confirmation from node x

rcv cnf =̂
any x, y where
x, y ∈ tr ∧
x /∈ sn(y)

then
sn(y) := sn(y) ∪ {x}

end

166

contention =̂
any x, y where
x, y ∈ cnt ∪ cnt−1 ∧
x /∈ ba(y) ∧
y ∈ bm

then
cnt := cnt ∪ {x 7→ y}

end

167

solve contention =̂
any x, y where
x, y ∈ cnt ∪ cnt−1

then
msg := msg − cnt ‖
bm := bm− dom (cnt) ‖
cnt := ∅

end

168

Summary of Third Refinement

- 29 proofs

- Among which 19 were interactive

169

Main Summary

- 119 proofs

- Among which 63 were interactive

170

Conclusion: a Systematic Approach to Distribution

- Establishing the mathematical framework

171

Conclusion: a Systematic Approach to Distribution

- Establishing the mathematical framework

- Resolving the mathematical problem in one shot

172

Conclusion: a Systematic Approach to Distribution

- Establishing the mathematical framework

- Resolving the mathematical problem in one shot

- Resolving the same problem on a step by step basis

173

Conclusion: a Systematic Approach to Distribution

- Establishing the mathematical framework

- Resolving the mathematical problem in one shot

- Resolving the same problem on a step by step basis

- Involving communication by means of messages

174

Conclusion: a Systematic Approach to Distribution

- Establishing the mathematical framework

- Resolving the mathematical problem in one shot

- Resolving the same problem on a step by step basis

- Involving communication by means of messages

- Towards the localization of data structures

175

