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IEEE 1394 High Performance Serial Bus (FireWire)

- It Is an international standard

- There exists a widespread commercial interest in its correctness

- Sun, Apple, Philips, Microsoft, Sony, etc involved in its development

- Made of three layers (physical, link, transaction)

- The protocol under study is the Tree Identify Protocol

- Situated in the Bus Reset phase of the physical layer



The Problem (1)

- The bus is used to transport digitized video and audio signals

- It is “hot-pluggable”

- Devices and peripherals can be added and removed at any time

- Such changes are followed by a bus reset

- The leader election takes place after a bus reset in the network

- A leader needs to be chosen to act as the manager of the bus



The Problem (2)

- After a bus reset: all nodes in the network have equal status

- A node only knows to which nodes it is directly connected

- The network I1s connected

- The network is acyclic
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Informal Abstract Properties of the Protocol

- We are given a connected and acyclic network of nodes

- Nodes are linked by bidirectional channels

- We want to have one node being elected the leader in a finite time

- This is to be done in a distributed and non-deterministic way

- Next are two distinct abstract animations of the protocol

























































Summary of Development Process

- Formal definition and properties of the network

- A one-shot abstract model of the protocol

- Presenting a (still abstract) loop-like centralized solution

- Introducing message passing between the nodes (delays)

- Modifying the data structure in order to distribute the protocol



Let ND be a set of nodes (with at |east 2 nodes)
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Let gr be agraph built and defined on ND
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gr 1s asymmetric and irreflexive graph
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gr I1s a graph built on ND gr C ND X ND
gr is defined on ND dom (gr) = ND
—1

gr IS symmetric gr = gr

gr is irreflexive d(ND) N gr = (



gr 1s connected and acyclic



A Little Detour Through Trees

- A tree Is a special graph

- A tree has a root

- A tree has a, so-called, father function

- A tree Is acyclic

- A tree Is connected from the root



the root i\

A tree t built on aset of nodes
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t 1safunction defined on ND except at the root
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A cycle Its Inverse iImage

The nodes of acycle are included
IN thelr Inverse image



- Given
-aset ND
-a subsetp of ND
- a binary relation ¢ built on ND

- The inverse image of p under ¢ is denoted by ¢~ 1[p]
t=1p] = {z|lz e ND A Jy-(yep A (z,y) €t)}
- When t Is a partial function, this reduces to

{x|zedom(t) A t(x) €p}



- If p Is Included In Its inverse image, we have then:
V- (z€p = z€dom(t) A t(z) €Ep)
- Notice that the empty set enjoys this property

O C ¢t 1[0]



- The property of having no cycle Is thus equivalent to:

The only subset p of ND s.t. p Ct~1[p] is EMPTY

/pgND A
c¢1

v :z;_ [p]

\ P =10 /




The predicate tree (r, t)
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The predicate tree (r, t)

risamemberof ND r & ND

t I1s a function te ND—{r} - ND
[ pC ND A )
- - p Ct~1[p]
t 1s acyclic Vp -
y p N

\ p=10 )



t Is acyclic: equivalent formulations

[ pCND A )

p Ct1[p]
—

\p=10 )

[ qgC ND A )
req N

t—1[q] Cq
—

\ ND C q )



This gives an Induction Rule

[ qC ND A

recqg N

Ve- ( € ND —{r} At(z) €q = z€q)
—

\ ND C q




The predicate tree (r, t)

risamemberof ND r& ND

t Is a function te ND—{r} - ND
([ qgC ND A )
recqg N
t is acyclic Vg-| t71[q] C g
=

\ VD C q )
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A spanning tree t of the graph gr



The predicate spanning (r, ¢, gr)

r,tis atree tree (r,t)

t Is included in gr t C gr



The graph gr I1s connected and acyclic (1)

- Defining a relation fn linking a node to the possible

spanning trees of gr having that node as a root:

fn C ND x (ND + ND)

( re ND A )
V(r.t) - :ZEND—HND
\ (r,t) € fn < spanning (T,t,gfr)/



The graph g¢gr Is connected and acyclic (2)

Totality of relation fn = Connectivity of gr

Functionality of relation fn = Acyclicity of gr



Summary of constants gr and fn

gr C ND X ND
dom (gr) = ND
gr:gr_l
d(ND) N gr = 0

fne ND — (ND +~ ND)
[ r€ ND A )
te ND - ND
=

| t = fn(r) < spanning (r,t,gr)

V(r,t) -




Election in One Shot: Building a Spanning Tree

- Variables rt and ts

rt € ND
tse ND «— ND

—_—

elect =
begin
rt,ts : spanning (rt, ts, gr)
end




First Refinement (1)

- Introducing a new variable, tr, corresponding to the

"tree" In construction

- Introducing a new event: the progression event

- Defining the invariant

- Back to the animation : Observe the construction
of the tree






























- The correspond to the tr function

- The blue nodes are the domain of ¢r

- The function tr Is a forest (multi-tree) on nodes

- The red nodes are the roots of these trees



The predicate invariant (¢r)

tr e ND - ND



The predicate invariant (¢r)
tr e ND — ND

[ pCND A )
ND —dom(tr) Cp A
Vp-| tr=[p] Cp

=

\ ND Cp )




The predicate invariant (¢r)
tr e ND — ND

[ pCND A )
ND —dom(tr) Cp A
Vp-| tr=[p] Cp

=

\ ND Cp )

dom (¢tr) < (¢r Utr—1) = dom (¢tr) < gr






First Refinement (2)

- Introducing the new event "progress"

- Refining the abstract event "elect”

- Back to the animation : Observe the "guard" of progress









When a red node z 1s connected to AT MOST one other

red node y then event "progress" can take place

—_—

progress =
any x,y where
T,y € gr N
x & dom (tr) A
y ¢ dom (tr) A
gri{z}] = tr1[{z}] U {y}
then
tr :==trJ{x — y}
end




To be proved

invariant(¢r) A

T,y € gr N

x & dom (tr) A

y & dom (tr) A

gr[{z}] = tr~[{z}] U {y}
=

invariant(tr U {x — y})










When a red node x 1s ONLY connected to blue nodes then
event "elect" can take place

elect =
any x where
re ND A

gri{z}] = tr 1 [{z}]
then

rt,ts .= x, tr
end




elect =
begin

rt,ts : spanning (rt, ts, gr)
end

elect =
any x where
re ND A

gri{z}] = tr 1[{z}]
then

rt,ts .= x, tr
end




To be proved

invariant(tr) A
xr e ND A
gri{z}] = tr~[{=}]
ts = tr
—
spanning(x, ts, gr)




Summary of First Refinement

- 15 proofs

- Among which 9 were interactive (one Is a bit difficult !)



Second Refinement

- Nodes are communicating with their neighbors

- This Is done by means of messages

- Messages are acknowledged

- Acknowledgements are confirmed

- Next Is a local animation
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Invariant (1)

- Each node sends AT MOST one message

- Each node receives AT MOST one acknowledgment

- Each node sends AT MOST one confirmation
msg € ND - ND
ack € ND - ND

C ack C msg C gr



Node x sends a message to node y

—_—

send.msg =
any x,y where
T,y € gr N
x & dom (tr) A
Yy, & tr A
grli{z}] = tr~H[{z}] U {y} A
y,r & ack N
x & dom (msg)
then
msg .= msg U {x — y}
end




Node y sends an acknowledgement to node x

send ack =
any x,y where
x,Yy € msg — ack N
y ¢ dom (msg)
then
ack ;= ack U {x — y}
end




Node x sends a confirmation to node y

—_—

progress =
any x,y where
x,y € ack N
x & dom (tr)
then
tr :=tr U {x — y}
end




Invariant (2)

[ xz,y € msg — ack )
—

V(x,y)-| z,y€gr A

x & dom (tr) N y & dom (tr) A

\grl{ey] = o {zu{y}

[ =z, y € ack A )
x & dom (tr)
v (z,y)- jyégr A
y & dom (tr) A
\ grl{z}] = tr 1 [{z}] U {y}



Second Refinement: The problem of contention

- Explaining the problem

- Proposing a partial solution

- Towards a better treatment

- Back to the local animation
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Discovering the Contention (1)

- Node y discovers the contention with node x because:
- It has sent a message to node x

- It has not yet received acknowledgment x

- It receives instead a message from node x



Discovering the Contention (2)

- Node x also discovers the contention with node y

- Assumption: The time between both discoveries
IS SUPPOSED TO BE BOUNDED

BY m ms

- The time 7 I1s the maximum transmission time

between 2 connected nodes



A Partial Solution

- Each node waits for = ms after its own discovery

- After this, each node thus knows that the other

has also discovered the contention

- Each node then retries immediately

- PROBLEM: This may continue for ever



A Better Solution (1)

- Each node waits for = ms after its own discovery
- Each node then choses with equal probabillity:
- either to wait for a short delay

- or to wait for a large delay

- Each node then retries



A Better Solution (2)

- Question: Does this solves the problem ?

- Are we sure to eventually have one node winning ?

- Answer: Listen carefully to Caroll Morgan’s lectures



Node y discovers a contention with node x

send ack =
any x,y where

then

end

x,Yy € msg — ack N
y ¢ dom (msg)

ack == ack U {x — y}

contention =
any x,y where

y € dom (msg)
then

end

- Introducing a dummy contention channel: cnt

cnt E ND — ND

cnt C msg

ack N cnt = ()

x,y € msg — ack N

cnt == cntU{x — y}




Solving the contention (simulating the T delay)

solve _contention =
any x,y where
xr,y € cnt U cnt_l

then
msg .= msg — cnt ||
cnt .= ()

end




Summary of Second Refinement

- 73 proofs

- Among which 34 were interactive



Third Refinement: Localization

- The representation of the graph gr Is modified

- The representation of the tree ¢r Is modified

- Other data structures are localized



Localization (1)

The graph gr and the tree ¢r are now localized

nbe ND — P(ND)
Vr-(x € ND = nb(x) = gr[{z}])
sn € ND — P(ND)

V- (x € ND = sn(z) Ctr—1[{z}])



Localization (2)

bm C ND

bm =— dom (msg)
bt C ND
bt = dom (tr)

ba € ND — P(ND)

Vo (x € ND = ba(z) = ack™[{z}])



- Node z Is elected the leader

—_—

elect =
any x where
r € ND AN
nb(x) = sn(x)
then
rt .= x
end




- Node x sends a message to node y (y IS unique)

—_—

send msg =

any x,y where
xr e ND —bm A
y € ND — (ba(x) Usn(x)) A
nb(x) = sn(x) U {y}

then
msg :=msgU{x — y} |
bm = bm U {x}

end




- Node y sends an acknowledgement to node x

send ack =
any x,y where
T,y € msg N
z & ba(y) A
y & bm
then

ack := ack U{x — y} |

ba(y) := ba(y) U {z}
end




- Node z sends a confirmation to node y

progress =

any x,y where
x,y € ack N
x ¢ bt

then
tr :=trU{x—y}t |
bt := bt U {x}

end




- Node y receives confirmation from node x

rcv.cnf =
any x,y where
T,y ctr N
r ¢ sn(y)
then
sn(y) = sn(y) U {z}
end




contention =
any x,y where
x,y € cnt U ent™ 1 A
z & ba(y) A
y € bm
then
cnt == cnt U {x — y}
end




solve_contention =

any x,y where
x,y € cnt U ent 1

then
msg .= msg —cnt ||
bm = bm — dom (cnt) ||
cnt =10

end




Summary of Third Refinement

- 29 proofs

- Among which 19 were interactive



Main Summary

- 119 proofs

- Among which 63 were interactive
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Conclusion: a Systematic Approach to Distribution

- Establishing the mathematical framework

- Resolving the mathematical problem in one shot

- Resolving the same problem on a step by step basis

- Involving communication by means of messages

- Towards the localization of data structures



