The Leader Election Protocol (IEEE 1394)

J.R. Abrial, D. Cansell, D. Méry

July 2002

This Session

- Background)

- An informal presentation of the protocol

- Step by step formal design -

- Short Conclusion. -)

IEEE 1394 High Performance Serial Bus (FireWire)

- It Is an international standard

- There exists a widespread commercial interest in its correctness

- Sun, Apple, Philips, Microsoft, Sony, etc involved in its development

- Made of three layers (physical, link, transaction)

- The protocol under study is the Tree Identify Protocol

- Situated in the Bus Reset phase of the physical layer

The Problem (1)

- The bus is used to transport digitized video and audio signals

- It is “hot-pluggable”

- Devices and peripherals can be added and removed at any time

- Such changes are followed by a bus reset

- The leader election takes place after a bus reset in the network

- A leader needs to be chosen to act as the manager of the bus

The Problem (2)

- After a bus reset: all nodes in the network have equal status

- A node only knows to which nodes it is directly connected

- The network I1s connected

- The network is acyclic

References (1)

BASIC

- IEEE. IEEE Standard for a High Performance Serial Bus. Std 1394-
1995. 1995

- IEEE. IEEE Standard for a High Performance Serial Bus (supple-
ment). Std 1394a-2000. 2000

References (2)

GENERAL

- N. Lynch. Distributed Algorithms. Morgan Kaufmann. 1996

- R. G. Gallager et al. A Distributed Algorithm for Minimum Weight
Spanning Trees. IEEE Trans. on Prog. Lang. and Systems. 1983.

References (3)

MODEL CHECKING

- D.P.L. Simons et al. Mechanical Verification of the IEE 1394a Root
Contention Protocol using Uppaal2 Springer International Journal of

Software Tools for Technology Transfer. 2001

- H. Toetenel et al. Parametric verification of the IEEE 1394a Root
Contention Protocol using LPMC Proceedings of the 7th International
Conference on Real-time Computing Systems and Applications. IEEE

Computer Society Press. 2000

References (4)

THEOREM PROVING

- M. Devillers et al. Verification of the Leader Election: Formal Method

Applied to IEEE 1394. Formal Methods in System Design. 2000

- J.R. Abrial et al. A Mechanically Proved and Incremental Devel-

opment of IEEE 1394. To be published 2002

Informal Abstract Properties of the Protocol

- We are given a connected and acyclic network of nodes

- Nodes are linked by bidirectional channels

- We want to have one node being elected the leader in a finite time

- This is to be done in a distributed and non-deterministic way

- Next are two distinct abstract animations of the protocol

Summary of Development Process

- Formal definition and properties of the network

- A one-shot abstract model of the protocol

- Presenting a (still abstract) loop-like centralized solution

- Introducing message passing between the nodes (delays)

- Modifying the data structure in order to distribute the protocol

Let ND be a set of nodes (with at |east 2 nodes)

Ve
|

Let gr be agraph built and defined on ND

Ve
|

gr 1s asymmetric and irreflexive graph

gr I1s a graph built on ND gr C ND X ND

gr I1s a graph built on ND gr C ND X ND

gr is defined on ND dom (gr) = ND

gr I1s a graph built on ND gr C ND X ND

gr is defined on ND dom (gr) = ND

gr IS symmetric gr = gr— 1

gr I1s a graph built on ND gr C ND X ND
gr is defined on ND dom (gr) = ND
—1

gr IS symmetric gr = gr

gr is irreflexive d(ND) N gr = (

gr 1s connected and acyclic

A Little Detour Through Trees

- A tree Is a special graph

- A tree has a root

- A tree has a, so-called, father function

- A tree Is acyclic

- A tree Is connected from the root

the root i\

A tree t built on aset of nodes

/\

t 1safunction defined on ND except at the root

=< ° R\@ -

A cycle Its Inverse iImage

The nodes of acycle are included
IN thelr Inverse image

- Given
-aset ND
-a subsetp of ND
- a binary relation ¢ built on ND

- The inverse image of p under ¢ is denoted by ¢~ 1[p]
t=1p] = {z|lz e ND A Jy-(yep A (z,y) €t)}
- When t Is a partial function, this reduces to

{x|zedom(t) A t(x) €p}

- If p Is Included In Its inverse image, we have then:
V- (z€p = z€dom(t) A t(z) €Ep)
- Notice that the empty set enjoys this property

O C ¢t 1[0]

- The property of having no cycle Is thus equivalent to:

The only subset p of ND s.t. p Ct~1[p] is EMPTY

/pgND A
c¢1

v :z;_ [p]

\ P =10 /

The predicate tree (r, t)

The predicate tree (r, t)

risamemberof ND r & ND

The predicate tree (r, t)
risamemberof ND r &€ ND

t I1s a function te ND—{r} - ND

The predicate tree (r, t)

risamemberof ND r & ND

t I1s a function te ND—{r} - ND
[pC ND A)
- - p Ct~1[p]
t 1s acyclic Vp -
y p N

\ p=10)

t Is acyclic: equivalent formulations

[pCND A)

p Ct1[p]
—

\p=10)

[qgC ND A)
req N

t—1[q] Cq
—

\ ND C q)

This gives an Induction Rule

[qC ND A

recqg N

Ve- (€ ND —{r} At(z) €q = z€q)
—

\ ND C q

The predicate tree (r, t)

risamemberof ND r& ND

t Is a function te ND—{r} - ND
([qgC ND A)
recqg N
t is acyclic Vg-| t71[q] C g
=

\ VD C q)

‘\./,

J

A spanning tree t of the graph gr

The predicate spanning (r, ¢, gr)

r,tis atree tree (r,t)

t Is included in gr t C gr

The graph gr I1s connected and acyclic (1)

- Defining a relation fn linking a node to the possible

spanning trees of gr having that node as a root:

fn C ND x (ND + ND)

(re ND A)
V(r.t) - :ZEND—HND
\ (r,t) € fn < spanning (T,t,gfr)/

The graph g¢gr Is connected and acyclic (2)

Totality of relation fn = Connectivity of gr

Functionality of relation fn = Acyclicity of gr

Summary of constants gr and fn

gr C ND X ND
dom (gr) = ND
gr:gr_l
d(ND) N gr = 0

fne ND — (ND +~ ND)
[r€ ND A)
te ND - ND
=

| t = fn(r) < spanning (r,t,gr)

V(r,t) -

Election in One Shot: Building a Spanning Tree

- Variables rt and ts

rt € ND
tse ND «— ND

—_—

elect =
begin
rt,ts : spanning (rt, ts, gr)
end

First Refinement (1)

- Introducing a new variable, tr, corresponding to the

"tree" In construction

- Introducing a new event: the progression event

- Defining the invariant

- Back to the animation : Observe the construction
of the tree

- The correspond to the tr function

- The blue nodes are the domain of ¢r

- The function tr Is a forest (multi-tree) on nodes

- The red nodes are the roots of these trees

The predicate invariant (¢r)

tr e ND - ND

The predicate invariant (¢r)
tr e ND — ND

[pCND A)
ND —dom(tr) Cp A
Vp-| tr=[p] Cp

=

\ ND Cp)

The predicate invariant (¢r)
tr e ND — ND

[pCND A)
ND —dom(tr) Cp A
Vp-| tr=[p] Cp

=

\ ND Cp)

dom (¢tr) < (¢r Utr—1) = dom (¢tr) < gr

First Refinement (2)

- Introducing the new event "progress"

- Refining the abstract event "elect”

- Back to the animation : Observe the "guard" of progress

When a red node z 1s connected to AT MOST one other

red node y then event "progress" can take place

—_—

progress =
any x,y where
T,y € gr N
x & dom (tr) A
y ¢ dom (tr) A
gri{z}] = tr1[{z}] U {y}
then
tr :==trJ{x — y}
end

To be proved

invariant(¢r) A

T,y € gr N

x & dom (tr) A

y & dom (tr) A

gr[{z}] = tr~[{z}] U {y}
=

invariant(tr U {x — y})

When a red node x 1s ONLY connected to blue nodes then
event "elect" can take place

elect =
any x where
re ND A

gri{z}] = tr 1 [{z}]
then

rt,ts .= x, tr
end

elect =
begin

rt,ts : spanning (rt, ts, gr)
end

elect =
any x where
re ND A

gri{z}] = tr 1[{z}]
then

rt,ts .= x, tr
end

To be proved

invariant(tr) A
xr e ND A
gri{z}] = tr~[{=}]
ts = tr
—
spanning(x, ts, gr)

Summary of First Refinement

- 15 proofs

- Among which 9 were interactive (one Is a bit difficult !)

Second Refinement

- Nodes are communicating with their neighbors

- This Is done by means of messages

- Messages are acknowledged

- Acknowledgements are confirmed

- Next Is a local animation

Sending a message

Mg

Receiving a message
Sending Acknowledgement

My
ack

Receiving Acknowledgement
Sending Confirmation

M3y
ack
tr

Receiving Confirmation

My
ack
tr

Invariant (1)

- Each node sends AT MOST one message

- Each node receives AT MOST one acknowledgment

- Each node sends AT MOST one confirmation
msg € ND - ND
ack € ND - ND

C ack C msg C gr

Node x sends a message to node y

—_—

send.msg =
any x,y where
T,y € gr N
x & dom (tr) A
Yy, & tr A
grli{z}] = tr~H[{z}] U {y} A
y,r & ack N
x & dom (msg)
then
msg .= msg U {x — y}
end

Node y sends an acknowledgement to node x

send ack =
any x,y where
x,Yy € msg — ack N
y ¢ dom (msg)
then
ack ;= ack U {x — y}
end

Node x sends a confirmation to node y

—_—

progress =
any x,y where
x,y € ack N
x & dom (tr)
then
tr :=tr U {x — y}
end

Invariant (2)

[xz,y € msg — ack)
—

V(x,y)-| z,y€gr A

x & dom (tr) N y & dom (tr) A

\grl{ey] = o {zu{y}

[=z, y € ack A)
x & dom (tr)
v (z,y)- jyégr A
y & dom (tr) A
\ grl{z}] = tr 1 [{z}] U {y}

Second Refinement: The problem of contention

- Explaining the problem

- Proposing a partial solution

- Towards a better treatment

- Back to the local animation

Sending a message

Mg

Sending another message

Mg

msy

Discovering Contention

Mg

Discovering Contention

Recovering from Contention

Sending a message

Mg

Sending another message

Mg

msy

Discovering Contention

msy

Discovering Contention

Recovering from Contention

Sending a Message

msy

Sending another message

Mg

msy

Discovering Contention

Mg

Discovering Contention

Recovering from Contention

Sending a message

Mg

Receiving a message
Sending Acknowledgement

My
ack

Receiving Acknowledgement
Sending Confirmation

M3y
ack
tr

Receiving Confirmation

My
ack
tr

Discovering the Contention (1)

- Node y discovers the contention with node x because:
- It has sent a message to node x

- It has not yet received acknowledgment x

- It receives instead a message from node x

Discovering the Contention (2)

- Node x also discovers the contention with node y

- Assumption: The time between both discoveries
IS SUPPOSED TO BE BOUNDED

BY m ms

- The time 7 I1s the maximum transmission time

between 2 connected nodes

A Partial Solution

- Each node waits for = ms after its own discovery

- After this, each node thus knows that the other

has also discovered the contention

- Each node then retries immediately

- PROBLEM: This may continue for ever

A Better Solution (1)

- Each node waits for = ms after its own discovery
- Each node then choses with equal probabillity:
- either to wait for a short delay

- or to wait for a large delay

- Each node then retries

A Better Solution (2)

- Question: Does this solves the problem ?

- Are we sure to eventually have one node winning ?

- Answer: Listen carefully to Caroll Morgan’s lectures

Node y discovers a contention with node x

send ack =
any x,y where

then

end

x,Yy € msg — ack N
y ¢ dom (msg)

ack == ack U {x — y}

contention =
any x,y where

y € dom (msg)
then

end

- Introducing a dummy contention channel: cnt

cnt E ND — ND

cnt C msg

ack N cnt = ()

x,y € msg — ack N

cnt == cntU{x — y}

Solving the contention (simulating the T delay)

solve _contention =
any x,y where
xr,y € cnt U cnt_l

then
msg .= msg — cnt ||
cnt .= ()

end

Summary of Second Refinement

- 73 proofs

- Among which 34 were interactive

Third Refinement: Localization

- The representation of the graph gr Is modified

- The representation of the tree ¢r Is modified

- Other data structures are localized

Localization (1)

The graph gr and the tree ¢r are now localized

nbe ND — P(ND)
Vr-(x € ND = nb(x) = gr[{z}])
sn € ND — P(ND)

V- (x € ND = sn(z) Ctr—1[{z}])

Localization (2)

bm C ND

bm =— dom (msg)
bt C ND
bt = dom (tr)

ba € ND — P(ND)

Vo (x € ND = ba(z) = ack™[{z}])

- Node z Is elected the leader

—_—

elect =
any x where
r € ND AN
nb(x) = sn(x)
then
rt .= x
end

- Node x sends a message to node y (y IS unique)

—_—

send msg =

any x,y where
xr e ND —bm A
y € ND — (ba(x) Usn(x)) A
nb(x) = sn(x) U {y}

then
msg :=msgU{x — y} |
bm = bm U {x}

end

- Node y sends an acknowledgement to node x

send ack =
any x,y where
T,y € msg N
z & ba(y) A
y & bm
then

ack := ack U{x — y} |

ba(y) := ba(y) U {z}
end

- Node z sends a confirmation to node y

progress =

any x,y where
x,y € ack N
x ¢ bt

then
tr :=trU{x—y}t |
bt := bt U {x}

end

- Node y receives confirmation from node x

rcv.cnf =
any x,y where
T,y ctr N
r ¢ sn(y)
then
sn(y) = sn(y) U {z}
end

contention =
any x,y where
x,y € cnt U ent™ 1 A
z & ba(y) A
y € bm
then
cnt == cnt U {x — y}
end

solve_contention =

any x,y where
x,y € cnt U ent 1

then
msg .= msg —cnt ||
bm = bm — dom (cnt) ||
cnt =10

end

Summary of Third Refinement

- 29 proofs

- Among which 19 were interactive

Main Summary

- 119 proofs

- Among which 63 were interactive

Conclusion: a Systematic Approach to Distribution

- Establishing the mathematical framework

Conclusion: a Systematic Approach to Distribution

- Establishing the mathematical framework

- Resolving the mathematical problem in one shot

Conclusion: a Systematic Approach to Distribution

- Establishing the mathematical framework

- Resolving the mathematical problem in one shot

- Resolving the same problem on a step by step basis

Conclusion: a Systematic Approach to Distribution

- Establishing the mathematical framework

- Resolving the mathematical problem in one shot

- Resolving the same problem on a step by step basis

- Involving communication by means of messages

Conclusion: a Systematic Approach to Distribution

- Establishing the mathematical framework

- Resolving the mathematical problem in one shot

- Resolving the same problem on a step by step basis

- Involving communication by means of messages

- Towards the localization of data structures

