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PREFACE

A possible subtitle for this dissertation would be: "Studies
in the technique and application of the simple theory of types".
This may suggest that the interest of the work is strictly limited:
but I hope on the contrary that the persevering reader will find -
and perhaps be surprised to find - that the range of topics
discussed is extremely wide; and that type theory provides an
elegant and adequate sympolism for all those discussions. And I
think that even the purely technical parts have a significance
which goes beyond the particular system used.

There are several reasons for this fruitfulness of type
theory. Firstly it is natural, in almost all branches of mathe-
matics, to distinguish the different logical types of the
quantities involved; and it is therefore right and proper that a
system of mathematical logic which is to be generally useful should
recognise those distinctions. Secondly the particular system of
logic here used follows normal mathematical practice in several
other important ways: mnamely, in its use of, though not in its
notation for, functional abstraction; in its admission of a
descriptions operator; in its extensional character; and in its
employment of the deduction theorem, This system of logic is due
to Alonso Church, and it has played an indispensable part in the
clarification of my ideas.

Chapter I is concerned with the formal development of type

theory. In Section 1 an account is given of Church's system, and
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also of an alternative system which I invented to facilitate the
proofs of some of the theorems of later sections. I think I may
have overestimated the degree of this facilitation, but the system
has some intrinsic interest, The two systems considered are
logically equivalent; I intended to give a demonstration of this
equivalence in Appendix II, but my proof, though in principle
gstraightforward, was rather tedious and inelegant, so I have
omitted it.

in Section 2 the effect of maps of one type into another on
objects of higher type is considered, and it is shown that the
logical constants are all invariant under permutations of the type
of individuals., . This section represents the first steps in what,
for want of a better term, I will call abstract structure theory;
this is on the borderline of mathematics and symbolic logic, and
it is an open question whether it is better to use the techniques
of logic or of ordinary mathematics in discussing it. I think
possibly the best answer is to use a formal logical notation, but
to forgo the formalities of logical proof,

In Section 3 a method for consistently introducing new types -
virtual types - is elaborated. As an example of its application
the problem of forming quotient structures is discussed; this is
another piece of abstract structure theory.

In Section 4 the making of inner models in the theory of
types is discussed, and a rather general set of sufficient conditions

for the existence of a model is given. This result is then used

to give a short proof of the independence of the selection axiom.
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It is clear to me, and I hope it will also become clear to
the reader, that there is a fundamental distinction between elements
of the system which can be described by closed formulae (i.e.
formulae without free variables) and those which cannot be so
described. In Section 5 an attempt is made to describe this
distinction within the systém itself. Theorem VIII shows that the
description can be made by means of an infinite list of formulae.
Since here it is the final result rather than the details which is
important, I have proceeded rather informally, and have omitted a
large number of formal proofs; I hope this treatment will make
the work easy to follow, while yet convincing the reader that the
result is correct.

Chapter II is concerned with applications; in view of the
length of Chapter I, I have confined myself to giving a rough
outline; I hope it will not prove too sketchy to be of value.
Section 1 is philosophical; in it I dispute the popular opinion
that propositions must either be synthetic or analytic, and also
give a theory of names. Section 2 is concerned with the defini-
tion of the notion of mathematical structure; the definition given
can be regarded as the ultimate generalisation of the ideas of
Klein's Erlanger programme, Section 3 deals with the logical
analysis of theories. I show how the nature of the concepts of
a theory is revealed by a consideration of the way in which the
corresponding logical objects occur in a formal statement of the

theory; and I give examples of the application of the kind of

analysis proposed.
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There is not much in this dissertation which is really new.
Some of the more important results of Chapter I - the invariance
of the logical constants, the independence of the selection axiom
in the theory of types, and the possibility of giving a formula
for 'n-Clo' - have previously been obtained by members of the
Polish school; in fact I had convinced myself of the truth of 1
these results before I became aware of their work. Theorem V, ‘
the method by which it is proved, and the rather similar method used
in proving Theorem III are, I think, original. The idea of
Theorem III, and the notion of nonsense elements are due to
A.M, Turing.

The debt which I owe to Bourbaki and to Philip Hall for the
development of abstract structure theory is obvious; what is new
here is perhaps the technique of extending the usual definitions to
objects of arbitrarily high type. Similarly my debt to Klein and
Weyl will be apparent. From the many writers on mathematical and
natural philosophy who have influenced me I single out Poincare,
Russell and Ramsey.

Finally I must try and show the extent of my debt to A.M. Turing
He first called my somewhat unwilling attention to the system of
Church, and to the importance of the deduction theorem, Much of
the work on permutations and invariance, and on the form of
theories was done in conjunction with him, Without his encourage-
ment I should long ago have given way to despair; without his

criticism my ideas would have remained shallow and obscure,

September 1952,




CHAPTER 1I.

Section 1. The system of logic.

We are going to consider cerfain kinds of theoretical
system, and so we wish to be able to characterise and to
exemplify such systems as clearly as possible; and this is
most conveniently done by introducing a system of formal logic
in which the formation of expressions and the inference from.
one expression to another are governed by definite rules. A
theoretical system may then be described in terms of some
particular class of expressioﬁs. The systems of logic must be
sufficiently wide and flexible, so that any argument of
classical mathematics may be represented within it; in fact,
the less specialised it is, the better will it suit our pur-
pose. But we must choose one particular system - 'pour fixer
les idées'; and having made the choice we shall use all the
technical facilities it provides. This means that some of our
results will be theorems about the particular system used,band
all the results will only be proved for that system: but the

most importent results will also be true for any other system

that is capable of bearing the same - intuitive - interpretation

as does the chosen system,
There seem to be two general kinds of system suitable for

our purpose: the set theoretical kind - for example that used

by Godel in 'The consistency of the continuum hypothesis', or




that used by Quine in his 'Mathematical logic'; and the type

theory kind - for example that used in 'Principia Mathematica'.
The advantages of the second kind are many, its disadvantages
few. For, firstly, we are primarily interested in the applica-
tions of symbolic logic to mathematics and to theoretical
science; and it is then important to preserve the distinctions
between objects of different logical type - for example, the
distinction bétween functions and functionals. Secondly, the
axioms and the rules of the system we adopt are closer to
normal mathematical argument then are those of any of the set-
theoretic systems, so that translation into and from the formal
gsystem can be done with little effort. Thirdly, we shall see
that by introducing different bagic types - that is, different
types of 'individuals' - some of the disadvantages of type
theory may be overcome. (This procese is analogous to the
representation of any given axiomatic system within the
functional calculus of the first order.) The fact that, in
type theory, many definitions and theorems have to be stated
separately in each type, has sometimes been urged as an ob-
jection; but in practice it does not lead to much complication,
because one can use symbols to stand for arbitrary types in
just the same way that one uses a free variable; so that, for
example, Q.,.« 18 interpreted as the identical relation between

objects in any type A . Lastly - for what it is worth - the

consistency of a type theoretical syStem seems less open 1o
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objects in any type KA . Lastly - for what it is worth - the

consistency of a type theoretical syStem seems less open to




doubt than does the consistency of the various set-theoretic

systems.

The system we shall use is substantially the same as that
introduced by Church in Church (1). We shall actually describe
two different systems, and show that they are equivalent. The
first is Church's with some very minor modifications; the second
is useful because the proofs of some metalogical theorems are
shorter for it than for the first system, while the theorems
themselves can be taken over from one system to the other.
Church's system is a version of the simple theory of types;
but we shall see that it is possible to make definitions which
are rather analogous to the definitions of the 'orders' in the
braenched theory of typeé, and. which, like those, serve to show
that contradictions will not arise from paradoxes similar to

Grelling's or Richard's.

(A) Type symbols.

These are made up from lower case greek letters, and
'(', and')'. Letters, other than particularly designated ones,
are used as type-symbol variables;in particular 4, 2, y , o o B
are used in this way. Any one particular type symbol may be
substituted for each of the occurrences of a type-symbol vari-
able in a logical or metalogical statement.

The rules for the formation of type symbols are as

follows:

b




19 rIfudk end p are type symbols, then (-V@) is a

complex type symbol; ané the parts of (&/3) are «, {?,
the parts of < and the parts of f. () designates
|

the type of functions whose arguments range over type‘Q n
and whose values lie in type R .

2) o is a basic type symbol. (It designates the type
of propositions, in which there are just two objects,
representing truth and falsehood.)

3) ¢ is a basic type symbol. (It designates the type
of individuals.) Sometimes we shall need further basic
type symbols K , X.; and we shall then suppose that the
definitions and statements made for type ¢ are extended to
the types K, A,

4) Certain further type symbols (e.g. v and/ﬂ ) will

be introduced by the method of virtual types (see section 3).

5) No expression is a type symbol unless it is one in
virtue of 1) - 4).
Brackets may be conventionally omitted from type symbols. By
'a pair of brackets' we mean a left and a right bracket between
which there are an equal number of left and right brackets. A
pair of brackets may be omitted from a type symbol if there is
a left bracket or nothing at all immediately to the left of the

left bracket of the pair. This convention allows omitted

brackets to be restored in an unambiguous way. Thus we write

a((?(\"\%t) instead of ((:x\/g ((p8)ed).

|




(B) Well formed formulae.

The expressions of the two systems (c) and (G) which we
are describing are made up from the following symbols:
(a) Improper symbols: ( and A

(b) Constant symbols: N,,, Acoo,lowe %oy Co , Us3
these are common to both systems. Also (C) has the

symbols ﬂz%am) , and (@) has the symbols Q oyu
(o) Symbols for variables: 8, ..., Zx e
The meaningful expressions of the systems are the well formed
formulae; the rules of formation of these are as follows:
1) Any constant or variable symbol standing on its

own i a well formed formula, and its type is that

designated by its suffix.
2) If F,,, 4, are well formed formulae of types x/?

{

and }3 then (F<p n) ie a well formula of type A ; and

b

the parts of (P A;) are F P and its parts, and A, and

’ /
|

its parts.

3) If A, is a well formed formula, then (Ax,An) is
a well formed formula of type '<F, and all the occurrences
of the variable Kﬁ in it are bound occurrences. The
parts of ( AgﬁéA) are A, and its parts.

y) A foraula is well formed only if it is so in
virtue of 1) - 3); and the occurrencesof a variable
are bound only if they are so in virtue of 3). Occur-

renceg of a variable which are not bound are free; a

variable is called bound or free according to the nature

of its occurrences.




The process described in 2) is to be interpreted as the

application of the function represented by ¥, to the argu-

{
ment represented by %F’ giving the value represented by
(E*Kéﬁ)' The process described in 3) is to be interpreted as
the functional abstraction of the formula A, with respect to
the variable X3 i.e. (\gﬁéd) represents the function whose
values for a given argument are represented by the expression
obtained by substituting for x, in 4, an expression represent-

ing the given argument, We shall in future use ' formula' to

mean ‘'well formed formula'.

(c) Conventions and abbreviations.

As in the preceding paragraph, when making statements

about the system we use bold face capitals gd,'Bﬁ, yerey N0

~

stand for arbitrary well formed formulae, and ldwer case
bold face letters to stand for arbitrary variable symbols.
We allow the other symbols of the system to stand for
themselves, as also do such further symbols as are intro-
duced as abbreviastions. We always omit the suffix from all
the occurrences of a bound variable except from the binding
(i.e. the leftermost) occurrence. We often omit the suffix
from constant symbols and from those introduced as abbrevia-
tions.

We omit brackets, with association to the left, in exactly

the same way as described for type symbols. Further we omit




a pair of brackets if the left bracket occurs immediately to

the right of the binding occurrence of a variable and the
scope of the brackets is the same as the scope of the binding
occurrence. We omit ')\' when it occurs immediately to the
right of a binding occurrence of a variable which has the same
scope. When there are one or more consecutive binding occur-

'

rences of variables, we place a '.' immediately to the right of
the rightermost such occurrences. Thus we write

AE Fia L (£ IX) X)) 2, W 4
for (((AX(ATin((£ B L n (2,02 0)20)))2)w,,).

We now introduce a number of abbreviations. The metalogical
sign ' — ' stends for 'is an abbreviation for': any formula
containing abbreviations can be expanded into a formula con-
taining only the symbols of the system. -But, for the most part
(and certainly whenever it has a type suffix), the newly intro-
duced symbol represents a particular (constant) element in the
interpretation of the system; and so, for example, "Num , + —>
A,.o ' may be read as 'the element represented by 'Num' is
defined by the formula A,,''. Elements introduced in this way
will be represented by single roman capitals, or by three
letter combinations which are intended to bear some relation

to the nature of the element introduced; for example 'Num' is

short for 'number'. A dictionary of these signs is given at

the back.
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9 AL XX ,
where A 1s an abbreviation
140 = \i{\_}_{.k‘ﬁ

e T for oh(dd)
2;,4' - }\i,“.@(ﬁ(_f_'})

© e 62 0 0 00 0% 0 0 0 6 0600 0 0 o

Saly! AL L, X, £(nfx)

Numu,,’\’ —) / Ln_&' -(i O'};i)(io,(‘ & (_n A(')(m i, f(?_g)) ) i_m)
Unless otherwise stated all the above definitions apply
to both systems. The introduction of binary connectives

which stand between the formulae they connect complicate the

conventions for omission of brackets, and we shall not attempt
to introduce strict conventions (which would probably be for-
gotten as soon as made). Instead we shall rely on common sense,
normal usage, and the meanings of formulae, to make it clear
how the parts of a formula are connected togethér. It is more
important (especially with long formulae) that the interpreta-
tion should be clear, than that the reintroduction of brackets
should be a purely mechanical process. We treat the first
occurrence of a quantified variable, or a variable in a des-
cription - i.e. '(x ', '(Bx,)', or '(7x,)' - as a binding
occurrence, preserving the suffix there, and dropping it from
the other related occurrences. We always omit a pair of
brackets the left bracket of which occurs between two such
binding occurrences of varisbles. We always write '( 5&)<Q\Kﬁcy
for '(x)(( y.J(4,))' where '( ' x)' and '( gy)' are such

binding occurrences; if they are of the same kind we may run
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them both together, writing 'Ex,,y,)(4.)' for '(Ex )(Ey J(4,)'.
We regard the logical connectives '&', 'v', '~5', ' ',

as being stronger than any others, so that for example, we

write P&t =T,

instead of (B P &(T's T );

and we regard ' » ' and ' = ' as stronger than '&' and 'v', so

that we write Ad&B O B'WD

instead of (A& B)D(Bv D);

we emphasise this fact by placing dots beside a 'strong'

connective. Further the associativity of '&' and 'v', and

the fact that eXpressions on either side of a logical con-

nective must be of type o, imply further possible omissions

of brackets.

(D) Rules of inference.

Rules I, II, III, V, are the same for both (C) and (G).

I To replace any part M, of a formula by the result
of substituting a variable:gf for %T throughout M&’ pro-
vided that x, is not a free variable of I, and Xﬂ does
no%?%%wa. (i.e. to infer from a given formula fhe
formula obtained by this replacement).

II To replace any part ((kgpgk)ﬁr) of a formula by
the result of substituting gf fof Eﬁ throughout M,

provided that the bound variables of M, are distinct

both from x,, and from the free variables of N .

p’ B




III Where A, is the result of substituting yﬂ for §f?
throughout E*, to replace any part A, of a formula by
((*%FM«>NP), provided that the bound variables of M, are
distinct both from %, and from the free variables of N,.

V From A,2 B, and A, to infer B..
The remaining rules are different in the two systems, and &0

are given a prefix 'C'or 'G'.

C.IV From a formula M, to infer the result of substituting

a formula éf for the free occurrences of §ﬁ throughout M,,
prévided that the bound variables of M, are.distinct from “p
and the free variables of Ao. ' ’
C.VI. From ., to infer (x4) (Me) .
G.IV From ép = ?F to infer EJP&F = Eﬁ*aﬂ'

G.VI From A, = B to infer A\x,. A, = Aaﬁﬁgﬁ,

G.VII From A, to infer A, =T ; and vice versa.

Rules I-III are the rules of A-convergion; rules C.IV,
C.VI, and G.VI, are, respectively, the rules for the substitu-

tion for, the quantification of, and the abstraction of, the

variable X;,.

(E) Axioms.
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These are the axioms of the propositional calculus;

P, g, r, are all variables of type o,
2) .\J(E'XQ)(EL.:L_}__C) B i

=0
= Q(ozuinQ R

n

These are the axioms of description; here n is either o
or (L, so that there are altogether four of the axioms.
(E) (z(,)(ix(ngs = g&f,,g_c) ) (f'\,’* = gr)
This represents an infinite list of axioms - the axioms

of extensionality - there being one for every complex type.

(T) gb = _q_-g:?)B»‘,-:g-{)'
This axiom asserts that there are only two elements in
type o, viz, T and F; it may also be regarded as a further

axiom of extensionality.

(A) Wotoa)Sone: Do Soadus System (C)
(Q) }_é&= L pdoa QP}J(\)}_‘{ D Qw\g.,\. System (G)

These infinite lists are the axioms of universality and
equality respectively.
t 2 S s 0\
(8) (Eixl\ig)x])(iax)(*‘li e g(ﬂi/)
These are the axioms of selection; we shall not often
use them, and when we do we shall always make express mention

of the fact.

(1) 1) (Bx )(Ex )(x £ 3);
2) Num X, & Num I &'Buux =8I, DX 1=, .
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These are the axioms of infinity for the type ¢ ; Newman
and Turing (1) have shown that the corresponding propositions

for any type A whose parts are not all ©, may be proved from

G

(F) Notes and comments.

1) We have said that the above axioms contain some infin-
ite lists; this is the usual view, and according to it the
rules must also be regarded as infinite lists. But it is not
necessary to accept it. For if we distinguish between the

constant type symbols ¢ and { , and the variable type symbols

.a,F,..., and add as further rule: 'From A to infer B_ where

B, is obtained from A, by substituting a given type symbol for
a particular variable type symbol wherever that variable type
symbol occurs in 4, ', then the infinite lists are avoided.

2) The constants C do not appear in the system (C') of
Churech (1), they may be described as 'nonsense elements'.
They were first introduced, I believe, by Turing in Turing (1).
C, could of course be defined as, say, F (whose def inition
can be made independently of C); but it is convenient not to
do this, for then it remains indeterminate whether C is equal
to T, or equal to F., This means that although the logic
represented by the type o is strictly two-valued, it is
possible to express ignorance of the truth or falsity of a

C,'. Of course this is not

<

LU

proposition P, by asserting 'B,
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entirely satisfactory since given two such dubious propositions
P, and §,, one can infer 'B, = Q,'; but one cannot make use
(with modus ponens) of this equivalence, since if one of the
propositions ceases to be dubious (e.g. by the discovery of a
proof for it), the equivalence ceases to be provable., The
reason for introducing the nonsense elements lies of course in .

the axiom (D2) (where, it should be noted, implication, not

equivalence, is asserted). This axiom makes L«wa invariant

under those permutations of the individuals which leave C,
invariant. (See section @.) It is shown in Appendix I that
the C's may also be defined in the system (C').

3) 1In system (G) it will be noted that there is no rule |
of substitution, although of course such a rule can be derived
from the given rules (see subsection (G) below); it is in this
derivation that the slightly absurd'looking G.VII is required.

In either system the following proposition is provable:

Agop = ‘)‘_2.:: 9. (;‘.uo)(gp_q = :_E_TT> H
but in system (&) none of the abbreviations occurring in the |
expression on the right hand side involve A,,.,, so that the
above could in fact be taken as a definition, and A,,, omitted J
|

from the list of constants of (G). It should then, I suppose,

| be possible to produce rules and axioms involving only T,,

Noo , Qsop, and involving them in a simpler way than do rule V g

and the axioms (P); but I have not been able to find a set of Hit

such rules and axioms of sufficient elegance to be worth




it

reproducing. It is of course well known that the propositional
calculus on its own cannot be founded on N, T, and Q; but here
we have the higher types to play with. i

A 4) It is shown in Appendix I that the axiom |

(§! )(E( 4 _f.CJ\z) ‘:” E 2 L (E )(i‘:bi E)’
A o v & A

of Church's system (C') follows from the other axioms, pro-
vided these include (E) and (T).

5) It might be thought that rules G.IV and G.VI made the

axioms (Q) and (E) unnecessary in system (G). But firstly it

G.VI is not as strong as (E); for example, we have:

4 031 ="20, by (P) and (T) |
; (I
(AR, AL, 2200 280 p) . 21ex )€ o by ‘G 5TV I
f . = f,,&i(.{ by II ‘
£, 000 2 ENZLILL[YVxye By OIII |
\l(-«l\'g;n\lc -

(

\x,.(\y,.f,,¥)x by G.VI, }
But we cannot prove ;
P FRE P S v DY ! |

without using (E). 'Secondly, both (Q) and (E) are necessary
if we require the deduction theorem to hold for system (@).
6) In both systems (p, = a,) = p,= 4, is provable, |
and therefore we shall use either ' = ' or ' = ' between $
propositions, according as to which is most convenient. I |

7) In order to show that the two systems are equivalent, [

we have to define a method of translation from one to the other.
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We denote the translation of (C) into (G) by T', and that of

(@) into (C)
(é&)T is the
belonging to

1)

2)
3)
%)
5)

by T'', and use T to stand for either of these.
translation into one system of the formula A,
the other; (x&)T is defined inductively as follows:
If A is a variable, or a constant other than
Mg a)  or Qet, then ({ﬁ“)T is AL,
(Bapp)” 18 (R4 (ap)"
Oxa 0T 18 Xx (407
(T i) aB 1N 2, (@ &bl (oay L  (AETS))

o Thbe ; -
(Q’L’va“\) is :\_}Slg\ Y,L( T( (o) (g (:r,"\”("\if,-((i_}s. D u)))

In Appendix II it is shown that:

a)

If A, is an axiom of one system, then (éL)T

is provable in the other.

b)

~ O

If A, can be inferred from B, by one of the

rules, then (QQ)T can be inferred from (@D)l. Hence

provable propositions are translated into provable

propositions.

c) ((é{)TYT" = A,, and ((QJ)T',)T' = A, are
provable.

d) (A, = E&)T = ((é_JT = (QJ)T) , and

((gJ)(QC))T Ei(§4)(($o)T), are provable. It follows

that it is a matter of indifference whether we regard

a formula written in ordinary logical notation as

belonging to one system or the other.




The equivalence expressed in a) - d) is based on, but is

rather stronger than that introduced by Turing in Turing (1).
He shows there that his definition defineés an equivalence
relation between systems, and so it follows that system (G)
is equivalent, in his sense, to his nested type system; for
he has proved that the latter is equivalent to (C).
8) We write 'A, | B.' as an abbreviation for 'A, can
be derived from B, by applying the rules and axioms'; and
' F A,' for 'A, is provable'. (A rather more accurate version

" A,' means

of the meaning of these signs is due to Ruséell;
that if A, is not provable then the author stands convicted of
error.,) The proofs we shall give will be of different kinds:

a) True formal proofs;

b) Proofs of propositions that involve a variable type
symbol, and which proceed by an induction over the con-
struction of this type symbol; such proofs may be regarded
as either showing how a formal proof - for any given
type symbol - could be constructed, or as constituting
a formal proof in a system containing the additional
rule: 'From A, & &; & (éé & éﬁ..ﬁ, Aﬁz) to infer @S'
(where ég represents the given proposition for the
type Y );

¢) Proofs of propositions of a given general form;
these proceed using metalogical symbols, and can be

regarded as establishing schemes for formal proofs, or

as establishing derived rules of inference.




We shall usually set out proofs - of whichever kind -
line by line. On the left hand side there appears a consecu-
tive numbering of the steps of the proof, with a prefixed

letter to indicate the nature of the step; the letters we use

are: 'H' to indicate the making of an hypothesis; 'A' to in-

dicate the introduction of an abbreviation; and 'P' to indicate

a8 proposition which we desire to prove; steps without prefixed
letters are propositions which are consequences of previous
steps (excluding, of course previous steps having a prefix P).
On the right hand side appears some indication of the way
in which the proposition occurring in the middle is derived.
The most important method of proof is the deduction theorem;

this is, in effect, a derived rule of inference: 'If from the

hypothesis A, one can infer B, by application of the rules and
axioms, but without generalising on, or substituting for, or
abstracting the free variables of A,, then one can infer

A, @ B.'. The free variables of A4, are said to be restricted
by hypothesis; for each hypothesgis made in the course of a
proof we indicate on the right hand side the variables which
are restricted by it, and until the deduction theorem has been
applied these variables appear without sﬁffixes; this conven-
tion (which, like the similar one concerning bound variables,
is due to Turing) serves to indicate those variables which may
not be substituted for, ete. The step at which we apply the

deduction theorem, and so pass from conditional to provable
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propositions is called 'the elimination of the hypothesis' and
is indicated by placing the number of the hypothesis in
brackets on the right hand side. Thus a simple application

of the deduction theorem might appear as follows:

H.1 és[ipi{ﬁ] (x,5)
n E«
n+ 1 %O[Zﬁ’xﬂ] DB, (H.1).

(We write AG[E\»ZF] étc. to indicate that the variables x,
and Xﬁ occur free in the proposition A,; of course both or
neither might also occur in B,). Another kind of argument

which is very frequent is of this kind:

1 (Bx ) (4.[x])
H.2 Aglxy) (x)
n Be
( Aolxg]l D B )
( (Ex)(4.[zA]) O Bo )
i 4 B, (Ee2), 44 .

The steps in brackets would be omitted, and the right hand
side of step n + 1 is put in to show that proposition 1 has
been used after the elimination of H.2. A particular case of
this form of argument is when H.2 is of the form:

K = M

oan -\n,L’

where x, does not occur free in M,; the proposition 1 is then




trivially provable, and it and its mention in step n + 1
would both be omitted. The introduction of abbreviations

can be effected in this way.

The convention of indicating on the right of a hypothesis

the variables which it restricts allows one to introduce also

variables which are not restricted by it, but which are regarded

as being bound by a universal quantifier; thus we may write:

H.1 A, [z,\,xl“;] (%),
instead of

H.1 (x0)(Aolzx]) (x).

We use the number of a theorem, or of step, to stand for
the appropriate proposition, and we sometimes use 'L.H.S.',
'R.H.S.' to stand for the proposition which is on the left or
the right of the principal logical connective in the previous
step.

Of course we leave out a great many steps in the proof,
especially those which represent well known properties of
equality, the quantifiers, and the descriptions operator; a
list of some of the most often used theorems of this kind is

given in Appendix III. The sign '/\' on the right hand side

means that the rules of conversion have been used; 'P.C.' means

that axioms (P) and rule V have been used.
Ve shall often have occasion to prove the validity of

certain inferencesg ; such a proof will also usually be set out

line by line, with the above conventions. The premise is marked




as a8 hypothesis; and the fact that, in general, the variables
of the premise are not restricted is shown by the absence of a
list of variables on the right. We also use 'H A, ' to mean
'from the given premise A, may be inferred' - it being evident

from the context what 'the given premise' is.

(@) Development of the system (G).

In this section we prove some theorems and modes of infer-
ence in (G), partly because these results are needed for the
demonstration of the equivalence of (C) and (G), and partly to
show how the system works.

1) (Rule IV') El{' g”{\ I ,1:1,1,((! “i‘,[l = 9!{! ‘{},lﬂ
R

g - f) Ap = (Agﬁp'iéf)gkﬁ by &3V .,

If necessary, change the bound variables of %; so that they are

Fop 0. F (X8, . LA

distinct from f  , and the free variables of ¥, , and G,, .
s { J

Then H |- ”7‘”f = ;Jﬂ} by II

2) (Substitution). Let M, be a formula of which the hound
variables are distinct both from Kﬂ and from the free variables
of 4p, and let li; be the result of substituting éﬂ for the

free occurrences of %ﬁ throughout M,; then M, |- M!,

Fer H.%1 M,
v O
2 M, = T by G.VII
3 (el ) e .\>gp.T by G.VI
N (,\};V({.ML M = dx,.T)A p by G.IV'
5 M! =T by II
6 by G.VII




3) (Generalisation). ek (§ﬂ)(M_).

LoD~ “HiH M4
2 e by G.VII
3 Ax, .M, = \x,.T by G.VI
4 A(>§,;)(131,;‘) | by definition.

It will be noted that G.VI is used in proving the validity

of both substitution and generalisation.

A S P T

For Co = Co by (P5)
( i\E'? .“&é'{.) C\:} = (/\ E; ‘E\)C{' by (} <1 IT‘I

LD A il e 6 B |
By substituting (\r,.r) for £,, in (Q), and using II.

N VR W T B TR )

h A
For Xi= Ly Q. Qazgez = 202, D (Mg .2 = x )y, by sub-
: - stitution
in (Q)
Ei= Iidda=Zy by I, B.C.,4).
o g= &y .2.%2, =9,3 1, = L8
By substituting (\w..Xy = w) for £, in (Q)

8) ¢ Eg =g D Lix=L

By substituting’()gp.iquf = £4,2) for £ ,in@Q), using 4)and
’ ; it R0,

Yoadra Lol &, B oD wn

A °
=00= ¢

By the same argument as is given to prove (C) in Appendix I,




10) F. (2.2 p,) = B,

(o)

By P.C. and (7).
1) b (oD ) = (Fi 2 (2,)(L,%)).

Both sides are provable by 3) and P.C., and therefore equal by

Gy

12) &+ (x (T 2 £.,2) = (T D (ZQ)(Lar X))
For (s, 24:,L}-C,L) 2 —u—k by
)\X& e f(M_ ) .= Loa by
[(f\zc_.i.(T. D £,4%))= ;\_}gi\.T] = (fou= ,\_}gi.T) by
in
() (P O Eo %) e (B ) (L) by
12) by
13) () (0 D LAaE) % s= By, D, () (Epu®)

By suitable substitution in 9), using 11) and 12),

14) (The deduction theorem). If 52,...,52 |- By, by an argument

not involving abstraction of the free variables of éf,

AVERT. AT | B BB,
Let §:,...,§o be the steps of the argument, each

ég, or an axiom, or an inference from the preceding/@? by a [

single application of one of the rules of the system (@). Wwe il

suppose that Aj,...,ég_1 ol 0 %ﬁ

for all k<i; we show that it will also be true for k = i. The

theorem then follows by induction over i, since

and the result is trivial for i = 1.

b d %ﬁ is an é% or an axiom this result is trivial., If

ni
R

Il
has been demonstrated w

N

(n
Rie
~

and V.

10) V'y:
a¢.vI, (), 7). (il

substitution ‘
8). 4

definition

10) ;5%

then

being an

is B,, e |
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@} is inferred by an application of rules I, II, IIlI, V, the

result is easily obtained (see Church 1))
i = s Je e
T gj is Fﬂﬁéf V“) and is obtained from B (§~ Ya)
by G.IV, then [ ﬁf ) 3 by substitution in 8) (which has no

bound variables). Hence éf = B% f'éc D %i by V, and the

result follows.

If BY 18 NxoXa= Ag,.Yy, and is obtained from BE (X, = X)

~0 b o

by G.VI, where X, is not a free variable of An then:
’ .\,/’ S0

%3 o) %5 ‘, (K;)(%g > §f) by generalisation
H |- gg ) (§p)(5i.= Yo by substituiion in
’ 12) (free variables

of Al distinct from
,}5’.); V'

b A% O(x) O, X0z = OxpX0x) by 1L

H. : h?,;)X§;.¢A =AX,. T ?y)substitution in

E), |

Thus A% O BS | A% OB and the result follows.

1f 8L follows from B by G.VII, then I BeS R0

for Ro D Re =T by P.0., (T},
and Do = ) B
(from Mg, 2, 0 DD, by 5) and P.C.)

The argument is then as before: and this completes the

demonstration.

15) (Rule IX - the substitution of equals for equals.) Let
éﬁ be a part of My, and let M;‘be like M, except that the
part Aﬁ has been replaced by‘ﬁp; and let g',...,@é, be a

complete list of the variables whose occurrences in A , are




free in 5# and bound in MJ.1

m i 1
Then |- (AQT,, s Nﬁ = \c g*'%ﬂ)‘j,M* = M.

Let M, be represented by '(...éﬁ...)'; let f .y be a

~pS°

1
variable that does not occur bound in M,, and let Ap be like

4, except that its bound variables have been changed so that

9{,...,@5, do not occur bound in 5;.

Tornedg = (o.((he, v s.,»,\)cz 5388 4:o%) by I, III,
2. My = (Af;‘,b,,,,f.( (fg' sedy) v ))(Asz, .dg-As) by III, I.
H.3 (Ac poeeds Bl = (i\g,‘,-ud;;,-,l??;z) |

¥uie Bas (\1;,,__},.(...(ggr...gg...))(,\gr...qb.@ﬁ) by G.IV, 7).|
5. n‘aﬂ:xvr{ by II, I.
$ommelnd D By pg_” by 14).

It follows, of course, from the equivalence of (G) and (G)

that rule IX is elso valid in (C).

(H) Closed Formulse.

A closed formula is one which contains no free occurrences
of variables. A closure of a formula £ga, 1is one of the

formulae

I\Q.:l ° “C"'rn‘%'f\,
where 9;,...;9\, is a complete list of the free variables of
A,; the only closure of a closed formula is the formula itself,.

A combinatorial formula is an abbreviated formula involving

the constants of the system ((C) or (G)), and the symbols

(1) More precisely: 'the variabl§s whose free occurrences in
éf are bound occurrences in M.
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and K, but not the symbol A. Thus a combina-

o

Went . £ 3\
& )"\“y’)b‘\’,’) ;’")
torial formula congists of a single symbol, or is of the form
gﬁﬂgﬂ, where 4lﬁ and gﬁ are combinatorial formulae. The
i : /
variables of a combinatorial formula all occur freely in it.

Theorem I

Any formula is provably equal to a combinatorial

formula.
| Lemma A
|
| N
! LS - o . T e )
‘! r I/{ L = UJ’: i ((!‘{v)(“{o2’1)1{,&0,\(1&;5\-’@C.;,)

This follows from the definition of W and K and the rules of
conversion.
Lemma_ B
If A, is 2 combinatorial formula, then there exists a
combinatorial formula 57?’ such that:
2 Afﬁ*éJ, : @«f: _
For if Xn is not a free variable of A,, then:
F- X§ﬂ-%¢\ = K&px&&-
If 4, is X,, then the result follows from lemma A. We suppose
therefore fhat A, consists of more than one symbol, and that

the lemma has been demonstrated for formulae whose length is

less than that of A,. But

’.,. {&,\1‘\ = X '(\Y’ 9

/ el

where X and Y are combinatorial formulae. Therefore

I \ XA = A }5 (lx A ']N{f(r‘)}i( (’\%f 4 r") x)

(od |

= “.‘r‘,!"\‘l,)‘ LY‘/\‘ ) 1\"’:\"/"\ ; (’4\'}5,’,&‘ ‘X,‘\ \y/) ( '\?(‘/? .\‘/g",) i

{
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But (x§a-¥mr), (Ax,.Y¥,) are provably equal to combinatorial
] l

;
formulae by hypothesis, and hence so is (A§ﬁ‘Aﬁ); the lemma.
now follows by induction over the length of the formula.

We suppose now that the theorem has been proved for all
formulae in which there are less than n occurrences of the
symbol A , and we suppose that the formula A, contains just n
occurrences of A . At least one of these occurrences must be
an innermost one; i.e. there must be a part (ng.ég) of Ay,
where \ does not appear in EP: but this is provabiy equal to a
combinatorial formula P‘f’ Having the same free variables, and
hence, by rule IX, A, is provably equal to a formula having
only n - 1 occurrences of A; the theorem now follows by in-
duction over n. Q.E.D.

We call a combinatorial formula which is provably equal

to A, , a combinatorial eguivalent of A,.

Corollary to theorem I

If P, are a set of formulae which satisfy:

,3" P, X,

~ & A "

where X, is a constant, or a W, or a K; and

I+

s P “'\’r‘.[\'» i-iﬂ- & P';lf“z' 2. B, *(
s i

\ ~ O e j‘ 2 o 3 A ’{ ’,l'.
L4
then, if A, is a closed formula,
‘_ ,Izc& %;k :

For the combinatorial equivalent of a closed formula contains
only constants, W's and K's,; the—corellary follews—frem-the

axtomof—extensionalily-




Section 2. Maps and Permutations.

In this section we introduce a number of definitions
whigh will be of use later, and prove some simple properties
of the defined objects.

Boaat~ G Nl o (o)
Ffio . S5 Trmgty o0
This defines the product (in the sense of transformation

theory) of F and G; we have

2 ‘1 ) r (E(:y‘) : g-‘/‘." ) : I:I, 1) = \E‘) 'E.‘ 'ﬂla'x([;{:/'ﬂ)"( Ii’bz) ) = F« 3 : (g‘]“f': H’ 2] )’

so that we can omit the brackets from a multiple product.

I

uni i AL (i Y )(Ex = £y 2 x = ¥)
k’/") > _‘1\’{7. _/.,, /( L X = J 2 =

(Here, as we shall often do, we insert an index to indicate
the type to which a defined formula refers; this enables us
to omit the type suffix, which is often extremely cumbersome;
we may also omit the index when this can be done without am-
biguity). 'Uni®ff£' (or rather the assertion of that formula)
means that f is a one-to-one map of type Vi into type4.

Ontt{:?‘n\ -2 \iy-'/’ '(-@J)(E"-)—((I)(E = é) & io‘ = C
> (4p g \ | f

=

'Ont”ﬁi' means that £ is a one-to-one map of type 3 onto

!

type A, and that it maps the nonsense element of one into

the nonsense element of the other; this latter restriction is
inessential, but very convenient.

Pel":;\i;( {_‘ ey Ont.(cfl.

'"Per*f' means that f is a permutation of the type <« which
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of the defined objects.

- eat JKE R S )i & .
gﬂ\{” "’{?‘{ > \_}_C.! ﬂ,,(ﬁ(4.,/;;,§)

This defines the product (in the sense of transformation

theory) of F and G; we have

P g‘,’

2.1) ¥ (13&‘,’ s q i) 8 Fj)q = \gﬁb,E"’(,)(lj’}_-/‘),.(lji",_g)) = 33«?7,: (g;’.: H,a),
so that we can omit the brackets from a multiple product.

A

TiLoliey . = ABye @l fx = £7 3 X = )
) o 11

(Here, as we shall often do, we insert an index to indicate
the type to which a defined formula refers; this enables us
to omit the type suffix, which is often extremely cumbersome;
we may also omit the index when this can be done without am-
biguity). 'Uni®'f' (or rather the assertion of that formula)
means that £ is a one-to-one map of type 3 into type 4.

ontSl . = Afua (@) (Biz ) (£x = 8) & £C, = €
24 6 ) i

y P Y
'"Ont"" £' means that £ is a one-to-one map of type 3 onto

!

type A, and that it maps the nonsense element of one into
the nonsense element of the other; this latter restriction is
inessential, but very convenient.

x/ “ ’.,,
Per’ —> Ont*™

O (AL)

'Per*i' means that £ is a permutation of the type <« which




leaves the nonsense element invariant.
2.2) Per*1*
AQ
Reciz’,“(‘k(d) = ’\-f-,ﬂfjgb’;'({)z/“>(u = E)
'Rec f' represents the inverse transformation to B At .18

interesting to note that, due to the nonsense elements, Recf

is defined and has useful properties even when f is not a

one-to-one map onto. For example, we have:

2,3) | Unif,p & £490p = Ca .. Rec (Recf{’ ) = Lis
2:4) |7 Unify, O (Reofyn Lap) = W

{ f
2:8) 111 0088 44.2, 5 (Lapnh B 5 T2

e prove the first of these.

H.1 U"llf,((,‘ & f P(A‘,\ = C,\ (i)
/ -

2 \(ﬁecf)zﬂ = (a12s)(2 = 8) = x,]

A3 Myun = ,\_,,__,\ (132)(fy = 8) = x

(1xe)(Lfy =
ME '(& ‘.)

4
2
6 X, £Cp & Hx.8, - 2. £x4 = 24 ‘ (D).
= Al L :
8 MC,C4 5 H.1,
9 % c, B ’x fx 8 H. .1,
_.ﬂ a3  / —-[Z
10 Re (deci) = ;: 6.2.(B) .
14 2.3) (H.1).

One of the features of the system of logic we are using
is that no individual, except C,, can be singled out (or named.)

by a logical formula. This feature is common to some other
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systems of logic, and to many mathematical systems; for example,

one cannot single out a particular point in Euclidean geometry . ‘ |

It is most simply‘expressed by saying that the system is

symmetric in the individuals, just as the points of space |

occur symmetrically in Euclidean geometry. |
Of course one can, by an act of imagination, concentrate i%‘

one's attention on some particular individusal, or point of

space; the form of words used in then something like 'let x |

be an individual', or 'let P and Q be distinct points of space'.

But this focussing of the attention is only an accompaniment

to the mathematics (one marks two dots on a piece of paper,

and labels them P and Q): and further, it is only temporary;
for the conclusion of the argument mast, on account of the |

symmetry, be of the form 'for any individual...', 'for any

pair of distinct points ...'. If such an argument is presented
formally, it must always appear as an instance of the use of

the deduction theorem: the premises are hypotheses, and the

(general) conclusion is obtained by eliminating them. The
temporary names ('x ', 'P', 'Q') that appear in the premises
are formally represented by variables which are restricted by

hypothesis; and one emphasises to oneself - or to one's

audience - the fact that they are so restricted, that they

cannot, as long as the argument is in progress, be generslised

on or substituted for, by drawing little pictures of the

objects and labelling them with the restricted varisbles




which represent them.1 This giving of temporary names to

objects is a matter to which we shall later return.

We wish to be able to express the symmetry of the system
within the system itself. To do this it is necessary to define

the changes that are undergone by objects of higher type, when

a permutation of the individusls is made. We consider the
rather more general case of the transformations induced by a

map of one type into another,

Let Avand‘g be two given types (complex or basic); to

each type y, we define the transform | of y as follows:

a) If s is not Y, mor a part of y, then y is =
I

b) If y isp, then ris o;

3
¢) If y is (s¢) end g is'a part of y, then V is (3€).
Due to the defisition of 'part' these rules define uniquely

the transform of each type. We now define:

T . o e 2 -
Traf‘ﬂﬁﬂ) -é,dewirwi if g is not y, nor a part of y;
) |

Trawp&&ﬁ) _vamﬁwvm

Tpg 5 & > A\, . 8-.Tra® m(£f(RectE(Trafm)a
' if 7 is a part of (%g).
'Tra' is short for 'transport'. If Lin is a one-to-one map

of  into o, then TraYg is a one-to-one map of | into f; the
map thus defined is analogous to the transformation P> MPM~]

undergone by an operator in a space when the coordinates

(1) I have sometimes listened to lectures at which the only
things that were written on the blackboard were the symbols
of restricted variables,




undergo x —Mx. We have the following theorems:

2.6) Unim)ﬂ > Uni(Tra‘m,,)
A, -’t
i €, 3 N

Lye(Tra'm, x¢) = Tra’m, (2, X

se;=t

2.7)F Unim,, D> Tra®p,,

] { [ {
(provided (<) is not 4).
Both theorems are trivial if y (= (4&)) does not have 2 as a

part; we suppose that 2.6) has been proved for types & and ¢

and give a proof of both theorems for type ($¢2); it follows
that they are provable for all types.

KA Unimyg (m)

A2 M;r — Tra'm for all y .

3 UniM® & UniM® 2.6 & 2,6 ).
N MS‘ESL(Mixﬁ) = Ms(go?(RecgtMt(Mizi))) Definition,

5 Mﬁﬁgﬁa(mtzt) = Mh(zw;l&) K Y1 o

P.6 R SUIESS ot poe B T )

H.7 M, = Mgy, _ (z,8)

8 M%(ry,) = ¥*(sy,) H.7,5.

9 Yy ‘=8Ye 8%. D
10 r=s (E).
11 P.6 (H.7).

12 2.62°) & 2.785) 11, 5, (H.1).

In the same way we prove:

2.8) | Ontm,, O Ont(Tramej)

i

H.1 Ontm.{ﬂ (m)

A2 I:Y - Tra'm For all ¥.
i

3 Unin ¥ H.1, 2.6).

Definitions.




(H.5).

1 Cger = AX, .Cy Definition,

11 M°°C,, = \a..M° (Cys(RecM a) "

12 M*“C,, = \a;.M°C, 10.

13 Wi = O:z: H.%, 2.85). i
14 OntM5¢ 3,9 s, |
15 2.8°¢) (H.1).

When we consider, instead of a map of one type into
another, a permutation of a type, the above definitions may
be taken over, §7 being now Jjust Y > and lr."l' being replaced by

o« . We then have further:

2,10) - Tra'1" = IV w

2.11) + Perp, & Perg,, .>.Trap, : Trag, = Tra‘(gw(: Q) |
. L.H,8! (p.q) - | Y‘
1
2 Tpa *5(p ¢ q) M
ol Tra dp-a)-1+- £ 3 Rec S(Tra™(p : q)) ‘ |
BT See 4 of 2.8).
3 Er) £, Tradp : Tra®q : £ Rec(Trap : tra®q) 2.117), |
: P = ¥ = 2.118) |
n =1\ £, .Tra’p s Tra’q s £ Rec(Tra®q) : Rec(Tra®p)™ |
' |
5 = XL .Tra” p(Tra’®gf) ,

The theorem justifying this step is easily proved.




A RS %)

2.12) = _Rebpe, O Rec(TranA&) = Tra"(Rech{)
H.1 Perp 4 (p)
2 Tra'p : Tra'(Recp) = Trav(g : Recp) 2.%41).
3 =1 H.1,
; 2.10).

in Tra“E(Tra((RecE)fr)=:§r

{ m (n ; F
5 (7gf)(Tra‘Q§ = ﬁr) = Tra (hecp)gr, Yyt
6 Rec(Tra'p) = Tra(Recp) 55 u(B)n
7 Bt )5 (B .

If « is a complex type,the use that can be made of its per-

mutations is rather limited, because 2.8) fails when (&&) is A,

But if A is a basic type, this difficulty does not arise, and

we now restrict our discussions to that case. We define:

IUV;_\& =N \i.,“,(gi")(PerE > ’_[‘P{i{‘p—f- = E),

'"Inv' is short for 'invariant'; 'Invf' means that f is

symmetric in the individuals (excluding C,). 'Cot' is short
for 'conjugate'; it is easy to show, using 2.10) - 2.12), that
it is an equivalence relation.

2.13) b Inv [V

O(oA)
(p)
H.1 PerQA& b
A e 2 P QKA (;Jﬁg‘ r«-—»} Tra\.'\ B
A.3 P;:wA]»ﬁ RecP (= Tra®*(Recp)) 2 2 )i,

b P(Ax,.T) =-)&.T = P i()x,.T)




M QO B8 = @ W

R = &

Inv 0.,

Perp ..

,

ol (0;’

_P"1 SHCREGP P

Tra“g—1(£t x,) = P-1£Q,(£_1§b)
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Proof similar to that of 2.15).

We are now in a position to prove:

Theorem II

If A, is a closed formula, then | InvA,.
For we have:
2,17) Invi&P & Invzg, P, Inv(iifgr);
the proof of this is immediate using 2.7) and the definition
of Inv. The theorem now follows from 2.13), 2.14), 2.48),
2,16), and the corollary to theorem I.

We can now express formally the fact that the system
is symmetric in the individuals. To say that no individual
except C, can be singled out, is to say that it is not
possible to give, in the system, a complete and definite
description of any other individual. Since the system con-

tains description operators, this may be more formally ex-

pressed by saying that all closed formulae of type i are

provably equal to C,.

2,18) F Invz, O x, =0,
H.4 x, Ay &x A0 &Y, £C (x,¥).
H.2 p,=Mz,.Ou)(z=2xpw=y&z=3Du=2x&

(z£Ax&zty)Du=2 (p

Inv.

(H.1, H.2).

Per, (D),H.2,
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Corollary to theorem II. If A 1is a closed fbrmula, then
éL =Gy, .

Since the translation from (G) into (C) of a closed
formula is closed, theorem II is also true of system (G). In
some of the lower types one can give closed formulae which
represent each of the invariant elements of that type. For
example, in types oL and (L the only invariant elements are
represented by: |

AFaa®, Ax  BedX 2= O, AZ X A O
and

P O P

respectively, But it is easy to see that in the higher types
the representation of all invariant elements by closed formulae
is not possible. In type o(ol) there is a formula corres-
ponding to each natural number: for example

\E, (Bx )(By )z,)(fxé& fy & xfy& (fz0z=%xVvz=y))
corresponds to 2., Hence any element in type o(o(ot¢)) that
corresponds to a set of natural numbers is an invariant
element; thus the invariant elements of this type are non-
denumerable, and therefore they cannot all be represented by

closed formulae. A rather similar argument shows that the

same is true of type o(Li).




I do not know at what stage in the development of
symbolic logic the invariance of the logical operations first
came to be realised; the idea is certainly implicit in
Fraenkel's proof of the independence of the selection axiom
(Fraenkel (1) 1922). A complete statement, and a discussion
of its implications was given by Tarski and Lindenbaum (in
(1)) in 1936. Mautner (in (1)) uses the group of permutations
of the individusls to discuss and classify logical objects,

in the same way that Kein and Weyl used the full linear group
and its subgroups to classify geometrical objects; Mautner

in fact gives his paper the subtitle 'An extension of the
Erlanger progremme', and follows as closely as he can the
exposition given by Weyl in his 'The classical groups'. But

I think that the effort involved in making the parallel a
close one is not sufficiently rewarded by any increase in
elegance or insight to be worth while; what he expresses in
terms of logical tensors and representations in Boolean rings
can, I think, be more lucidly and succinctly expressed in

terms of the hierarchy of types and the operator 'Tra',
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Section 3. Virtual Types.

One often wishes to concentrate one's attention on
certain chosen elements in some type - for example, those
elements of the type it (it) which represent the natural
numbers- and on the appropriate elements in higher types
which represent functions of the chosen elements, taking
chosen elements as values, and so on. The formulae that are
required in proving assertions about these elements soon
become very unwieldy; but if one introduces a new basic type,
whose elements correspond to the chosen elements, this un-
wieldiness is avoided. The new basic type is called a virtual
type; when it is introduced, so must all the associated com-
plex types, and the appropriate constants - TF or @, L, C =
and the appropriate axioms - (A) or (Q), (D), (E), (but not
necessarily (I)). Any expression in this new extended system
may be translated into an expression of the old system, which
will have the same intuitive meaning; in this way it is pos-
sible to show that the new system is consistent if the o0ld one
is: and fupﬁher that one can add to the new system additional
constants and axioms - for example, in introducing a virtual
type for the natural numbers one might add a constant for the
successor function, and Peano's axioms - provided one can give

a translation of the constants into definite expressions of

the o0ld systems in such a way that the translations of the
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new axioms are provable propositions of the old system.

Let A be the type to which the chosen elements belongf
and let P,, represent the set of which they are the only
members, and let 7 be the symbol adopted for the virtual
type. Then evidently the translation of

(£)(Aoet)
will be

(20 (PogxoD ALi XD,
where A!, is the translation of A,.. The range of a variable
in the translation has tnus to be restricted, and the first
thing to be done is to find out what is the proper restric-
tion for each complex type. Evidently the definition of the
restrictions and the definition of the translation of a
formula must be such that the translation of a closed formula
will satisfy the restrictions. There appear to be two methods
of ensuring that this will be sb; in the first method the
definition of the restrictions is simple, but the translation
( kxk.A))T of ' Ax,.A, is not XK;.(A()T; this method will be
usediin connection with a similar problem in section 4. In
the second method (Ag,.A))T is Agﬁ.(é')T, but the restric-
tions are more complicated; it is élightly simpler to apply
this method to the system (G). Of course, the complications
that arise are largely due to the necessity of ensuring that
the translation of the axiom of extensionality in one of the

added types is a provable proposition of the old system.

et A A el

SE— — e R R T

We suppose that it is not o.
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Letiﬁ‘be a type of the system (¢) (i.e. the system
in which.L is one of the basic types), and 1et‘§‘be the cor-
responding type of the old system (i.e. it is abtained by

replacing r by 4 throughout 2). Then to each £ we define an
equivalence relation R;lt, and a restriction Pﬁ; , for the

type ﬁ. It is important to note that these depend on A3

’

R. The

for several different p may give rise to the same /

definitions depend also on Poy, and we could abstract with
respect to it - as we did with respect to E«ﬁ when defining
'Tra'; but, because of the consequent unwieldiness of the
» The definitions of R and P are

formulae, we do not do so.

simultaneously inductive.

A
R;xq s Q”ﬁf' if ¥ is not . =mex a part of 8;
jtlfr [ .) {
R = Af..g--. (=) (P2 x = Rf:~(fx)(g§))
S(ysdys) R el ¢ B T Dy ) s
If T is a part of (@,
i {
A €B. — R .. A-B-,
rg‘,' .vfl_ (& 1. N
Pf} = ARST if 7 is not 2, nor a part of f;

{ f

(2 3 : & ) o
- "75 = \ ,':_\.?,

if T is a part of Yo,

3.4) X. .2 X &: 2. Vb Y-S 2o ), - S x. & x.% z..
3 gtilsbe ief olen =P 'z[ﬁ 1."" i Xf-' s @ a/‘

For the proposition is provable if 7 is not a part of /3, end
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its provability for other types follows from the definition

of '2' by induction over the length of the type symbol.

A clearer idea of the significance of R and P is obtained
by expressing them for functions of several arguments; in

fact we have:

. . »
3.2) ¥ fav..58 = Eiy.. 32 _
‘,—:; (.CL,'Ta L .,Q:,_Qg)(P.'Q_ &0--& Pbg & ch . ::)-
£f__. . -8d...8 @ K = ed...¢g)
.ot AY---3E
3.3”'?{1,'“6;{' i,;-,_ 23 = (_C_‘_, 00-9;‘;’_6_;,—:9.‘:;; ° '.g_j-,;_e.'g)(-h)"_g. S
| P°3 & P’e & P'¢' &...& P'Q' &
Pe' &g 2g' & .&4F4d &
s 2 0 PV __ed...e) &
Bn of =AF---3%
L. onutl., 0 2 L. -o0'3,,.8)
PR 1 AY-29¢

That these sre provable can be shown by induction over the
number of arguments. If we translate P and R Dby the words
'proper’ and"equivalent', then we may say that two functions
are equivalent if they take equivalent values for proper |
arguments, and that a proper function is one that takes proper
values for proper arguments, and equivalent values for
equivalent arguments.

In defining the translation of a formula of (T), we have
to settle on a translation for C,, for G, may not be one of
P RO .

the chosen elements (i.e. it is not necessary that

For exasmple, in introducing the virtual type of natural
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numbers it is more convenient to use 0 as the nonsense element

than to introduce an element which does not correspond to a

natural number.

Finally if we want to introduce in (7) certain additional
cdnstants and axioms, then we must be able to give translations
of these constants in an appropriate way - we give a formal
statement of the conditions in theorems ITI and IV below.

We are now able to give an inductive definition of the
1 _
translation A- of a formula AV:
(At ' ~

a) The constants Ny, A%50; Co,Cb,Lé&w),Ldew are

their own translations.

b) Rf;;- is the translation of Q,  ;
v

¢) The translation of a variable X, 18 the variable x-;

~ 7

d) The translations of C, and any additional constants

X9, +..; are appropriately chosen; we denote them by

1
QL, X7, ...; one of the implications of 'appropriately

4 5 T f 'L 1
chosen' is that {P°C, and I P X215 i
e) The translation of (., is:

NE . -(x)((Blg)(fy & P°y) o x = i*f
&, M (Bly )ity & Py)rs -x=0,) ;

f) The translation of A,

1

N L
is A_-B-;
N/_/‘Y/ ’ 2

B
(®y
h) The translation of Aﬁ”'&V

is Kg;.é;

5.4) B OPVTR oo

This follows almost immediately from 3.3) and 3.1).




T [0T)

BuB)blnos Ba propsbiy

This follows almost immediately from the definitions.

3.6) & pRYLe (poY) u'

] i)' )ﬁ‘((‘f)é’;‘;)—)
For Wﬂ“ﬁQSf’viif5 is Wri?{§V”Q5€Y> , and the result follows
by 3.1) and 3.2).

(. Ol
3-7) ! P K/';,Y-‘/’,

- . — - , \ R 8.1
Lemma A. If A is a closed formula of (), then FPA-.

(Note that in (7) the additional constants Xigy o ooy coount as

constants, not as variables.)

For, by definition, | P”iﬁf o) Pﬂ(iﬁfzf). Further if
g is a constant or a W or a K of (7), then
F Pzz;. Hence, by the corollary to theorem I the lemma is

true.

By the translation of the assertion of a proposition A,

’

y - : e : d
we shall mean the assertion of P b oee & Po_ D, A
/

O
Y
where b ,...,c , is a complete list of the free variables of
P
Al
~ O

Lemma B. The translations of the assertions of the axioms
of (¢) are provable.

For axiom (Q) we have:

. A 3 of
P PGPy R 00 3, B Bl Foy)
—/\ llx _‘./7) —‘ﬂ. i XJA I3 ”1 a—-— /‘)XI/S
2 Pl Sl 0 gasi 9. O & 7 g0
:) J, '\‘ | '.“ i‘,
3 R4 Q.E.D,

Next we note that the translation of (5.)(F“Ax) is

| .
nl _ ~J \){.~ m
;E :9//.> = TEALT

~ f
[




and hence is provebly equivalent to
el !
(x,)(Pfx > Fx).
[® a9n

Therefore, for axiom (E) we have:

) —FY
But the right hand side is provable by definition of ' < !

— °

For the axioms (D) for the type 7T, we have:

’

ot s 1 T ). i
P.1 PRELY, FOT (B (P & Be xFOAH 908 (X L5

2 ‘—g-,;\
P.2 PPUE3r O fe (B D PRPU PRI IIR 9T ide aavp &

—_— &

where J, the translation of ¢( is defined by the

wlor)
formula on page 43. Using this définition the proof of the
above propositions is almost immediate.

The translations of the assertions of the axioms (P) and
(T) are evidently provably equivalent to those axioms them-
selves. It is a condition of the choice of the translations
of the additional constants, and of the choice of the ad-
ditional axioms, that the translations of the assertions of
additional axioms should be provable. If axioms of infinity
are required for the type 7y, they are to be included among

the additional axioms.

This completes the demonstration of the lemma.

Lemma C. If a proposition may be inferred from others by
the rules of inference, then the translation of its assertion
may be inferred from the translations of their assertions,

provided that, if X, 1is variable occurring bound or free
™

I

in any of the propositions, and if Y is a type symbol such

B prBRds P Mgen 5D (2)(P'x 0 £, x = £;:%) O L. =g,
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that @ @and ¥ are the same, then the variable X . does not

I

occur bound or free in any of the propositions.

[

The proviso means that if two variables are distinct in
the propositions, then the corresponding variables in their

trenslations will also be distinct.

If B, follows from A, by an application of rules I,II,III,

then evidently PﬁQK &oool PYgf D %; follows from

/1) e '
PP &0 & P7gf O A, by an application of the same rule.

re

For rule G.IV we want to show

LS SO L W 5 ST AR

>)
¢
e
A
T
T
20
V)
&
.Q
d
D
|

Ph- &...& Plc. D A
P o P

P
! 1 1 ; 1 !

/

¢ d¢,...,8z, are complete lists of the free

y » ) 7

where b,, ...

variables of éﬂ and B,; F,, respectively (there may be over-

R
lapping between the lists).

\ . 1 k !
H.1 P'p. &...& P'Q)- D A. & B3
H.2 P, &...& Pc. & P°d- &...& P'e.
‘ V) o z
|'u '
3 AFERs
4 B o= (M;...e.F )d ...e; IIl.
5 PdﬁEL,_ | Lemma A, H.2, 3.3).
u,'/” ;
6 PO v g P,
TR P ~Ep /\,l’
7 HY2° 6 " 2,
which is the required inference.
For rule V we want to show that
P’y oB!, P’ & P%a. .2. B, oD, } P°a. DD}
' py ~ O ~B ) 'y o~ G -~ "’

/ /
where for simplicity we suppose that Qp’ dg, are the only
/




which is the required inference.

P &..& Ple_DA 2B |
~y N

P'h. &,
/

where x |

9&,...,9Y, of A, and B,.
| , N
H.1 P'b. &...& Plc_DA_- = B_
' ¥ 2V NO
H.2 Pfh_ &...& P'c.
y )
3 g - "8t O
i -
y (Vg 8055 ¢ (%, 3%
1
5 (x) (P 2o (Axs.45)x 2 (hx Bhx)
L { { / < o { -~
. 1 - .\v .('
6 \Ei by S M55 .Bs
7 H, 2276

which is the required inference.

the demonstration of Lemma C.

For rule G.VI we want to show that:

For rule G,VII the lemma is obvious.

(b)

Lemma A

free variables of B, and D, respectively.
H.1 (Blpa©1Bg) e (PPpoiace’ o v
H.2 Pl :

3 P%d; DD,

4 P G

5 (B ) (P 'b)

6 PhapiaD;

CEv2); a5

-
T 8>

=&
O Mgy 2 Mg

may or may not be among the free variables

(D, ."¢ )

III, may need a' change
of bound variables.
C.VI, P.C.

1 f

= ', change bound
variables back again.
(H.2)

This concludes




free variables of By and D, respectively.

H.1 (Bfp. B,) & (PPp. & B'ar vOriupl tuppd

H.2 P bI : (b)

3 P23, 0D,

4 P‘C' Lemma A
5 (E Ebg)(P oy

6 Phdp:oap) (H.2), 5.

which is the required inference.

For rule G.VI we want to show that:

3 S ! 1 < A
P'by&...& Ple_DA 2B |- P'b &...& P'o,
/\z. ’,)',. ~N v 3 ’/5 ~ Y : :
‘j \?\J{ﬂ ‘~NFy {:\i /‘\?SQ')"@ZT
where X, may or may not be among the free variables
p;"’ ""(;(Y") Of é(" and /-I\_:-BC-.
: Q@ X 1
H.1 P’ &...& Pfg_DAL = B_
{1 vy vo NO
H.2 PPp_&...& Pl (B, .eC )
: g . )
3 ‘t};‘f = B~
L (A§5.Q;)§; o (Ax;,§;>5g III may need a’ change
[ S =L : ¢ of bound variables.
L, ()P 5.0 (Ags.85)x = (*x BF)x) C.VI, P.C.
. {0 X
6 \K:.Ap = M\x;.Bg "= ', change bound
r r variables back again.
T RS2 D" (H.2)

which is the required inference.
For rule G,VII the lemma is obvious. This concludes

the demonstration of Lemma C.
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Ve are now in a position to give formal definitions and
theorems about the introduction of virtual types.

Definition A

The type symbols of system (Z) are the same as those of

(@) together with the basic type symbol 7, and the consequent
complex types.

The constants of (7) are those of (@), those required by
introduction of the new types (viz. Lzioc)s Cr, QUTY)’ and the

additional constants X andiie, mGlor simplicity we suppose that

there is only one of these).

The variables of (7) are those of (G) together with those

required by the introduction of the new types.

The axioms of (7) are those of (G) together with those
required by the introduction of the new types (viz. (D) for
type 7, (Q) and (E) for all new types), and the additional
axiom A, which is to be a closed formula of bz

The rules of inference of (t) are the same as those of
(@).

Theorem IIT

] |

Let & be a type symbol of (G). Let YR E be

L Xi’
closed formulae of (G) - where 55 is obtained from e by
replacing T by o throughout g . Let RE: be defined for
each type y as on page L1, and let the translation @%;of a
formula @V of (T) be defined as on page L3.

Then if:




(@) is consistent:
2) | PG, & PUX; ;
- i ok 'y
then:
a) (7) is consistent;
b) If a proposition is provable in (¥), then the
translation of its assertion is provable in (G);
¢) If a proposition is provable in (v), and if it
is expressed wholly by means of the symbols which are
common to both (7) and (G), then it is also provable
in (G);
d) If a formula is closed in (T), then its transla-
tion is closed in (G);
e) a), b), ¢), d), remain true, if to (tr) there is
adjoined the axiom:

() (52, ) [ (202 > (B (gL = ©Ie £0, = ¢}

Proof

b) follows from lemmas B and C, for the axioms of (T)
satisfy the proviso of lemma C, and hence the proof of any
preposition can be so arranged that the proviso is satisfied
for all the steps of the proof. a) follows from b). From
the definition of pY for the types which do not contain T,

it follows almost immediately that the translation of the
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assertion of a proposition of (T), which is expressed wholly
in terms of the symbols of (G), is provably equivalent, in
(@), to the corresponding proposition of (G); hence c) is i
true. d) is an immediate consequence of the definition of |
translation. To show that e) is true we have to show that |
the translation of the axiom is provable in (G): the transla- ’»
tion is of the form |
(BL ) i-, w ,

and it can - tediously - be shown that the expression in the ;
square brackets is provable if '\z, .z' is substituted for )
This completes the proof of the theorem.

Sometimes one may want to introduce a virtual type for
which the relevant elements are not represented by closed
formulae; for example, one might want to form a virtual type
congisting of a certain finite number of individuals. Instead
of being represented by a closed formula the defining property
will be required to satisfy some condition which is represented
by a closed formulae, and the translations of the constants
of (T) may also be required to satisfy certain conditions;
we suppose that all the conditions have been rolled into one
formula F.

Theorem IV.

Let the system (t) be defined as on page 48 . Let « be

a type symbol of (G). Let P, Cu , X%, be variables of (G). '.'

Let 7, a type symbol of (G) be obtained from g, a type symbol % :

b
|
/




of (.T) by replacing T by A throughout 2. Let R: be
defined in terms of P., as on page 41; and let the translation

1
B- of a formula B, of (¢) tbe defined as on page L3, Let

Forudloy Pe a closed formula of (@).
J Then if: f‘
1) (G) is consistent; , 1
2) ¥ (EP&K,CL ’X%)(EUQA(MJP c' X'); |

e B, Cq X

1 n !
T O‘l ~_- Y - )
'L ° D ° l)‘,""\ C;,‘L o }?(_ p .’L'[ &.

,vdfdian
’

then:
a) (t) is consistent;
b) if D, is the translation of the assertion of a
proposition which is provable in (T), then

]
=y 1) 1)

o
'(), RO,

]
Fc ’t’i [OR) Pcf\ Cx X

¢) as c¢) in theorem III;

d) as e) in theorem III.

Proof

We maeke the hypothesis:

1 1]
R
(o) Por Oy X7,

H B

~ e -'(‘;
and then, in virtue of condition 3) of the theorem proceed
exactly as in the proof of theorem I1I, and finally eliminate

H, using condition 2) of the theorem. |

The first application we make of these theorems is to
form the type v of natural numbers, For P,., the defining I

property, we take Numg;f: the additional constants are Oy (]

i

and Sy, their translations are O,/ and S11 : the translation
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of C, we also take to be 0 (it would be inconvenient %o

have an element of type v that did not represent a natural

number) .

The additional axioms for the type v are:

(C); 0, = Cy-;

(0) 8x, £ 0, ;

(8) ) x, # ¥, D8, # SL;

(H) £.,0 & (z,)(£,2 o £,,(82)) sl fo®, 1

Tt is fairly easy to prove the translations of the assertions
of these axioms; for (0)) the appropriate theorem is:

Num_ /X ; 2 SJL'—}SJ # Oy ",

which is proved in Church &) .
We define 'Nap' ('numerical application') as follows:

Nap, i, = fii s, Oz LIV(BLETN(LO, =" O & E = fm &

(n,)(£(8,,n) =8 ¥ (£n)))

This provides an explicit formula for the function whose

existence is guaranteed by the axiom (M), and it allows of

successive application of a function in any type;
" Nap,,\l V 2'/ = Ki‘{lgv.}s,{'.f.(igc.) o
We shall always useé v

Another application of the theory of virtual types 1is

Let fOLkrepresent an equival-

the formation of guotient sets. ;

ence relstion over type «; then we cen introduce a virtual

type T by means of the defining property:

~

POL'LO..A) - 'i\.f_*)rk°(E2(.flv\)(Xéi\)(H ¢, Fgm.{ﬂ) v f— = CJ-N"\

for example:

' ' to denote the type of natural numbers.
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(The condition 'v £ = C,;' is inserted to ensure that P C
holds; it is not essential, but simplifies the subsequent
work.) The elements of ¢ correspond with the equivalence
classes of r; further, if certain operators - i.e. additional
constants - are defined for the type L , and if the equivalence
classes of r are also congruence classes (in the sense of
abstract algebra) with respect to the operators, then it will
be possible to introduce corresponding operators for the type

T . BSince this process is frequently used both in mathematics
aﬁd theoretical physics, we investigate it further. First we
extend the equivalence relation r to higher types ('Eqtr').
Then we define, for any type, the property of being compatible
with the equivalence relation r ('Comr'). To any compatible
operator based on the elements of A (i.e. belonging to a type
of which « is a part), there corresponds an analogous operator
based on the equivalence classes (and so belonging to a type

of which &« is & part). This analogous operator - the gquotient
operator - is obtained from the original operator by means of

the function Quor. If ‘3 is any type symbol we define ﬂ‘ as

the symbol obtained by substituting o« for { throughout ﬁ 3

and [, as the symbol obtained by substituting Tt for A through-
out ﬁ». Then given a compatible operator Xﬁ, we can introduce
a corresponding additional constant Up for the system (7),

whose translation will be QuorX - of type pi. What is meant

by 'analogous' and 'corresponding' in the above rough summary




will be more precisely indicated by the theorems which

prove below. In what follows R; and R:fF (where 1 is a
type symbol of (T), and y is obtained by substituting o
for T throughout Y ) are defined in terms of ijéw - and
hence eventually in terms of r - as described on page 41,

We note that #p is a type symbol of (G) - i.e. if it does not

2
§

contain T - then }3 is the same as B
fotny Bone
We define: Eqt/’, Com’, Quo’, for all types 4 of (G) as
follows:

‘*éfif'z =y if J{ is not @ nor a part of g; Hilie

eqﬁ A
‘ / |

s A (ol
1!,'?‘,\ (CRR

"\
eq qu\_'( ({C)r-’.v’/\\ c— ’EO.{J\ .£
pY .
QRHWVTH@&U'”K

S =NE.

AL 10 Loy Zay - (2 ) (Com'rx D Bat'r(£x)(gx))
{ /

if K is a part of pAY .

' z 1 of 3 77 e
Com”BLQ,\ S \E}kaf.T if { is not a part of/u 3

ﬂ]’ < 3 - s \/ o Y 2 T ‘[’.
COmJW-)(Um > MBana i‘_r,».(- (zr,;/_,-)(uom rx & Com’ry & Eqt'rxy

. 2. com’r(£x) & Batf(£x)(£y))
if A is a part of ﬁ$'.

It will be noticed that, except for type &, Equg and

Comﬁg are defined in the same way as were R” and pf ; it

follows that if r represents an equivalence relation then

theorems exactly like 3.1), 3.2), 3.3), are provable. Hence

B.."Y

.
the assertion of Com' L, means that f takes equi-

..Y .
valent values for equivalent arguments.
e B
A i e c . AL is S H
Quoﬂﬂkd«&) > Xid&xgﬁ.g 4 SCok not/ , nor a part ‘
[ ofp ;

‘ / |

t

N\ oL \ ! :
WOG (odd) 7 NEagy L 3




1 By

QUO“:‘,’ % ( Lo Ad) = '\'I-.'J X
)

2as

$hubs x/h(7i/u)(mg{)(00mgﬁ & Comru

& X < Quoru & y = Quor(fu))
if « is a part of A7 .

3 : 2
In this formula ‘'x = Quoru' stands for 'RJ*).L(Quogg)'; if

we use ordinary equality instead, theorem 3.,11) fails. The
method by which Quo is defined is analogous to that usesd for
Tra, but is more complicated because r is not in general a
one to one map of « into OL. Quo r does in fact define a

n

! i ) i A i )
map of 4 into [/, which is a homomorphism with respect to

5

functional application for all those elements of B which are

compatible with r; the equivalence relation which holds between
two such elements if they have the same image under this homo-
morphism is the same as that represented by Eqt r.
To make the statement of the theorems below more intel-
ligible, we make the initial hypothesis:
VE 5

which restricts the variable r and then introduce the

=4
abbreviations:
- Comfg §
Th, = Quoﬂg 3

é/f B

A ~

= Eqt"rAB,;

{
{

s0 that a complete statement of any of the theorems would be

of the form:
3-8) L y(Bqtf x)

X

3.9) rPl* ¢
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3.10)
3 444
518
5215}

ig

%.10)
%)

W

~ 6O \»m & = N

3.11)
H.1

H 2

o« is not a part of Y nof of 3,

313);

P:"'C- Wi D P (,\x ' ,C{.L: i

ME &, ! 2D BE. A Tal)= T(L

Mif‘ & ng, _F‘( 31) (‘P u,) provided
Ph( Ti &)

M Mga & Tf, E-e, Dy Lo S Bia

V f & gr, _g",.ﬁ ....;:7 g),

Mf(\ &‘, ]\ugﬁ & f g,‘ :)a Ti n = TE/"'

for type py.

M(fu) & M(fv) & fu = fv

T(fu)y =g(£Ly)
(Ey,)(My & Tu 2 Tv & Tyt = T(£fv))
D X, = T(fu)
re(Tw) = T(£u) '
3.10)
ME o
(Eg()(w X i = Tu)

these theorems follow

immediately from the definitions. We assume that 3.11), 3.12),
have been proved for types f end Yy, and that A is a ‘
part of @y, and we then prove 3:10), and 3. 4%)s 342 )n i 86 165) q
|
Mff\ & Mu (f£,u)
7@(2)=(I%UWXWW&&TQ?TX&M=T@E» |
1 T
va&:TvY u (X),, J
viu 3.42%),

H.1,H.3,4, Com. |
3.13P).

(Hs8) .

ol

(CH=45),.

(£)
(x)
(u)

~“ is not .

&.E.D.




H.8

10
11
i
13
14
HAS
16
1%

.18
19
20
21

3.12)

}_’:%TE,Y'DT_Q_'Z&T

(By )(My & x = Ty & Ly = T(fv))
D Y = T(Lu

T % (fu)

PA(res)

Ly S X

¥y = Tu

Hi2e 9. 7.8 (Hi8 D10)
~H,2

ILX = Cﬂa

Pl (T£x)

H.8

V(Eg,?)(mg & 3y = Tu)
Tfx = Gy = Tfy

PP(TER)) & (Ep2gp D TfX4= TLy))
H.4 D 18

3.11;'0")

Y\

ME,., & Mg & Tf,, S
\—f"{ hf’{ _{1r af(
ng

P"(Tu)

T£(Tu) 2 Tg(Tu)

T(fu) 2 T(gu)

As for 7 above.

Quo.
3.147).

(x)

35A) .

As for 6, 6,

(H.2, H.3, H.8).

(x)

Quo .

3.9)

(x)

Rup2,

15.

(H.12,. H.15),
(H.1)

Quo.

1951 203n B9)

(£,2)
(u)
3.11%).

\\o

/.

3.10F0).




(x)

H

i Y

H.3 Mg, & X 2 Tu, (u)

N fu = gu Eqt.

5 T(fu) = T(gu) 5. 1300,

6 Tfx = Tgx As in proof of 3.10f7)

7 H.2 D 6 | CHed) H.3).
H.8 ~H,2 (x)

9 IfX = Cﬂ ="Tgx Quo

10 Tf = Tg' (H58) 5 7 (s
11 5.13FT) (H.1).

We can now construct the virtual type T which represents
the quotient set of the type { with respect to a given
equivalence relation r, and which has additional constants
corresponding to certain constants which have been specified
in connection with type &« . (For instance, « may itself be
a virtual type, and the specified constants may be just the
additional constants for that type.) The interpretation of

any type symbol is obtained by substituting od for T ; the




F.

defining property P,to) heas already been specified. Let

Xgy oo, Ye, be the constants specified in connection with the
type A; (they will be closed formulae of the system as it
stands before 7 is introduced, but may of course involve
additional constants - e.g. Sys = belonging to virtual types
which have been introduced previously). Let U%,...,Vg, be
the corresponding additional constants belonging to the type
¢ . We define their translations:

Ular ta%)TiE.
S

o)
© 6060006000000

1

T Ravis: T°1;
<

' .
Car x 1840ey

b

Then provided that:

(c) MK, &...& M Y,

b

the system () will have the properties specified in theorems

IIT and IV; for from (C) we may infer:
Skl s Epant
B OUG &0 &R EV
b¥edslt)a oIf -fonwthe equivalence relation r we choose a
closed formula then (C) must be a provable proposition, and
theorem IIT applies. If not, then we can regard (C) as an

hypothesis which restricts the variable r

—

and theorem IV
applies.

The constants X4, ...,Ye, will satisfy certain proposi-
tions or axioms, and it is natural to ask whether these

axioms can be taken over into (7); in general the answer
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1 1

must be 'no but there will be many particular cases in

which it is 'yes'. For example, suppose we have as an axiom:
(A) o A C ey A C s, kG
.2 X?S,«\(Xl,/‘._z.,-g) = X(X?_C,A&L)ka ’

where X is of type 44d, so that, except for Cy, the type*<

is a semigroup with multiplication defined by X. To take (A)
over into type r means that we replace the suffix L by ¢ , and
Xiad, by Urrr; the question is then whether the translation
of the assertion of (AC) is provable - we assume that a suit-
able equivalence relation has been sgspecified. In fact it is
provable, for we have:

(P) F PPE, & Zop O 2. (By )(Ma'& 2,4 = Ta),

and the result then follows by repeated applicationsrof 5.10) .
Hence the axiom (A:) may be adopted as an additional axiom
for the type T ; this is of course a well known result. Now
it is not difficult to prove a result similar to (P) for
higher types, and it follows that any axiom, which, like (A),
consists of a simple equality and does not contain bound
variables, can be taken over in the same way. This is the
situation that occurs in abstract algebra, where considerable
use is made of the notion of a quotient set. (See, for
example, lectures given by P.Hall in Cambridge, 1947 - 9).

It would be interesting to investigate other kinds of axioms

that can be taken over into the type T, but we shall not

pursue the matter here. It may seem at first sight that the




60

employment of a system of symbolic logic in such investiga-
tions is quite unnecessary; but without some form of type
notation, the definition of concepts like Com and Quo for
objects of arbitrarily high type would be more unwieldy and
less clear,

We shall later have occasion to use the type P of real
numbers, Of course there are alarge number of ways in which
this can be introduced: perhaps the simplest is to start with
the type pv, which can be interpreted as the set of all
binary decimals; we then define the equivalence relation
which holds between two elementg if the corresponding decimals
represent the same real number (in the ordinary sense), and
which also holds between )x, .T and XgV.F . The quotient
of the type &4v by this relation we call type M5 1t may be
interpreted as the set of real numbers modulo an integer.
Then we pick out from the type ka all those elements which
take the value T for just one set of arguments, thus forming
the type lO. Of course it is possible to introduce additional
constants in this type corresponding to the usual arithmetic
and topological concepts, and to provide translations of
these constants in such a way that the translations of the
assertions of the usual axioms. are provable propositions.

We shall not carry out this programme, but we shall suppose
it has been done.

S50 far as I know, the idea of introducing virtual types

is due to A.M. Turing; (see footnote in Newman and Turing (1)).
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and I do not know to what

He has not published his version,

extent the version given here is in agreement with his. The

method really combines two processes, both of which have

been current for some time. The first is simply the restric-
tion of the ranges of variables - and is thus almost as old
as algebra: it only becomes complicated when applied to all
the types simultaneéusly. The second is the translation of
the formulae of one system into those of another; it has been
extensively used in the study of axiomatic systems, and

goes back at least to Bolyal and Lobachevsky. Its applica-
tions in symbolic logic are especially due to the Polish
school; we shall have more to say about it in the next

section.
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Section 4. Models.

Let us suppose that we have a set of closed formulae
Basgw , one for each type X, which satisfy the following
conditions:

(B) i) If Ay is a closed formula, then [ Bas,; A, ;

9 JEalik Bas . up Lup & Bas,,

/

X, 2. Basox(£,,%,) ;
iii) | Bas,,p. & Bas,, x, 1
Then, very roughly speaking, we are going to show that if all
variables, both bound and free, are restricted to the ranges
indicated by Bas, we obtain & true model of the system (@) -
i.e. one in which the axioms are provable and the rules
valid. The procedure is similar to that used in the last
section; we provide a translation for every formula of (G)
in such a way that the translations lie within the model, and
the translation of provable propositions are again provable.
As before, it is the axiom of extensionality that gives

trouble: there we translated ' = ' by ' 2 ', so that distinct

’
elements became identified; here it is the translation of A
which is importent; it is such that the translation of any
function takes the nonsense value for all irrelevant arguments,
I believe that both methods are applicable to both cases; the

one used in this section is, I think, a little easier to

visualise, and a little more tiresome formally.

First we define a rather narrower restriction than




By the translation of the assertion of a proposition A

that described by Bas.
'model')

Modgy - Ap,T ;

°
5

Mod,,  —> Ang

Voduc”)lw> ;\iir.Basi & (g’) (Modx O Mod(fx)

&, ~Modx O f£x = Cy).

1
Next we define the translation A i of any formula_gﬁz

i) All constants, except Qoaa where o is a complex

type, and all variables, are their own translations;

11) Qhuy is Ax.34.(9p,)(Modx & Mody

gu

b = (q,}_CAY)
if 4 is a complex type;

, ; t A T R ;
lIL'L) ("\};»:j.) is ‘3,{/\';}39 ;
et {

™

iv) (Ax,.44)' is Xg‘.(?xﬂ)(Mod§/& y = %A): where y

is a variable that does not occur free in A,.

)

we shall mean, as before, the proposition

1

~NO

Moda, &...& Modb , .2, P

where 845++.;bs, is a complete list of the free variables of

l

o

Now we prove a geries of lemmas,

Lemma_A

If Qﬂ,...,gr, is a complete list of the free variables

!
of 44, then |- Modb, &...& Modg . . Moda, .

First we note that if XQ is a constant of (@), then

Basﬁxf by (B.i); hence we have:

L

('Bas' stands for 'basis', 'Mod' for
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X g t i . :
- ModN,, & ModA,, & Modt & ModC, & ModC, & ModQu..

¢(00)
& ModQ...
Since Quux is & closed formula, }-BasQ;@{, and so, evidently, l
I ModQ 2
Now } (Blx )(£.2) O (Bx)(f,. = Ag,.x =23,
S0 + (B'x, )(£,.x) D Basf,, by (B.i), (Beii)ycand: (B.iid);
and since, evidently,
I Basf, D Modf, ,
we have
- Mod C ooy -

Thus the lemma is true if A, consists of a single symbol.

1 it}

b ModAy, & ModBly > Mod(a,,B) is obvious. I

r Basb, &...& Basc , > BasjA,, since
/v(n- 9 ‘)/ A
!

5%/’1\: (/\?’/ﬂ...gr.éJA)?'{“'...QY‘ ; ‘ ; ‘

and SO “

s \ ;
t Modb, &...& Modg - D Bash,, for any formula A, the only
[ free variables of which are
b,f:,...,Cr. i
~f &l ‘

Further

R ! \
FModx , O (\x,.h4) X, = &g .&. ~Modx, O (\x,.40'% = Csz ,

1

{
i

hence
" oy i
- Modh , O Mod(\x,.A.)
|
The truth of the lemma now follows by induction over the

length of A,.
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Lemma B
" - 1 24 - , 1 1 1
1) | ModA, & ModB, . 2. (4, = B = A =B, ; obvious,

1 !
2) | ModA, & ModB,; .0Q. ((Axs.44) = (,\;g,z.g,,‘))'

= (xp)(Modx D AL = By );

3
t
fori.  Hi(K g, .Aa) el x 4. Bh)
| ¥ /
— 7 . ; ! “_ .
= (M35 .(23,) (Moax & y=4,)) = (Agﬂ.(7gd)(Mod§&:y = By))
5;(53)(Mod§ » &L = Qi &. «wlModx O C. = Cy)

\

1
= (x,)(Moax - A, =B
and so 2) follows from 1).

3) + Modb, &...& Modc, .D. ((x,)(A,

~~C
{

)" = (xg)(Modx O A,)
For (xg)(As) is an abbreviation for X§a.@0 =\Ax,.T , and so

3) follows from lemma A and 2%,

Lemma_C

The translations of the assertions of the axioms of (&)
are provable in (G@).

Thié is obvious for axioms (P) and (T). For (Q), we have
Pl Modxy & Mody, & Modf,x

O (=30 o (Lo Lo la)

which is provable by 1) of lemma B and (Q).

For axioms (D) for the type ¢ , the lemma is obvious:
for the type ¢, we have:

’

P.1  Modf, .OJ.((B'x,)(£,x))" 5 ¢

) ‘
— - -t =0t 4

P.2 Modf,, .J. ~((E'x,)(£,%))" D (£, =C

H.3 Modf, (£)
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M ((B'x )(£x))' = (B'x,)(Modx & £x) Lemma B, 3).
= (Blx,)(£x)
5 P& P,2 (8.3) ;> (D)3
For (E) we have:
P.1 Modﬁﬂf_ & Modg,,ﬁ R ((zp)(i.fz = 8ipX))'

2 o\ L e =
(7 &C:_’;,z/;)

H.1 I‘:Tod:_f'_,,"g & I‘.’Iodg,.\/g (£,2)

H.2 ((x,)(£x = gx))'

3 (z,) (Modx > (£x = gx)') Lemma B, 3),

N Mod.)_(/g ») §§P= £Xp H.1, Mod, Lemma B1).
5 ~Modx , D fx,= gx,= Cp H.1, Mod.

6 f=g ’ (E).

7 (.= a) Lemma B 1) .

8 P.1 (60 - I

For the axiom
(BEx,)(By )(x #£ 3),
the lemma is immediate; the other part of the axiom (I) is
harder to deal with, and we shall first prove some subsidiary

results. We note that

and that
if x, occurs free in A,[x,], and the free variables of B

are distinct from the bound variables of Ax[x, ].

We shall be concerned with the natural numbers in the
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model; we have:

Ium is (,\_jL,- .(7£0)Li,§od_j & p = (_I_‘\,L,‘,)E./Iodf & £0' |
& (k,)(Modk & fx > £(8'k)).D. £1)]. I

From this there follows a rule of induction:

’ I‘\/{Od.;t_{ / (?C T1

) ik D F,(8'k))

~pl = -t ol =

1
F,. 0 F Num'j

& Modj « D F,udy .

(To any E satisfying the premises there corresponds a G

which also satisfies them and for which F ModG )8
: ¢ ?
l}~1> l’ MOdg“ D Oé"gLL = Ol}‘g-LL H 1
[
¥.2) F MOdg‘lb & MOdlU & magw = -J-(,"gul

YL .
030 Sm('rgw= B.J.t'gtc ’

4e3) - X

The proofs of the above are all straightforward; we omit them. f

- W@%/&IMWQU (MwﬂNm@&(g@@mm.jmgzlgD”

bok) | Numm, > (Bf,, )(Moaf & (a)(ngm O nfx, = ng

w X))

This is evidently true if for o, we substitute O,;

H.1 Modf, & (ny)(n<m, > nfx, =ng, x,) (f,gmx)

5.2 _u—iz Ly [(Bp)agmentx =2) 5 g = £x 6.
z = Smgx D y = g(Smgx) .&. (z # Smgx &
~(Bn )(agmé&onfx =2) D y = W

If in the expression for h we substitute free variables, say

u, and v,, for 'Smgx' and 'g(Smgx)', ‘we obtain a formula of

type ¢!, whose only other free variable is f, and whose bound

variables are distinct from m, g, x; hence, from the remark

we have:

on the previous page,
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3 Modh
b (0, )(n < sm o nhx = ngx)
The theorem now follows by the rule of induction.

The translation of the assertion of the second part of (I) i

0]
ce

P.1 Modj, & Modk, & Num'4. & Nam'k, & 1,4k,

-:)o S"j'l,l£ S'EL/

H.2 L.H.S. of P.{ (1,k)

H.5 ‘Numm & (g, )(Modg D m, g = jg) (m)

Hohp ' Num /& (g, )(Modg O n,g = kg) (n)

H.5 Modg,, & g,  # kg, (2)

6 m£n (E)

7 Sm £ Sn | (1)

H.8 SmBiong pr Llppdree : )

H.9 Modh & (p,/)(p g Max(Sm,Sn) ph, X = pfx) (h)
10 8'jh = Smh & 8'kh < Snh H32 P9P8 ) 2).,
11 8" jhx £ 8'knx 8.

- e P oY, (B).

155 P.1 (290 dsk )iy CENE, HoB) (B

(H.3, H.4), ¥.3); (H.1).
This completes the proof of Lemma C.
Lemma D
| If @, can be inferred from Po Dby a single application
of one of the rules of inference, then the translation of the

assertion of Q_ can be inferred from the translation of the

%0

assertion of P

~ G

rd
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For rule I this follows immediately from the definition
of translation. 1In order to deal with rules II ang ITI we
show that rule IX may be applied in the model. Let A, Dbe a

part of M,, and let N, be the result of substituting the

formula B, for A, in My; let ¢ d¢,...,8s, be a complete

‘ v
list of the variables which occur free in As and bound in M,.

1

IX (gy...g.)(Modg &...& Mode O 4 = B)) |- W

Of course él is a part of %k) and further, g;_ is ob-
tained from %d\ by substituting B' for A" and Sy e8¢,
is a complete list of the free variables of A, which are bound
in V L3 WwWe demonstrate IX by induction over the length of
this list.

If none of the free variables of %3 occur bound in M ,
then the above inference is simply an application of rule IX,
and hence is valid; we suppose that its validity has been
established whenever the length of the list is less than the
length of the list gy,@g,...,gg. Let oy be the variable of
this 1ist for which the binding ocecurr ‘ence in M, occurs

furthest to the left, so that M, contains a part §ff of

the form

where ng is a part of Bn, and all the variables of the ligt

except ¢, occur bound in Ra. Let Y, and S, be obtained

from X _., and R, by substltuting B for A,; then
. e~ ) } N/ ~ v [

| { /




_‘3_'7, is (\91)'\(?;},7\)(1*{0(157 &Py = I\{"> ’
! : ’ :

and Y,  is (A%f.(ny,)(Modz &y

8 |
| |
> f ) ’ |

. 'r' : 3 : \ ! “
and N, is obtained from M4 by substituting er for gpr<_ We ‘

start from the premise:

]
B (gy,dg, ., 8¢ (Modg &. . .& Mode DAs =B)
1 4 |
2 gp =.§P by the induction hypothesis. ;
, . - '
3 (gy)(Modg DX o = Y,/Q . ~Modg OXprg = Xure) ; J
' ? ‘I [ ! \
I Xop = g by (E).
5 %L- = g;\ by (E) and rule IX. |

(Note that 5?( may contain free variables, other than those 3 

of A,, which are bound in M,; but these variables will also

appear free in Xff and hence also free in 4580 that rule IX

may correctly be applied.) It follows now that inference IX'

is valid, ' |
Now consider rules II and III; let a part X of the

formula P, be: :

((AXJ-éi)Nﬁ),

and let B, be obta&ned by substituting N; for Xy throughout

$45 We suppose that the bound variables of A, are distinct

both from the free variables of Eq, and from x,. Let Q, be

20
]

obtained from P, by substituting B, for Xx. Let By oenylizy

o~

be a complete list of the free variables of P,, and let
gr,...,QS, be a complete list of those variables which occur

free in N, and bound in Pe . We want to show that

i
Q

Modg, &...& Modt . .D., Q

~

can be inferred from




Modgy &...& Modt, . D. P

. 51 A
and vice-versa. X, is

: , i
((Ax, (7,0 (Modx & 3 = ALNa),

and BL is the result of substituting N

v (7

H.1 Modg, &...& Modt,
H,2 Modgy &...& Moddg
]
3 ModN ,
? : i
)+ X/rJ\ =‘,B'L»
<l 1
5 (QY,...,Qé)(Modg & . wdModd D, X'y ="Br)
' .
6 Po = Qo
{
7 Mods, &...& Modt, .. B, = Q,

The required inferences are now obviously valid.

Let ¢ d S

.
Hys» 225855 By oo

71

\ . 1
(; for x, throughout 4,.

(T To— )
(ernand)

Lemma A

Rule II, (D).

(gsg)®

(H.1).

;5 be lists of the free variables

of A, and B,, and Fﬂf, respectively. Then for rule G.IV we
~ ‘n//- At

want to show that:
Modg &...& Modg, O é} = gé - Modg, &1
&...& Modto D Fudy
But thig Ffollows immedistely from G.IV, .
For rule V the argument is the same as was
proving Lemma C in the section on virtual types.
For rule VI, we wish to show that from
1 1

Modg, &...& Modd, D A, = B

)
Y o O\ ~N N

we can infer

!
Modcr &...& Modd, D Ngp.(1y,)(Modx & y = 4,)
~ T J ~ s ~ v

= M x,.(2y,) (Modx & y

Mods,

|

i rv./../"» ,«J/S
/

used. in

g |
=',I§:{)'
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~ 3 I} Q . ! L
If x, is not one of g ., ...y, (the free variables of A, and B )

the inference can be obtained by using the deduction theorem.

If x, is one of that list, then the inference follows from

(D) and (E).
This completes the demonstration of lemma D.

Theorem V (The model theorem).
Let there be given a set of closed formulae Bas,, which

catisfy the conditions (B), and let the formulae Mod,., and

3 ! A .
the translation A, of any formula A,, be defined as above;

then if P, is & provable proposition of (&), the translation

of the assertion of P,
This theorem follows immediately from lemmas C and D,

Before we discuss its implications, we show by an example

that non-trivial sets of formulae satisfying (B) do exist.

We define:
Fin, =3 AL, -(En,)(Eh, ) (2 (£X D (Blmy)(m< n & hm=x))
Conly i3 ) gz, (BE,, ) LFini & (%, )(Pert & (x,)(£x D 1x = %)

1 : . . <
Fin' stands for 'finite', 'Con' for 'constructive'; a

function is 'constructive' if there exists a finite set of

individuals such that all the permutations of the individuals

which leave that set invariant, also - when transported to

the appropriate typ

types ¢t and tt , the 'constructive' functions are jusi

is also a provable proposition of (@).

e - leave the function invariant. In the




those which may be explicitly described, using the names of

a finite number of individuals; that is, to be more precise,
those functions which are represented by formulae whose only
free variables are of type ¢. In the higher types there are
'constructive' functions which cannot be explicitly described
in this way; that this is so follows from the existence of
invariant functions which cannot be represented by closed

formulae.

Now it is easy to show that ConCi satisfies the conditions
(B).
4.5)  Invz, D Conzy obvious,
But if A,, is a closed formula, } InvA Dby theorem II; thus

(B.i) is satisfied.

4.6) Finf 4y & Fing,, O Fin(\x, .£,, % v g, X)
The proof of this is straightforward.
4.7) + Conf,, & Conz, .D. Con(f,,z,)
H.1 L.H.8% ' g (£, 2)
H.2  Finu,, & (t,)(Pert & (x )(u, x 2tx = x)

VR . iBratfivert) (1)
H.3  Fing, & (4,)(Pert & (x,)(y, x o1x = x)

. D. Tratz = z) (v)
Huay - W, =)X,.ux v yx (w)
5 Finw 4.6).
H.6  Pert;, & (x,)(wx Dty x = x) (%)
7 Tratf = £ & Tratz = z Hga, H.3, H.4,

H.6,




Trat(£z) = Tratf(Tratz) 2.8

9 H.6 D Trat(fz) = fz (H.6).
10 Con(f£z) (H.2, H.3, H.4).
11 4.7) (H.H) .

Thus Con satisfies (B.ii); and evidently it satisfies (B.iii).
Thus our assertion is justified. We investigate some properties
of the model of which Con is the basis.

4.8) k- Conf,  .D. Finf, v Fin(\x~f, x)

The proof is straightforward.

§:9) s Bla(l 2 1) D (E@J4,Qﬁx)(ﬂumm & NMumn & m Z n & Sm = Sn)
The proof of this is a trifle tedious: if N is the finite

cardinal of the type o, then appropriate values to take for

’

m and n in the above are O and N'! + 1.

4.10) b Finf | O (Ex ,y (n~Ef, X &~E, y& X £3%
&XxX#AC&y £C).

§a1) ¥y oFin(Ax, 1) = (I).

The proof of this is, of course, conducted without using (I)

as an axiom; the implication from right to left is an im-

mediate consequence of 4.9); the reverse implication is

easily proved, by introducing an h, similar to that used in

4.4). This theorem gives an intuitive interpretation of

Church's axiom of infinity.

4.12) b (£4)(Conf & X £3 £(d, 5 L)) D ~Coniyy,)

H.4 Lifls. (3)

H,2 Ping,, (2)




Tratih

9 J # Tratj
10 Fing, D (Et, )(Pert & (x,)(g,x D tx = x)
& Tratj £ 3J) (HY2/ H?3, H.4, |
H.5) s b4stO) j
I e
11 ~GConj |
|
12 4.12) (H.1). |
i
4.13) | Modj (py D Conj .,y & Mod, ., = Congu)
1

Obvious. Now the translation of the selection axiom for the

|
|
|
|
type L 1s8: : ‘
1 333 ) [
(8)' (B3, ) (Moag & (£, )(Moaf & £ 5 £(36)) i
N |

But, from 4.12) and 4.13), (S) is provably false.

Theorem VI

If (@) is consistent, then the following propositions

are not consequences of the axioms: !

i). (S) for the type ;
}

ii). (Ef  )(~Finf & ~Fin(Az .~fx)); '
|

i11). (Bf )(Bx ) (Unif & (y,)(x £ £3)).



i) follows from the provable falsity of (S)' and theorem V.ii)
and iii) may be shown in an entirely analogous fashion.

Similar theorems have been proved by Fraenkel concerning
various forms of the selection axiom (Fraenkel (1) and (2),
see also Mostowski and Lindenbaum (2)); theorems showing the
progressive independence of six axioms of infinity have been
proved by Mostowski and Lindenbaum (Mostowski (1), Mostowski
and Lindenbaum (1)); and using similar methods Mostowski (in
(2)) has shown the independence of the selection axiom from
an axiom of simple ordering. Except for Mostowski (1) and
Mostowski and Lindenbaum (1), these investigations refer to
systems of the set theory kind.

All the studies of the selection axiom depend on showing
that those elements of the system whose existence is guaranteed
by the axioms have a property similar to that defined by
'Con'; in fact 'Con' is a special case of Mostowski's 'G-M
ausgezeichnet': (a definition of this term is obtained by
substituting an arbitrary subgroup G, and an arbitrary ring
of sets M, for the complete permutation group, and the ring
of finite sets, in the definition of 'Con'). Fraenkel's
proofs lie almost entirely outside the system he is consider-
ing, and use the ordinary methods of mathematical argument.

. Mostowski (in (2)) proceeds by constructing a model of one
system of set theory inside another system of set theory;

that is he uses en outer model, in the same sort of way that




el

we have used an inner model. It appears that the facilities
of definition ('¢ ' and '\ ') afforded by the system (&),

the combinatorial character of its formulae, and the fact that
it is a type theory, combine together to make our proof of
‘theorem VI a good deal more compact than any in the investiga-
tions oonsidered1.

In the statement of theorem VI we used the phrase 'are
not consequences of the axioms' instead 'are not provable',
because we wished to suggest that the lack of provability
involved is of a rather different sort than that established
in Godel's theorem. For example, I think it clear that one
could not hope to prove (S) merely by adjoining sn axiom of
the form:

(Emv)(Proonyvmg,) oril,
where Proof,  mn represents the statement that m is the
Godel number of a proof of the proposition N, whose Godel
number is n,; while it is known that the adjoining of such an
axiom does render Godel's proposition provable (see Turing
(2)).

It may be possible to distinguish between 'consequence
of the axioms' and 'provable' by setting up a certain class
of models for (G), and then defining 'consequence of the

axioms' as 'valid in all models of the given class': but the

(1) I may add that I discovered the above proof in ignorance
of the references cited.
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results of Henkin (in (1)) make it clear that this would not
be quite so straightforward as it might, at first sight,
appear. He defines a gtandard model as a universe which

contains two representatives for the type o, an infinity of

individuals for type ¢, and all the functions of higher types;

together with the natural interpretation of the constants of
the system (G) in this universe, and a typically correct,
though otherwise arbitrary, interpretation of the variables
of (G). Thus the only difference between two stasndard models
is in the interpretation of the variables. Of course the
rules governing the interpretation of the constants are such
that the interpretation of a provable proposition in any
standard model is the element of the universe corresponding
to truth; provable propositions are valid in all standard
models.,

A general model is like a standard model except that
only some of the functions of higher types are present in
the universe of the model, with the proviso that sufficiently
many functions of each type are included to ensure that every
provable proposition is valid in the model. Now Henkin shows
that a proposition is provable only if it is valid in every
general model, It follows that there exist general models
in which Godel's proposition is interpreted as truth, and

ones in which it is interpreted as falsehood. Thus the class

of general models is too large for our purpose, while the




class of standard models is too small.
The use of models to define terms like 'consequence' and
'true' is due, I believe, to Tarski (see (2)), and has since
become a major preoccupation of the semanticists. But I think
it is a mistake to suppose that the method will provide new
and satisfactory formal definitions of semantical concepts:
if, for example, one defines a 'true' proposition as one whose
interpretation is valid in all standard models, one has merely,
as it were, 'passed the buck' from the original system to some
other system in which the universe of the model must be des-
cribed; and one can only be quite clear about what is and what
ié not the case, if the universe of the model is finite - but
for a system which admits only finite models 'true' can be
identified with"provable'. On the other hand models are
certainly very useful on the intuitive level: by choosing an
appropriate model one can see 'why' such and such a proposi-
tion is not provable; (indeed, if the model is sn inner one,
one can show that it is not provable). One can do this
because most mathematicians feel more at home in classical
set theory than in some particular logical system. (Another
way of putting it: most mathematicians believe that some
adequate system of set theory is consistent.) Thus should I
try to communicate to the reader the distinction I feel there
to be between the non-provability of Godel's proposition,

and the non-provability of (S8), by reference to a class of




models, the communication will be successful if the reader's

notion of set theory is like mine; but if his notion is very
different, if, say, he is an intuitionist in thought as well
as word, then communication will fail; and I doubt that an
increase of formality on my part - by, for example, a re-
statement of my definitions in the notation of Godel's set

theory - will avail to restore it. I do not wish to assert

that there are no formal uses to which models may be put: they

may certainly be used to establish questions concerning rela-
tive consistency and independence; but I do wish to emphasise

that some of their uses are essentially informal, and stand

in no need therefore of excessive formal elaboration.

We return now to a consideration of theorem V. We ask
whether there is a set of functions Inty; of the system which
represent the (metalogical) .process of translation; that is,
which satisfy

P Intug A = Aa
for any closed formula A,;. It is not hard to see that there
can be no such functions, because the process of translation
is not purely extensional. Let us suppose that we have to do
with a strictly inner model, so that
(X) (Ex ) (~ Modx)

may, for some particular type of, be consistently adjoined to

the axiomes of (G). We define:
A Y \l{ de ~J Iﬂ:o d:}_(
B ) :;\’ "”) \__}S "\' F




Myoay - f\io,;\ f =4;
Noioa) — /\ii.,/;\ L =A& £ #£B
Then we have:
F(X) D M=nN
I A' =(')\ E.k'(’]_Ex))(MOd_}E &p="F))= B' X

FM = \f,..(2p,)(Modf & p = £ = A )

FN . o= \f ,.(ap,)(Modf & p= (£ =4" & £ £B'))
= ANf,..(1p )(Modf & p = F)
L 7 i

But, since (X) is consistent with the axioms, this shows

that we could not have

! o{eq) 1 2 (o)

M = Int M&DN = Int N.

I do not know if one could redefine the process of translation
in such a way that it became purely extensional, and at the

same time preserved the validity of theorem V,

Suppose that G,; is a formula for which

(Y) Lza

V(‘:)\ ’

then

- (Bx ) (Moax & Gg, x)

’

by theorem V; but can we say anything about the proposition

(2) (Bxy) (Modx & G, x) 2
Lt
(M") b Modx, O Mod{gi,

we shall say that the model in question is a final model. It

* Provided that the model on question is a final one; see
below.




model. For such models the translation of the assertion of

(M) (x4)(Modx)

is provable; and hence (M) is consistent with the axioms of

(G). It follows that if (Y) is provable then (2) may con-

sistently be adjoined to the axioms. I do not know if non-

final models exist, or for what sorts of models (%) (or
rather, (%) with 'Mod' replaced by 'Bas') may be actually
provable whenever (Y) is provable.

The next point that we consider is the application of

the model theorem to a system which includes some virtual

types; we illustrate the procedure to be adopted by discussing

the case of the virtual type v. To the conditions (B) we

add:

(iv) F Bas.. x ;

oV &y

(v) v Bas,y, Sy ;

1 1
and we define the translations O, and 5, to be O, and 35,.

It is then easy to see that the translations of the asser-

tions of the axioms for type v are provable, and hence that

theorem V (mutatis mutandis) is again true. Of course for
some virtual types more severe restrictions on Bas may be
necessary if the translations of the assertions of the ad-
ditional axioms are to be provable, but provided these
restrictions are made, the appropriate form of theorem V

will continue to be true.

is easy to verify that the model based on 'Con' is a final




Finally we ask if the complexity of the definitions and

the proofs leading up to theorem V was really necessary. The | f
simple way of defining a model is to use system (C) and define
the translation of Tﬂﬂp«) to be:

Ay, (20 (Basx o £x),
and let everything else be its own translation; but if one
does this one has no guarantee that the axiom of extensional-
ity will hold in the model, although given some particular
formulae for Bas one may well find that it does in fact
hold, or can be made to hold by a slight modification of the
formulae for Bas ., What, in effect, our method does, is to
show that such a modification can always be made, provided
that the original formulae satisfy the conditions (B): it is
of course possible that this general demonstration can also

be carried out more simply.




Section 5. Closed formulae.

Our first object in this section will be to show that

it is possible to define within the system the property of

being representable by a closed formula, the bound variables
of which are not of arbitrarily high type. We define the

length, 1(A), of a type {, to be the total number of o's and

¢'s occurring in the type symbol ''. We define the type

1 1

symbols ' ' by:

{p is Lln-
We show that it is possible to map all elements of types of
length less than or equal to n into the type (,,,, the map

being one-one. We first single out elements Tb, i X

L

are all distinct from each other, and from C, . We define:
b} &

Li,-,m > A, 1z )2 0x =1L & I DX =T,);
Vipg 2 Mo (2L 0 =1L & L0 Z =TF,);
X‘f‘_)’/\i"n-l 'X{/'
Pai?‘qu“A ~> )E;AA T A (756)(3 =g X X we i
&xE R )

{ Fl

! and ¢ are descriptions operators with T, and ¥, as their
¢ i Al
respective nonsense elements; we use (2 z()(ﬁu), (9 EL)(EC)

in the obvious way. The properties of Pai are given by:

¢, Which




gé’\‘k_l[_ _r_.lt =F, ;

‘ n n

1 _Z 0 ’\ ‘n+1 ~N

| u & u . h eusdlhe Pa1 g h, u =0C,.
| P F 8 * s # h . o802, oL

Now suppose that

l(:() < n
Then
a)  is {, ;
or b) & is ©tipy ;

or ¢) A is fy ; end 1(p) < n-1, and 1(y) < n-2;

or d) A is ¢ $

or e) A is o
We define Map™f according to which of these cases holds;
throughout what follows it is assumed that n,p,y, satisfy the
conditions given above. :
a) Map}y ( > AL, g, .(x

T
‘Apl TN n_tn

b) Nap?

s AEn u
“ (U('l\ —\\ 4

""JL.'\__( L,\ L




Theorem VIT

Let 1(A) < n

N, I

then from

We give an outline of the proof; we shall state a number

of formal lemmas, the proofs of which proceed by induction

over n, and are straightforward enough to be omitted.

theorem is trivisl for n =

5.1 F () (Map®E 2oxy 0T,

Cp

5.2) From MapnﬁﬂXLh= n

(n = ot PR W)
5.3) (B'u, ) (Map”f
(o oL

5 'Ll’:) ,— T\Y[apn_p_s(/\g

Y-

b

Mapni‘&= Map

we can infer that{ isfo.,_, ,oroe,ore.

I )

n-i

A 'CL‘,) 7-4 C(’

5.2), 5.3), 5.4), show that for n » 2 we cannot have

to show that .

unless A and § come under the same case;

must be the same type we have now only to deal with case c);

we note that this case only arises if n ) L

el viv)

5.5) (Bu, )(MapPfou # i

This is immediate for all except case b), and also for n

For case b) it follows by induction over n.




5.6) If y/ is not y , then |- Map"f _ £ Map"h 0!

Short proof:

H.1 Mapn‘“(ij\zf)gb o Ty, (£,k%,g)

e - n.j N
0,2 So, = Pail(Map™™%k)g SE Y
3 Map®fu £ T, : Map.
" u £ Pain(Mapn-?i,J)QL¢ Pai, induction

J s hypothesis
Y o ;| Y = m \

5 Map Qﬁ‘fg =T, Map.
6 5.6) CHe2,e8:1) s 5:5) .

BL93 igenot Y not g

b

then b Map?f  # Map®h |,
’- — 3, - ’/

This concludes the demonstration that the maps of elements of
distinct types are distinct.

5.8) 4= «MapPf , = MapPg, > £, =

o
=A 24

The proof of this has to be taken case by case; it is

straightforward,

This concludes the demonstration of theorem VII,.

Apph Bty S Ak
panHLMAth >A_°nm_bﬂﬂ <'_LMH)
| [; v -
2 (Bfgg)(Exg)(s = Mapf & r = Map"x
LS <n —
& & = Mapn(££>z
where the <> means the logical disjunction of all fthe

s

propositions of the given form.

5.9) If 1(A&) £ n, and n > 2, then

- AppP(MapPf . )(MapPxy) = Map™(£,, x).

—)




We also introduce A as an abbreviation for (

Thus we can map all those formulae of the system which have

no parts of type of length greater than n, into the type
and the map preserves the logical relations between formulae,
(We have not actually dealt with formulae containing free

variables, nor with abstraction, but evidently it would be

possible to do so0.)
We note that

e n = °
I‘.‘!ap Cll Sy ,'\ g("r\ 'Cl‘z 9
it is however convenient to have a nonsense element in

which is not the image of any element under Map; accordingly

we define:

L“"T\}-l (ULnrl) '_)/\f-o:,/\‘.' .<7X }(di :) -)S = etf .&' M’Jf 'D X = A.
(n = 1’2, .oo)o

ntt e

& —SubwL ~— ,\i,z.(ﬁl_g‘;\)(g = Map"g), n = 1

Typd(o;l‘y-’«> Xr

: |

=0n Z (2 =<{—53ub)\,

"Lt <n J

Tot,, —=>\£,.(Br_ )(Typr & rf).
L L

=ol)
L

The above definitions define the image sets of the wvarious
types of length not greater than n, the set of all such image

sets, and the union of all such image sets, respectively.

Consider now a closed formula the bound varisbles of

‘which are all of type less than n. (we say 'of type less
than n', instead of 'of type of length less than n', for

brevity). The formula has a combinatorial equivalent; but

D 3
= Lnei = S Entf



unfortunately the more bound variables there are in the

formula, the higher the type of the W's and K's in that equival-

ent. If there were an upper bound N to the length of the type

of the W's and K's involved, one could map all types not

greater than N into a higher type, and therein describe the

combinatorial process, and so obtain a formuls representing

the class of all closed formulae of the sort considered. But

since there is not such an upper bound, we proceed rather

differently, following the method proposed by Tarski in
(2)o

Tarski

We define the argument parts, and the value part,

of any
type:
a) A type whose type symbol congists of a single symbol
is its own value part, and has no argument part; \

b) The value part of 45 1is the value part of A ; the

|
argument parts of 3 are 2 and the argument }
/ ‘

parts of «.
Thus an element of any complex type may be considered as a

function of geversl arguments ranging over the various argu-

ment parts, and taking its values in the appropriate value

part, which is always o or ( . This way of looking at the

structure of a complex type is of course reflected in the
conventions concerning the omission of brackets in a type
symbol, For later use we define:

A=Nar, P4, ] if L 18" o o/

1 ¢
LS ~\rlwarv Ty o




A -Nar is the number of value and argument parts of the type A .
Consider now a function of type Kd,...{ym where K |
is © or t ; instead of thinking of it as a function of
several arguments, we may think of it as a function of a
sequence, the elements of the sequence lying in the types
Ay s e eeyd . 8Nnd the funétion taking its values in K, This is '
importent because if the lengths of the types «,,...,«,, are
less than n, then we can represent any such sequence in the
type (qv). Thus any function, none of whose argument parts
are of length greater than n, can be distinctly represented
in the type t,(NV); and it turns out that such functions
suffice for the making of a definition of the class of closed
formulae with bound variables of length not greater than n.
In what follows we use a number of conventions:
A,bt,Y are of length less than n; and n > 23
K is 9 or L
v is the type of positive integers; in connection
with it we use the usual arithmetical symbols;
X is an abbreviation for X,
Y is an abbreviation for X, ;
o~ is an abbreviation for va'
Lf] denotes the function of sequences corresponding
to the element Lwa. ..y for a sequence (z,...,x)
(£] (5 .+ 0sx) 18 £x...2, |
if x is in type {se¢., %2 1is in type B, otherwise it is

nonsense; (this usage is only required informally).

..........



We now introduce & number of definitions.

Seq,, A8y (Eny)(p)(R< m o Tot(sp) «&. p> m 7 sp = X).

Seqgs means that for the first so many integers - possibly
none - g takes values in )L representing elements of type not
greater than n, aend thereafter takes a nonsense value.

Alo

snves > A B, Myu, . (Eﬁe,L)(Typ_I’_ & r(sm) & ru)

V. 8m =X & = X ,

Is

Alosm gives the typical range of the mth member of s.
Cutypy =N mg8,07.(Tu,)(s(p + m) #X & u = sp)
Cutms is the sequence which is like g but with the last m

terms deleted.

Cub,yo —>Nmss p,.8(p + m) |

Cubms is like g but with the first m terms deleted.
Fir, ., > \0;8, 2, (7u,)(p<mé&u = sp)

Firms has the same first m elements as s.

<7
‘v“' oM :

- AEB,.8 =Am
AB=Cla, p ng,(Eﬁf)(mv)Q(—Clai
Ko m < A-Nar O Alosm = Alotm
& m =&-Nar 2
&.m SA-Nar D sm = X).
If A is K.{if\J(P then  -Clas means that 8 is a sequence
whose mth element lies in the image (in Z ) of the type P

We now turn to functions of sequences, taking their

values in i, ; L, of course contains image sets (under Map1)

of the types o and L.



& t( 25 % Yo, Divchlos = Alot &

Prof ('f is proper') means that there is

sequence of types

oy, oo iy, ‘such that £s

(inly) of K, if the elements .of 8 lie in

of the types d,,...,d,, respectively,

otherwise,

K =-F
== usi.,\"'ﬁ

\u .3

(Gx, J(Eg)(s = \m

“a, A = "“‘;

{ ‘,’f" -Fus {7{[_)",2 - '\ U

& X

FUSL ,qn 44’) ,\_g S (j‘

Prog ey =~ NE o .(E_s;.;-)(E_%L}\)(L-} { Seqs & Typa &

and fs

o X

= A -Fus[Appu(s(ds -Nar)) ] (Cut1y

eV

a type k and a
lies in the image

the images (in y )

is nonsense

& u = Maplq
& x = Map'qg).

.._.;) _S.E"(T_}S u,;) ﬂ <" Dubu é(. ;\:';—Clag

o)

phRB e . zi,)“_ﬁy (A-Subu & x =d -Fusus)
B & LAEn

If u is the image in ) of an element g4, then Fusu is-[g].

('Fus' stands for 'FUnction of Sequences'). If g is in 2 or
t, then Fusus is the image of g in i, if g is the empty
sequence, and is nonsense otherwise.

Las,, — Aﬁr-(fgz)(EﬂgJ(Eﬁ # X s(Sm) & u = gm).
Lasg is the last element of the sequence g.

MiX (o (e6) - \iud’g'& 84 (tgbl)(EL,-)(‘}eqi & 8 = Cutl; t

& Last = u & x = £t).
Sap, nf‘ir‘ﬁ\i-ﬁ’&gf (12 7“)(EHQ)(5 = Fusu & h = Mix£2>'
Dam o om0 ) = ,\gﬂyg’ (T_g”)(Et,)(Em;}(Proi & ft £ Y

& T

—

= Fusu(Firmt))




For brevity we now stop distinguishing (in these informal
remarxsj between an element and its image under Map, and we |
ignore the typical chaos that results. Mix [(Li.lg. t»
[io;g;] (where & can be greater than n). Sap [£,,]1[gs] is
[gﬂg.,,]. Dam[ £ . . I P Hxy,eo0,35) is e sy 5 Lo Ky
('Sap' stands for 'fﬁnctional APplication in terms of
Sequences; 'Mix' for 'the mixed case'; 'Dam' expresses the

author's, and probably the reader's feelings).

Doubﬁrmﬁw&fﬁ; 'a’\mi'iﬁfgnF Er‘(7§¢l>(Eﬁr>(SGQE & Xiw L£H
& t(Sm) = Damg(Cubms)
& (p)p<mosp'=1tp .&. p>mosp = t(sp))).
: »
Doum[f prs--edl8ys.. el is
/
['\‘z‘a'"X?'iir’;d{,--.ﬂ)a,L.'::.zé"'zz)(g\'z,u4;-}-(-2-"'5’;1)]

e \
where Ry eeoyByYy2,.00,8, are all of length not greater than n,

and the list «,...,B3, is of length m; if m is greater than

the total number of argument parts of f , then Doum[f£]lg] is

just [£]. ('Dou' stands for 'Double U', for Dou represents a

glorified version of W).

All; (o) ™2 O s‘..(')‘_}_C_L:IN)(EL,)) Seqt & g = Cubi;t

| & x =Map' § (r,)(Seqr & g = Cubl,p & £r £ ¥
L ) 1

i SO I‘.‘Iap1T)\ [ 4.

i




f satisfies Picm[f], if f is of the form

b
;‘\_}s’ ° o -_.Y.‘,:- . -_Z_.,\’_y__f.’
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where T ] stands for the conjunction of the given proposi-
tions, and B#e,c, means that B, 1is one of the constants:
§ {
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This is the definition that we set out to find. By a proper

closed formula of system (C) we mean a closed formula in which

.y only occurs in parts of the form ( FT§{ﬁ&{K§A3ﬁg)).

‘ ' o (_Q

Theorem VIII

If;éA is a proper clésed formula of type not greater
than n, and all the bound variables of A, are of type not
greater than n, and nv} 3 then

k-n—Gloé&\.
We shalll not give a complete proof of this theorem, but shall
content ourselves with demonstrating the following lemma:

If A, is as above, then [A,] is obtained from a finite

number of the functions of sequences
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by a finite number of applications of the operations which are
represented by Dou, All, and Sap.

Firstly we note that every (well formed) formula of (c)
has a normal form - i.e, for any formula D; there exists a
formal Eg such that - D = E¢ , and no application of rule II
to @é is possible, Because of the axiom of extensionality it
is sufficient to prove the theorem and the lemma for any
formula which is in normal form,

We suppose now that the lemma has been demonstrated for
any formula which is shorter than_ém; it is obvious if Ao
consists of a single symbol. i

Case 1. A, is of the form D¢s Be. Then D¢ must be

Noo Ceoways “arer) }hﬁcﬂ), or of the form (A,,.R,); for it '

v

cannot be of the form (sz.Mb), nor can its first proper

symbol be & free variable. If D . is il;0wjthen E, is of the
form (%x,.9,), where 1(f) < n, and so a single application
of All to L@&] gives [éJJ. In the other cases a single ap-
plication of Sap to a constant and a closed part of ém gives
Lawl].

Case 2. A 1is of the form

TN

where Dg consists.of a single symbol.
If P, is a variable then [A,] is one of the original list.

If Qb is a constant Bs(c(:), then [A4,] is obtained by an




application of Sap to [&2543;...¥V.Q ] ana [BA]
Case 3. Ay is of the form
AXs...¥y-Dse B
If D,. B, is of the form Taéxxkgsﬂﬁf), then [A,] is obtained,
by en application of All, from the function of sequences
[/\%3 o ':}IV'IZ% ‘_§)0]9
which corresponds to a closed formula of length less than the

length of A,; hence the result. If Dee is not fﬂﬁm, then

py E@ is of one of the forms

W~

B¢ Ee, LFIe N, BLYSRSy 5 oF s 770
(“Au\ ) }JDu )F‘,’» ’
(%6;ﬁ<ﬁ-yf,..yp);5, where z. , .~ is one of

Xty eeey, . But in each of these cases the type of E cannot be

greater than n; so that [A ] can be obtained by an application

of Doum (with appropriate m) to:
Dl R ¥y -Dge 1,

and [\gf...zr.@g ]

But these functions of sequences correspond to closed formulse
of length less than A, ; hence the result. This concludes the

vt

demonstration of the lemma, for due to the requirement that AL

be in normal form, no cases other than those considered can
arise.

To pass from this lemma to a proof of theorem VIII, we
should have to prove a large number of formal lemmas which

would show that the formulae we have introduced do in fact




o7

have the properties we have claimed for them,
do this,

we shall not

We now discuss some of the implications of theorem VIII,.

Firstly we remark that there is no essential difficulty in

extending it to the case where there are other non-complex

types besides o and ¢ ; in particular, if these types are o
and vV, or ¢, ¢, and vV, and there is an axiom which allows

the mapping of the integers one-to-one into the individuals,

then we can make the extension without altering the types of

the variables that occur in. the formula 'n-Clo' - except that,

in the first case, ¢ will be everywhere replaced by v

Secondly we note that it is possible to enumerate all

the functions of Sséquences which correspond to n-closed '

formulae, and that it is possible to define such an enumera-

tion within the system, and so produce a series of formulae ‘

'n—Enu«V' which enumerate all the 'n-clo' elements of type o

We shall say that an element of type & which can be

described by a closed formula with no bound variables of type

greater than n, and cannot be described by a closed formula

with variables of type less than n, is of order n. The term

was first used in this sense by Tarski (in (2)); but our mean-

ing of the term is slightly different from his, since his

system does not contain \ or L, and only contains the types

V,ov, 0(0v),... This means that the actual order of g given

quantity (say, for example,

a class of integers) will depend




on which definition is adopted, but whether or not the

quantity has a finite order will be independent of the exact

definition. We here remark again on the economy which is

achieved by using Church's system: in'(2) Tarski gives in

English (or rather, in German) but not formally, a definition

of 'of order 1'; this does not take up very much less space

than our formal definition (including all the concomitants)

of 'n-Clo'. The term 'order' suggests, and is meant to sug-
)

gest, the orders of the ramified theory of types, for our

'order' also serves to prevent Ssituations, which are analogous

to those that occur in the "linguistic' paradoxes, from

arising; indeed - assuming that system (8). is consistent

positive information

may be obtained from the attempt to set

up such a situation, For éxample, it isg perfectly possible to

set up in (C) a theory of all ordinals less than some given

oﬁﬂ; this is best done by introducing a Special virtual type

with certain additional constants. Then a suitable definition

of 'n-Clo' for the eéxtended system can be made, and one hasg

only to consgider the expression 'the least ordinal which is

not n-Clo' - an analogue of Grelling's paradox - to see that

n-Clo in the extended system is certainly of order greater

than n. By showing that it is possible to set up an explicit
well ordering of some of the elements of types o

ov), 00 (0V))

»ee+, Tarski (in (4)) has shown that the formula of 'of order

n' for these types cannot itself be of order less than




(n +1); I think it evident that his argument could be taken

over into our system, so we have: Il

Q LG'«) i
)

on the other hand, for the system based only on the types

b ~vn-Clo(n-Clo

and Vv, by simply substituting v for L, and using theorem VIII,

we have:

b (n + 5)-Clo(n-Clo™) (1(4) <n, n Y 3).

The 5 in this proposition could certainly be replaced by a

smaller integer; in Tarski's system the value in the equival-

ent proposition is 1. The question whether or not the
proposition
(X) ~n-Clo(n-C10%")

is provable remains open; it would be very surprising if the |

negation of (X) were provable., But by using a version of
Cantor's theorem we evidently have: ’

kfvn—Clo(n—EnuﬁJ).

We consider now an extension of the system (C); we
introduce a set of new symbols 'Clo® ' and a new set of
oAl

axioms:

(M) nig18% z,D cio™ Z5 (n 3)
and a new rule:

Rule N. From Clo~ A,to infer n-clo% A,for some integer n.
Thus Clo™ represents the set of all closed formulae of

type . It is possible to make a model of the simple theory




of types within Godel's system of

Wang (1)), and hence it is evident that, assuming the con-

sistency of set theory, one could prove the consistency of

the above additions. PFrom the theorems mentioned above we

can deduce?®
b ~Clo(Clo ¥ )

he (g, ) }’ (z4)(Clor > (Bm )(fm = £)) D 'v01oi.%

The latter theorem is an "explanation' of Richard's paradox.

4nd, as for (X), we do not know whether the proposition

~ C1o(C1lo®Y)

is provable or not.

If we confine ourselves to a system in which the only

basic types are o and V, then Clo evidently satisfies the

conditions (B) of section 4; this suggests that it should be

possible to construct a model based on Clo. But lemma A

and hence theorem V depends essentially on the formulae Bas

being closed, and therefore satisfying
3 \‘"i\ - e
I Bas 'Bas

Thus the method used for theorem V is not available; but

nevertheless it seems to me plausible that there could be

constructed a model based on Clo. (The chief ground for

this belief is my inability to see how one could possibly

prove the existence of an unclosed element in any type with-

out using either an enumeration of the closed elements or

the selection axiom,)

If such a model could be constructed

100

set theory (see Rosser ang




it would be evidently a minimum model, for the existence

of any element represented by a closed formula is assured,
Secondly the existence of such an inner model would ensure

that by taking just the elements representable by closed

formulae in every type one could construct (outer) general

models in Henkin's sense; and 'valid in every such model!

might be the definition of 'is a consequence of the axiomsg'

for which we were looking in the lagt section.

Finally I wish to stress that the properties Clo ang

n-Clo are not merely of logical interest, but have resl mathe-

matical significance. For definiteness, let us Cpnsider the

type oV - that is the real numbers between 0 and 1 considered

as binary decimals with the possibility of dual representation.

In a sense every mathematically definable real number between

O and 1 is representable by a closed formula, and Tarski (in

(2)candety)) susea the word definable in this sense. But by

enumerating all the closed formulae of type ov (or their

combinatorial equivalents), and applying Cantor's diagonal

process one does define - metamathematically - a number which

is not representable by any closed formula, Other possible

methods of defining such a number are: the number which

corresponds to such and such an ordinal in a well-ordering

of the real numbers; the number whose binary digits are

determined by an infinite succession of tosses of a Specified

coin.

But the first of these is not g proper definition




unless. g well-ordering is explicitly given; and if it is given
within the system it will be represented by a closed formula,
while if it is given outside the system, the definition is
again metamathematical. And the second proposed definition
is really absurd; for it refers to a physical process which
is physically impossible. Thus if we rule out metamathematical
definitions, we can conclude that all definable real numbers
are representable by closed formulae. Now whenever a real
number is mentioned in a mathematical argument it must be
referred to either by mesns of & description, or by meang of
e variable which has been restricted by hypothesis ('let x
be a number such that...'); and similarly for objects of
higher type. If we are right in supposing that a model ma.y
be based on Clo, it follows that any mathematical argument,
which does not use metamathematical considerations, can be
. interpreted as referring éntirely to elements representable
by closed formulae. (An exception might have to be made for
arguments which used the selection axiom, for it seems to me
likely that the axiom would not hold for type vv in a model
based on Clo, ),

It is not usual for mathematics, or mathematical physics
to concern themselves with objects of very high type, so that
the order of defined quantities is in practice very low. For
example, I reckon that the order of any computable binary
decimal is less than eight., Certainly the mental effort re-

quired in handling a concept increases rapidly with the length




of its type, and progress depends on inventing techniques and

analogies which will lessen that effort. For instance, the
analogy (and the accompanying techniques) between the applica-
tion of a linear functional to g function and the scalar

product in g finite-dimensional vector space has made pos-

sible an elaborste theory of functionals; a theory which

would seem incredibly abstract and hard to grasp to anyone

unfamiliar with the analogy. One of the reasons why modern

quantum field theory is so difficult is that it deals with
objects of rather high type - functionals of functions

defined on arbitrary spacelike surfaces and so on; but it

does not provide g convincing analogy with objects of lower

type, nor does it use an adequate notation. Indeed, if we

order the types in such a way that a lesser type can always

be mapped one-to-one into a greater type, then we might well

take the greatest type in common use as an index of mathe- J

matical progress'




CHAPTER TII.

Section 1. The deduction theorem.

The function of symbolic logic and of foundational
studies is not, in my opinion, to dictate to a subject how
it should conduct its arguments, but to elucidate the way
in which it does conduct them: the right words of appreciation
for a successful attempt are 'I see', not 'I hear and obey' .
To achieve this aim the logician must fix his subject at a
particular stage of its development, and then must codify, and
classify, and make more precise, the methods of argument which
it uses, and the nature and interrelations of its concepts.

And when he has done this, he should leave the subject free

to go its own way. He should be like a surgeon who performs
an operation to examine the condition of his patient, and to
display it to his students; and who, when the operation is
finished, says to the patient 'run along now, we'll take
another look at you later'. He should not be like an anatom-
ist who first kills his subject, or a Frankenstein who makes
monsters. By this last remark I do not mean to say that a
logician should never indulge his fancy; to do so is a
privilege which belongs to all mathematicians., But I do

mean that his first duty is to make a logical picture of the




subject he is studying as he finds it. I do not think it is

possible to give strict criteria for deciding what is g

satisfactory logical picture;

in particular it is not neces-

sary that the picture should be,“ as it were, a photographic

likeness. (Poincaré believed that it should be; hence his

disputes with the logicians). But if the picture is violently

non-representational it cannot,

eévidently, fulfil its purpose -

to elucidate and éxplain. And I believe that the majority of

modern logicians are guilty of just this fault - the picture

they present is too hopelessly unlike life to be of any use.

For they assert that all propositions are either analytic, or

contradictory, or synthetic; while I claim that many of the
propositions of mathematics, and almost all of the propositions

. . . |
of theoretical physics are none of these things.

Of course, it all depends what you mean by 'proposition'.

Let us consider some of the possible interpretationg of

xX>3 |
a) 'x> 3' means the same as 2\§f.§ Dad

b) 'x > 3' means the same as '(gv)(z Pyd)e 3

¢) X > 3 is not a proposition, but a propositional

function (in the 0ld sense of the term), or a

matrix; it becomes a proposition when the symbol

for an integer is substituted for ¥

d) X > 3 is a proposition whose truth value depends

on Xx.
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Interpretation a) can be ruled out straight away, for it

leads to hopeless confusion: according to it, the presence of

the free variable X indicates that the expression is a

function of an integral argument. GConsider the proposition

(X) Az,.2>3) = (\x,.x > 3);
by a)

(x> 3) = (x> 3)

will mean the same as (X). But it contains the free variable

X, eand s0 is also a function of an integral argument; which

is absurd. We may note that the interpretation a) is based
on the seventeenth century convention of writing 'f(x)' to

mean 'the function f', and the consequent (or precedent ?)

failure to distinguish between s function and its values, 5

Fallacies based on confusions similar to the one we have

expounded do

°
s

still occur in papers on theoretical physics1

of course they can only arise when functions of functions are

being considered.
In system (C) a proposition which hag been proved (or an
axiom) bears the interpretation b). But a proposition which

has not been proved does not: for although

£, > 3¢ (2,)(x573)

(1) See for example Eddington (1), pp.26-27; H® is regarded
both as a function of the occupation function J, eand of
the state parameters Xy, which are the arguments of A
and a detailed analysis of the argument shows that this
does really represent a confusion of the kind considered.,




is a valiag inference (rule C.VI), it wil1l never in fact be

used, because it does

not lead towards the proof of any

broposition; an uncertain proposition, in the senge of inter-

pretation d), occurs only in contexts which involve - sooner

or later - an application of the deduction theorem. This

is one reason why the deduction theorem ig important; it

allows contexts in which expressions can bear the interpre-

tation d). And it may be noted in passing that the objec-

tions usually raised against material implication fail when

applied to a system which allows the interpretation d); for

if A, and B, are two uncertain propositions, and if

o e
then B, reslly ig a consequence of 4, - that is, everyone |

would agree that Bs is a consequence of A,

» 4

Of course it is possible to get up a satisfactory system

based on the interpretation b); the first objection to such a

|
|
system is that it is unbearsbly cumbersome to use. For con- 3

sider a step in g proof in system (C) - g proposition 4,, say;
the corresponding step in the system considered will consist

of an implication sign, on the right of which will stand A,,

and on the left of which will stand the conjunction of all

the uneliminated hypotheses which have been used in the

derivation of 4,. A glance at some of the proofs in sections

254, and 5, will show why such a system simply is not

practical,

A second objection against systems of the king
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considered is that they depart from normal mathematical

usage; for 'x > 3' on the page of a mathematical work would

never bear the interpretation b). A third objection is that

it does not allow free variables to be used as names; thig

will be discussed shortly.

e now discuss interpretation ¢); be it noted that we

can force system (C) to bear this interpretation simply by

asserting that formulae containing free variables are never

.propositions,' and that free variables do not represent ele-

ments of the appropriate type, but are Just symbols which -

if not restricted by hypothesis - may be replaced by the name

of an element of the appropriate type, or may be generglisged
on. We are going to show that this interpretation is not

suitable for the elucidation of the concepts and the methods l

of argument of modern mathematics,

Before doing this we make more precise the notion of g |

name. By a name we mean an unabbreviated closed formula of

system (C) (possibly extended by the introduction of a number

of virtual types). Two closed formulae are (provably) names

of the same object if they are (provably) equal,. A short

name is an abbreviation for a closed formula (e.g. ‘

'"Tra

is a short name). A nickname is a variable restricted by
hypothesis; (if the reader considers this too light a word

for a learned work he may use the term 'improper name'

instead). Now certainly names (excluding nicknames) in our




sénse are names in the accepted sense - accepted, that is,
by those who would not reject system (C); for example, the
integers all have names - viz. the formulee \f x .£(...(fx)...)

of type J, or the formulae S(...(S0,)...) of type v. Many

people however - for instance the authors of Principia Mathe-
matica - would claim that our definition was too narrow, They
would urge that the individuals, and some of the elements of

type eL(correSponding to atomic propositions), for example, do
have names. I agree that one may wish to introduce a type

of individuals with names - to represent, say, a series of

events., But such names will not be purely logical, and are
therefore best represented by introducing a series of addition-

al constants, A, By, D,,...; personally I believe that only

a finite number of such additional constants are necessary - '
that an infinity of names always involves a rule of generation ‘
from a finite number of symbols, as in the case of the names [
of the integers. However that may be, there certainly are
occasions when one wants to deal with a type of individuals

which do not have names - the points of space, or the elements

of an abstract set, in the sense in which that term is used

in abstract algebra or general topology (for examples see

Boubarki (1)). And in classical mathematics too, there are
elements - the non-definable real numbers, for instance -

which do not have names. These elements constitute, as it

were, a sort of underworld; for while the 'respectable'




eélements have proper names, the inhabitants of the underworld
can only be known by nicknames; and although, admittedly, one
cannot identify someone by a mere nickname, one can at least
make some sort of reference to them. But under interpretation
¢) neither free nor restricted variables are names at all,
but oﬁly symbolic devices; and hence the elements of the
underworld become unmentionable - except in the mass.

Let us consider some examples. First, supposing to (@)
there be adjoined the axiom and rule (N) which govern the
use of Clo, and also the axiom:
(U) (Ez,,)(~ Clor),
and consider the expression

(R) ~ Clor_, .

v

Under interpretation ¢) this is a matrix which becomes a |
false proposition if we substitute, say,

Am,.T
for r; but there is no substitution which makes it a true
proposition. On the other hand, because of (U), the general-
isation of its negation,

(z,,)(Clor)
is provably false; é curious state of affairs' But (R) is
certainly an expression which might occur in a mathematical
work - as 'let r be an undefinable binary decimal'. Before
settling finally against interpretation c), however, let us

consider some of the ways in which the situation might be




met by the proponents of c).

1). They might reject the axiom (U); this position is
not unreasonable, especially when it is remembered that it
may be possible to base a model on Clo. We will call it
a 'definitist' approach; it amounts to denying the existence
of the underworldl, :

2). The proponents of c) might claim that all elements
really had names, (those of the underworld being kKnown, I
suppose, to the prince of darkness); but that the names of
elements not representable by closed formulae were secret,
and beyond the ken of our limited reason. I believe this
opinion would have been advanced - or at least defended -
by Ramsey when he was writing (1). But it seems to me that
one who holds this view is as much a fraud as the man mention-
ed by Wittgenstein, who promised to instal a telephone in |
every house in Cambridge, and who, when shown & house without
one, said 'Ah well, you see, I've given them an invigible
telephone' .

Consider now another example; let the type ¢ represent

(1) More refined positions are also possible! The con-
structivist will only admit the existence of those highly
respectable members of society - computable elements -
wnose names guarantee that a search in the library of

the college of heralds will eventually yield further
information about them; while the social world of the
finitist is limited to members of the royal family -

the integers, which, as Kroenecker remarked, are there

of divine right - and their closest relstions.




an abstract set - that is let C, be the only named

individual . We define:

Casw_m = AR, .(gc_t,‘zv,gb)(z AC&y #£0C & 2k i0s%,, Dy

PXy £ C & px(pyz)

p(pxy)z

& pXy = pyx).

Thus Casp means that P is an associative commutative product

defined on the set consisting of all the individuals except

C. It is easy to prove
- Cas_g“b T)‘VIHVQ%L,
and hence
1- > Ca S,]{fuut

for any closed formula Pice .« On the other hand, I cannot

believe that anyone would assert the proposition

(EL;L)(“} C&S_’Q);

in this case the underworlg is, as it were, too respectable

to be denied, and so the defence 1) of interpretation c),

no longer possible,

is
Defence 2) this time is more reasonsable,

for one can produce eéxamples of named commutative and associa-

tive products (on the integers or the real numbers). But I

think it misrepresents the case: for, according to it, when

the hypothesis

Casp

wb

is made; when, that 18, the algebraist says 'let p be a com-

mutative and associative product be given on sn abstract set',
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what is really meant is 'consider, say, the ordinary multi-

plication of integers'. But I think that the algebraist means

what he Says; he is not concerned with how the product is

given, nor with the nature of the elements of the set, nor

with its cardinal number:

and it is the tasgk of the logician

to express this meening in logical terms, not to tell him

he means something quite different.

We may sum up in this way: we imagined elements which

were either too random or too abstract to be representable by

closed formulge. The proponents of interpretation'c) denied

our right to imagine elements of the firsat Kind, and assured

us- that when we mentioned an element of the second king we
. . < " . = |
were really only mentioning some particular - though unspecified -

concrete instance, Proponents of interpretation b) would say

|
that elements of the kinds considered can only be referred to ‘

£n masse, so that when we

& bound variable, We said at the start that it all depends on

what is meant by a broposition; those who wish to assert that

many of the proposition-like €Xpressions of mathematics and

physics are in fact matrices, and that Symbols which appear

to refer to mathematical gng physical quantities are in fact

only bound variables, are free to do so. I hope that by the

end of thisg dissertation I shall have gsaid enough to show that

such people should be thought mildly eccentric,

There is a way of referring to meémbers of the underworld




what is really meant is 'consider, 88y, the ordinary multi-
plication of integers'., But I think that the algebraist means

what he Says; he is not concerned with how

the product is

given, nor with the nature of the elements of the set, nor

wWith itgs cardinal number: and it ig the task of the logician
to express this meaening in logical terms, not to tell him
he means something quite different .

e may sum y in this way: we imagined elements which
Db

were either too Tandom or too abstract to be Tepresentable by

closed formulse. The proponents of interpretation'c) denied

our right to imagine elements of the first kind, ang assured

us:- that when we mentioned an element of the second kind we f

‘ J
were really only mentioning some particular - though unspecified - | i
concrete instance. Proponents of interpretation b) would say

that elements of the

kinas considered can only be referred to
€n masse

y A8
—_— 2P 5U

such element we are mérely writing or uttering the symbol of

& bound variable. We ggig at the start that it all depends on /

what is meant by a Proposition; those who wish to assert that

\
many of the pProposition-like €Xpressions of mathematics andg

physics are in fact matrices, and that Symbols which appear

to refer to mathematical gng physical quantities are in fact

only bound variables, are free to do so. I hope that by the

end of this dissertation I shall have gaig enough to show that
Such people should be thought mildly eccentric,

There is g way of referring to meémbers of the underworld
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which has not yet been mentioned, and that isg by introducing

a constant selection operator in every type, which, as it

were, hauls out g hostage; but thig method involves the very

strong assumption that asxiom (S) holds in every type, and

also destroys the symmetry of

Y1),

an abstract set (see theorem

The interpretation d) is capable of a semantic formula-

tion as follows: a class of models (e.g. the class of standard

models) is chosen. A formula Ao which ig interpreted as truth

in some of the models and falsehood in others is an uncertain

proposition; either it or its negation may be taken ag hypo-

thesis. The r'ange of a free variable Xx of A, , when that

variable is restricted by the hypothesis A,, is the set of all i

the interpretations of gg in all those models of the given

class for which the interpretation of A. is truth. A proposi-
tion B, is true on the assumption A,

if the interpretation

of B, is truth for eévery model of the given clasg for which

the interpretation of Ao is truth, As before, we regard

this formulation as providing a reasonably precise but

intuitive meaning to the various terms, not ag providing

formal definitionsg,
Finally we recall once more the english rendering of A

considered ag a hypothesis: 'let us imagine that A, is true

for some elements, and let such an element be denoted by (the

nickname) K«f- And herein lies the philosophic importance of
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Section 2. Mathematical Structure.

The elements of type { other than C, form an abstract

or structureless set;

no particular element can be singled

out, the only binary relation that is singled out is the

identical relation me, and so on. For definiteness we will

assume the axiom (I), so that the set considered is not a

finite one. If now we are given an element X4 in some type

A, we say that X, determines a structure on the sety Xy may

single out some particular individual, or a set of individuals;

or it may be a successor-like function S, , so that every

individual may be expressed in terms of it, through an expres-
sion

Mapn, S, (1x )(y )(S,. .y £ x);
or Xy may be an invariant element, so that it does not in

fact determine any structure at all. For the sake of uniform-

ity we say in this last case'that X determines the

the symmetric structure on the set.

logical or

ihen shall we say that two elements X4 and Y; determine

the same structure? we give two answers to this question;

the first is provided by the formula:

Samile —» AL x,.(p. )(Perp ..

Trapx = x = Trapy = y).

X& and Ys define the same structure in this sense (the

!



extensional sense, as we shall call it) if the subgroups

the permutation group on the abstract set which leave X, and

Y, invariant are the same Subgroup. Sam{”Yﬁ defines the set

of all elements in type 4 which define the same structure as

Y. With this definition w

€ can actually define the structure

determined by X, as the subgroup of permutations which leave

it invariant:

£

 Yhm cenbjughims pit . Perp & Trapx = x .

('Exu' stands for '"EXtensional strUcture'), .

2,1) F Samx, Yo =  Exux = Exugp.

Next we define:

Af ;
Wea_ﬁr - \yf x,_(p‘b)(Perp & Trapy = y |
W ¢ o s | - \ = e o - ‘ i
’ . 2. Trapx = x). |
Mo ik i X§ﬂc(ﬁac)(Tra£§ i R Ih)'

The structure determined by X is Weaker than the structure

determined by Yp if the subgroup of XA(i.e. ExuX ,) includes

the subgroup of Ye. The weakest possible structure is the

logical one. MonX, means that X4 determines the strongest

possible structure; that 1s, no permutation other than the

identical one leaves X 4 invariant; we say then that X is

monomorphic,

2.2 Samy , x = (Qgﬂﬂ)(Invf & X = fy)
H.4 Samzfxzﬂ\ (x,y)




-xi&-(724>(EELL>(PeP2 & Trapy
[

& Trapu =°g)" (f£)
3 Invf & x = fy
n H A OH. P BE of#%2%9]) (B¥, H.2).
5 2.8)

The omitted steps in the above proof are straightforward; we

note that the map f defined by H.3 is a one-to-one map of the

set of all the conjugates of y onto the set of all the con-

Jugates of x (see section 2 of Chapter I). If x and y are

invariant, they are themselves their only conjugates.

Given an element Xp, there will be g range of elements

which can be defined explicitly in terms of it, by expressions |l

gygxﬁ, where ET 1s a closed formula; by theorem II all these li
elements will determine the same extensional structure as

Xp. But the converse is not true, and this leads us to make

an intensional definition of 'determining

the same structure'
as follows:

\ gy.(EJ,q,gw1)(Clof & Clog & x = fy & y =

,m
]
p

X

may be represented by a formula whose only free variable is v,

and vice-versa. It is perhaps worthwhile to give an example

showing the difference between Sam and Mud. Let there be given
a set of individuals Hy having the cardinal n, and an individual
Xn, for each positive integer n; and let the sets Hn all be

distinet, and let no Xn belong to an H,,

and let every




individual be an Xp or belong to an H,.

We define functions (of type 1t) £ and g as follows:

a) if y belongs to He, then fy = x,, and gy = x,/

b

where n—-»n' is a permutation of the positive

integers;

b) fX;,‘ = Xr\ = Xy,

Then it is fairly obvious that f and g determine the game

structure in the extensional sense, but they will only be ex-

pressible explicitly in terms of each other if the permutation

nwyn' -ig explicitly given; if we assume that there exist

random permutations, not representable by closed formulae,

then there will exigt functions f and g which are not mutually il

interdefinable .

Of more fundamental importance than the concept of the

sameness of two structures, is the concept of isomorphism.

Let ¢ and K be two basic types, and if &

is a type symbol

not involving K, let &4 be the type symbol obtained from £

by substituting w for . throughout « ., Then an element of

type &, and one of type A , are said to be isomorphic if they

satisfy Isogi 54 , Where:

Iso .3 — NZg.x, (BE ) (Ontf & Trafy = x).

If in this definition we substitute w for L, that is if we

consider two elements determining structures on the same

abstract set, then we simply get the definition of YGotl . . The

above definition is that usually given for the isomorphism of




two structures (see, for example, Bourbaki (2), and also the

discussion below). But it is obviously better to regard it as

only defining isomorphism between two elements. For example,

let the function f be defined as above, and let g be defined

by:
a) if y belongs to Hy, then gy = x,;
b)) Bk, Xnls WhoPe- @ i an explicitly given
permutation of the positive integers.
Then f

and g determine the game structure in both the ex-

tensional and the intensional sense, but they are not iso-

morphic. We therefore introduce new definitions for the
|
isemorphism of structures.
_ ‘
Let o, > be type symbols in which, respectively, 6 |

’ ’ [l
do not occur.

is;mr = \Xﬁ_§%.(ﬁ£LK)(Ont£ & Mud(Trafy)x);

ES0,.n — A2ﬁ~§&f(E£¢K)(Ont£ & Sam(Trafy)x) .

! ]
stands for 'Structural ISomorphism', and 'Eso' for

'Extensional definition of structural iSOmorphism'). I

believe that in normal mathematical usage refers to Sis
rather than to Eso; for eéxample, one might talk of the

isomorphism of two topological structures, one of which was

defined on a set in terms of neighbourhoods, the other being

defined on a different set in ter

1

ms of closure.
do not know if a definition similar to our 'Sam' has

been given before or not. I think the original definition

1:g

3y

o, e
BN
“:‘ X

X,

AN
x
2
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(due to Russell ?) corresponded to our 'Iso', only n-ary
relations being considered as arguments., The most modern .
definition is that given by Bourbaki (in (2)); starting from \
a number of basic abstract sets, he defines the ladder of
sets based on them as all those sets which are obtained from
them by successive applications of the operations of forming
the set of all subsets of a given set, and of forming the
direct product of any two given sets. A gtructure is deter-
mined by any element of any of the sets of the ladder. Two
elements determine the same structure, if there is an explicit-
ly given one-to-one map of a part of the set to which one of
the elements belongs onto a part of the set to which the l
other belongs, the said map carrying one element into the
other. If, as I think is intended, we interpret "explicitly
given' as 'representable by a closed formula', then this
definition is almost the same as our 'Mud', being possibly a
little stronger. Of course both 'Sam' and 'Mud' may be
generalised to the case where there is more than one basic
type, and to any element of a set of the ladder there cor-
responds an element of some type and vice versa. Bourbaki's
definition of isomorphic structures corresponds exactly to
our Iso and therefore two structures which are the same in
his sense, are not necessarily isomorphic in his sense. I
consider that all the definitions we have given have their

uses, and that there is no point in trying to decide which

are the 'correct' ones.
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We have only discussed the structure defined by a single
element, Because any finite number of different elements can
all be rolled into a single one in a higher type; for instance
by forming:

'\y,’-.x .>_C=Xk &..-&Z=Yﬁ %

& — ¢ |
Thus far we have ascumed that the element Xi which

determined a structure was simply '

given'. We now consider
how it may have been given. Were it explicitly given, that
is representable by a closed formula, the structure it de-
termined would be merely the logical structure. $So we
suppose that it was required to satisfy an axiom %C&Xp(,
where A,. 1is a closed formula. (For at the beginning of 1

any discussion there must be a definite statement of the f

subject of discussion, so that if A, . were not a élosed
formula, then there would have to be a formula Bosr), which
indicated the range of A,.; if B, were not closed, there
would be a formula which limited its range, and so on; the
final formula in this series would be closed - though
possibly by the trivial form,lgh.g = d - and we should
treat this final formula as the axiom, and the other formula
of the series as elements which were given by it.)

The consistency of the axiom might have been established
by the method of virtual types; but this is not essential.

There is no reason why one should not discuss the consequences

of an axiom which is not known to be consistent: all one
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requires is the assurance that it is not known to be incon-

sistent. The discussion of an axiomatic system can thus be
regarded as an application of the deduction theorem, there

being two initial hypotheses:

(H.c.) (Ex,)(4o%);
(H.P) AoaXy (X).
The first of these - the hypothesis of consistency - is

usually made tacitly rather than explicitly. The second

which we shall call the principal hypothesis - is often put

in the form of a definition; e.g. 'We define a base of

neighbourhoods to be a set of subsets of the given abstract

set which satisfy the following conditions T

'nick-
names' which are introduced by (H.P), and which we have
denoted by X,, are thus often made to sound rather imposing;
but the fact remains that they are just names for variables
which are restricted by (H.P) - although when the axiomatic
system is applied to a concrete instance (the real numbers,
say), there may be elements with proper names which satisfy
the axioms.

The reason for giving the restricted variables of (H.P)
distinctive names is that they are regarded as the significant
quantities of the particular axiomatic system under discus-
sion, and (H.P) is not eliminated until the discussion is
over (and then the elimination is usually tacit). There may

well be other existentially quantified variables of A X4,
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which could also be restricted by (H.P), but which are not
because they are not considered sufficiently important.

For éxample, one axiom governing a bage of neighbourhoods

B\;‘LU‘—) is:

(8,0,%4)(Ew, )(Bu& By .0, Bué&we (upv));

where we have used the ordinary set theoretical notation., Using

the selection axiom the above can be proved equivalent to:

(1*32;%(-&;,(%, J(u, ,¥, )(Bu & By .D, B(fuv) & fuv (u v)),
end so f might also appear as a restricted variable of the
principal hypothesis, but in fact it would not be thought
significent enough for this to happen1.

From an axiom A,aXy one can deduce a certain amount about
the elements which satisfy it. Since Aox 1s a closed formula,
all the conjugates of an element which satisfies it must also

satisfy it. If any two elements whic satisfy the axiom are

conjugates, the axiom is said to be categorical. One might say

(= Je)

that an axiom was isomorphogenetic if all elements satisfying

it determined isomorphic structures (taking either the ex-
tensional or the intensional definition). PFurther definitions
concerning axiomatic systems will be found in Tarski (3); a
perusal of that paper will make it clear how much better the

notation of system (C) is suited to the discussion of these

problems than that used by Tarski.

(1) PFor argument's sake I have assumed in this discussion
that the intersection of two neighbourhoods of the base
does not necessarily itself belong to the base.




Finally we note that if it is possible to base a model

on Clo, then it is also possible to base a model on all those

elements representable by formulae whose only free variables
are X, and variables of type ¢. It would follow then that
one could actually produce an enumerable model for every
axiomatic system; of course the existence of such models is

guaranteed by the Lowenheim-Skolem theorem.




ection 3. Theories.

The purpose of a theory is to bring some sort of order
into a mass of given facts, and to make predictions concerning
future facts. It must be admitted that part of the difficulty
of this process is deciding what is and what is not a fact;
but we are going to suppose that this matter has been dealt
with, and that the facts with which our theory has to deal

have been collected and presented in some kind of standard

form, and that there is a presumption that future facts will

also be able to be put in this standard form. This presump-

tion is essential to the theoretician because one of his chief ‘
activities is the consideration of imaginary facts; if for
example one were to sprout an entirely new kind of sense
organ every day one would hardly be able to theorise about
one's experiences. Our assumption is not so restrictive as
might at first be thought; for a sufficiently long and com-
plete motion picture could provide all the factual material
required for a wide range of theoretical subjects, and a
standard description of such a film, frame by frame could
easily be arranged. The facts in this case could, for
instance, be described by a function of type ovv; the first
argument referring to the frame number, the-second to the
number of a small cell within that frame, and the value being

T or F according as the cell was white or black. We shall

¥



Suppose then that any conceivable get of facts of the sort

with which the theory is to deal is describable by a single

element in some type &. We wish to allow a conceivable set

of facts to contain an infinite amount of information, while

an actually obsgerveqd set will, of course, contain only a

finite amount of information,

vl Q,K,..., to refer to observed sets of

We introduce symbols

facts; since

they represent only finite amounts of information, they will

presumably be representable by closed formulae, For example

a P, might be;

NL, 434 & 435 & duq.

By a theory which deals with facts descr

function of type §,

ibed by a |
We mean simply a closed formula of
type 051; We suppose that any requisite virtual types (and

in particular v and p ) have been included in the logical
system. Thus we confine our consideration to theories which

are capable of definite logical formulation - so that, for

eéxample, the Freudian theory of the censor would fall outside

the scope of our remariks.,

We give an example of a theory. The facts are described
by an element d of type PV, which may be interpreted as
observations on a number of occasions of g real valued

quantity, the value on the nth occasion being dn. The theory

is given by:

(1) I owe this definition to A .M, Turing.




Theo(nﬂ =5 )qu;_(Emv,gﬁdp/,ﬂﬁ/)(MOthq &

/ I

d = An, .Dism(q1, (1{eag))(o_2,(aeag))‘) 1

Here MOtG(;s’vunﬂv' F Disﬂhnquq, , Rea,,, are abbrevia-
tions for tnree'closed formulaé which we shall not give
eéxplicitly; we shall make their meanings clear directly. The
first thing that a theoretician does when he has made a
theory is to assume that the facts satisfy it; i.e. he makes
the hypothesis:

(H.A) Thed g (4).

This step may be compared with the hypothesis of consistency
(H.C), made when studying an axiomatic system; and, as there,
the next step is to turn into restricted variables those

existentially quantified variables which are considered of

importance. We again call this step the principal hypothesis:

(H.P) Mot@VﬂPJQW,r,
& d = \n.Diem (g oyovly (Ream)) (g ovoe2v(Rean))
(m,w,g

As in the case of axiomatic. systems this is the statement
that would stand at the beginning of a paper or text book;
we give a translation of it, thus providing the interpreta-
tion of thé symbols which appear in it.

'Let there be two particles; let the mass of the ith
particle be w,i,; let the kth coordinate of the ith particle

at the time t be given by qﬂww,;v lf k,. Let the motion of
4 .
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the particles take place in a space of m dimensions, according

to .the law of motion described by s
MOtmfﬂﬂrqumr .

Let the distance between two points of the space, whose kth

coordinates afe respectively gp,gv and g _,,k, be given by

Dism, X, 8oy . |

Then we suppose that all the above mentioned quantities are

such that the real number d,vn, which is observed on the nth

occasion is equal to the distance between the two particles

at the time t = n.' (Reap,.-gY means just the integer n con-

sidered as a real number,)

As for axiomatic systems, the question of just which
variables are to be restricted by the principal hypothesis,
and thus brought into prominence, is a question which cannot
be answered dogmatically. A rough answer is that all depend-
ent variables and constants which are of physical significance
should be so restricted.

In order to be able to discuss the general case, we
represent the principal hypothesis of an arbitrary theory by:
(H.P) Hes st ety Bt Rt bl (B l) «
We call the variables that are restricted by (H.P) hypo-
theticals; neither (H.P) nor the hypotheticals are uniquely
determined by the theory. 'Qoﬁ;*lﬂg' stands for a closed

formula, and we shall use the same symbol to denote the

appropriate formula for the example and for the general case.
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We now investigate the nature of the hypotheticals by a

study of transformations which leave H invariant. This |

analysis is more complex than any we have hitherto attempteqd,

because we have to distinguish not only between different

mathematical types, but also between the different occurrences

of the same mathematical type in the types of the hypothetic-

als., To this end we define the subtypes of a given type

as follows:

a) the value part and the argument parts of «

are all distinect subtypes of « 3

b) a type f is a subtype of «, if the value part

of 5 is the same as the value part of A, and all the
{

argument parts of s are argument parts of A; two such
subtypes are distinct unless their corresponding

argument parts are in each case the same argument

part of A ;

c) a subtype of an argument part of « is g subtype

of A; two such subtypes are distinct unless they are

the same subtype of the same argument part of A

By 'the subtypes of the hypotheticals' or just 'the sub-

types' - we mean all the subtypes of all the hypotheticals.

I think it obvious how the transformation induced in type A

by a given transformation1

in a subtype of A, is to be defined.

(1) The word transformation is used rather than

permutation,
because if the particular subtype is not an argument part,

nor a subtype of an argument part, the transformation of
A can be defined for any map of the subtype into itself.
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Suppose now we make some transformations of the various sub- Il

|
types which induce the transformations

and suppose that

(8 )(H,, ,.db ...28 ='H db

o) ~O0R 5 0
|

then we shall say that the given set of transformations forms

)
eeed/,

NOR L =

8 permissible set. Now I claim that s complete knowledge of

the physical significance of the hypotheticals may be obtained

from a consideration of all the sets of permissible trans-

formations.
Let me illustrate this thesis by reference to the example.

2 s . . . |
When I say that such and such a transformation is permissible,

I mean that its pérmissibility could be proved using the full

=

formula for The. The following transformations are permissible.

1) Any transformation

VW =W

LAPRY — oV

where w takes the same values as W for the arguments 1, a&nd

2¢. This shows that there are just two objects having sig-

nificance in the argument subtype of w .

2) Similar transformation in the (14) subtype of gq. (we
number parts of a type from left to right in the type symbol,
so that 1 always refers to the value part.)

3) The permutation

1, 2,

applied simultaneously to the argument part of w and to the
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I

|

(4) subtype (i.e. the last argument part) of 4. This shows I
{|

that these two subtypes refer to the same physical type; ang

as there are no further permisgible transformations which

yielad information about thig type we can say that it containsg

Jjust two interchangeable objects. Thege two objects can be

conveniently pictured as particles, which have propertiesg

Specified by W and g.

L) Transformations corresponding to translations and
rotations in an m-dimensional Buclidean sSpace, acting in the
(12) subtype of g (assuming that Dis and Mot are suitably

defined). Thisg shows that the second argument part of g is

not like g particle type, and that 9.0y 1,6, may be inter- ‘
preted as g coordinate in an m-dimensional Space,

5) Transformations corresponding to the Gallilean trans-

formations of space-time acting in the (123) subtype of q.
(Again a suitable definition of Mot is assumed.) In con junc-
tion with L) thig shows that the subtype (3) of

g may be
interpreted ag a time

coordinate,

Other transformations may well be possible, according to
the exact definition of Mot; but I hope the above brief

analysis will serve to show the way in which my thesis could
be substantiated. we may say that the principal hypothesis
confers a structure on the subtypes of the hypotheticals in
rather the same sort of way that the axioms confer g structure

on the abstract set of an axiomatic system, It may be noted

that we have required invar

iance for all possible facts; and




133

so the symmetries revealed in the permigsible transformations
are theoretical symmetries. If instead we considered only one
given set of facts then the corresponding transformations
would also reveal the factual symmetries.

To show that our way of looking at physical theories is a
really useful way we shall discuss briefly its application to
one or two problems.

1) Measurement.

The observations on which a measurement is based we
represent by a Pys ;5 what is being measured is usually a hypo-
thetical of a theory, or more likely, a function of the hypo-
theticals (for example, the ratio of two masses). The
theoretical proposition which expresses the fact that the
particular observations made mean that the function has a
particular value z say, is thus:

(R e nQ;rnQb)(Po;, dé& Hdb...a .2, Gb...a = Zy),
.
where gymw”ﬁ is the aforesaid function. It is obvious that
measurements of this sort - and most messurements are of this
sort - depend essentially on the assumption that the facts

do satisfy a particular thepry.

2) Counter-to-fact conditionals.

There has been a good deal of discussion as to the
logical status of such statements as 'If I were to put this
lump of sugar into my tea, it would dissolve', I consider

that when such a statement is made, there is always a theory



134

tacitly implied, and the statement is Just a deduction from
the theory, of the forms |

(de)(B. d & Thed .D" Q.ca)" l

0§ & l
If the listener accepts the theory, he will agree with tﬂe
statement; if he recognises the theory, but does not accept

it, he will regard the speaker as superstitious; and if he

can recognise no theory behind the statement g i ¢ open my

mouth wide enough the kettle will boil') he will think the

speaker dotty.

3) Operationalism

It appears to me that what the operationalists (see

especially Bridgeman (1)) think they are saying is either:

a) Ip a good theory the hypotheticals are uniquely

determined by the facts
or b) A good theory should be able to be put in a form

in which the hypotheticals are uniquely determined

by the facts.
But the first of these is contradicted by the fact that all
the great theories of physics employ quantities - like
coordinates - which are not uniquely determined by the facts;
and the second of these can be shown trivially to be true of
any theory. TFor let us modify the general theory we have
been considering so that its principal hypothesis becomes:

(H -I)' ) .f_,—_l-.,.“ % I{'{ = _I'go Ass-030 g’ & (E?—:'/" e "b‘{lz ) (i“'"\ 2 ‘if”

Now the hypothéiical,i here is uniquely determined by the
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facts; but on the other hand, by considering the transforma- 4

tions of its arguments Which leave f invariant one can recover

all the structural detail, so that (H.P') as it stands seems

an adequate principal hypothesis,

The most famous example of operational criticism is

Einstein's dethroning of absolute simultaneity; but the point '

here is that the theory of an immobile ether had already been

exploded by the Michelson—Morley experiment. Had that ex-

periment given the eéxpected positive result, absolute simyl-

taneity would have been operationally definable. Thus one of

the things the o erationalists are actuall saying is: 'Don't
b y

use the concepts (i.e. the structure of the hypotheticals)

of a theory after that theory has proved unacceptable'; and

of course they are right. Another thing they are actually

saying is: 'Use g theory with as few hypotheticals as pPos-

sible'. (See in particular Dingle (1)). And here they are

certainly wrong, for if thie were taken Seriously it would

lead to the accumulation of a mass of empirical laws, instead

of to those powerful and beautiful theories which are the
chief glory of theoretical physics.

4) Constructionalism

Bver since WMach people have tried to construct the

fundamental concepts of space and time out of the manifold of

possible sensations. (See WMach (1), Russell (1), Nicod (1),

Carnap (1)). In terms of a theory, for which the facts are




sensations, and of which the hypotheticals are the positionsg
of bodies in space-time, the main Principle of these con-

structions ig the formation of the function:

,\g;‘,’.(Ep'fq'.')(ﬁ QLO_...Q,',\);

this set of possible facts (or possible setg of factsg

i
bresents the particular valye &, of the hypothetical 8.
But it is now clear that thig representation only makes sense
if the theory is believed to be true; and if one accepts the

theory one might as well define the hypotheticals g

ccording
to

their place in the theory,

acter in a novel appears

does not make him more or less real,
I cannot pretend that the arguments I have given in

these brief notes are in any way final, nor that T have been

able to do more than skim the surface of some of the problemg
discussed; but I hope I have sgig énough to show that our
analysis of theories is not only suitable for the discugsion

of the form ang working of actual physical theories,

but also
helps one to see cle

arly into the more philosophical problems
of physics,

I believe that the firgt person to give publicity to the
fact that the concepts of physics were really hypotheticalg
introduced by a theory was Poincaré; he eémphasised higs point
by calling theories

conventions, and showed by examples that

€quivalent theories might introduce quite different concepts.

136
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The first statement of a theory in a logical form similar to

ours is given by Ramsey in (2), which paper was the starting !
point of our work. A recent account of a philosophy of physics
which is similar to ours, though not logically formulated,

is by Margenau in (1); his constructs correspond to objects

in the subtypes of our hypotheticals.

There are many subjects and questions we have not dis-
cussed, such as: the relations that may exist between differ-
ent theories; the requirements that are universally demended
by a physical theory; which of these requirements can be
satisfied by an appropriate reformulation of any theory;
whether the ideas of simplicity and elegance can be given a
logical formulation; the formulation of the idea of a funda-
mental theory. Questions similar to some of these have been
discussed in the past in connection with the ultimate physical
reality, rather than in connection with theories. They are,
in effect metaphysical questions. And I think a benefit of
the analysis proposed in this section is that questions which
have been dismissed by the positivists as meaningless, can

be reformulated in logical terms, and discussed in a logical

setting.




Appendix I. Equivalence of (C) and (C').

Wé denote by (C') the system described in Church (1)
as defined by rules I - VI, and axioms 1) - 10), 12).

System (C) omits axiom 6), restricts axiom 9) to types o and
v, and adds the constants C, and C, and axioms (D2). Church
regards axiom 12) (our axiom (T)) as a 'strong' addition to
the system, but Turing has shown that if the system is con-
sistent without it, it is consistent with it (see footnote
in Newman and Turing (1)).

First we show that elements C can be defined in (C')
which satisfy (D2). We denote by Lﬁ¢ﬂa the descriptions
operators of system (C'). Then we introduce:

ce = (1'p,)(2 £ p)
¢, = (Vx,)(xz £ 2)
tﬂiuﬁn wa\ﬂnc(fgh)(Ji 35X =t/f &Ko AJED X = GL)
where K is O or |, and (T§“> is associated with Lu\le
Then it is easy to prove the following (in (C'))

!

IE 0 2L okl Ui o) Sow)s
and '“df,\,f?dlwnicn = Cy (where K is o or t);
i.e. we have shown that L’ and ¢' satisfy (D).
Further, it is easy to show (in (C)) that the constants (a(sd)
and Cy, defined on page 8, satisfy the propositions (D) for
each complex type A, and thus that the axioms 9 ) of (G') can

be satisfied in (C).
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We now show that axiom 6) of (O'), namely

can be proved from the other axioms of (¢').

We introduce the abbreviations:
Bpa-%0(p 3 (p z p)
P, - ~T7',

Now we prove a number of lemmas:

(A) ot
(B) T' = B, ov. B =ip.
Bor — gy& po W Ve = Bo
(B)
(@) Lip SR T N L.oB,
eSS = D D eipi
LR T B L B e
(B) -2 (8)
(c)
(D) (ETL vt @) D 1w (=l o)
() (ZI(F' v £,%) D F' v (x)(2,, %)

Yer . ¥ v £_

(2 ) (Mg, .F' v £,3)x = £, %)
/\\X,»\(F' v L «\X) = _I_’.;,\\
i ‘CL‘;’-‘*\(}\X,}\V'B" v .f.\‘»\ .:Y) H‘) ‘,L\,\)iil/f\

(2)(p, v £,4%) 5 0, v (2)(L,2) , I

2.0, i

P.GC,

12) and IV.

Definition of
'=' and B,
P.C,

For both sides
are provable,

using (A) and
VI

P.C. and 12).
III and VI.

0o

10-"),

Definition of
1_1’»5 a(on) )
and IV,

0 6




If we now substitute

‘e, ((x)(p v £,,%) D .p v (x)(2,,x))

for £, in (C), use II, and detach (D) and (E) by V, we
conclude with 6‘). This completes the proof of the equival-

ence of (C) and (c').
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Appendix III. Elementary formal theorems. |E-

0aX) D By 5T aulBE) (L 02 DR, ) 4
(Ex2)(£00%) D p, -=. (2J)(£orx D p,)-
(ZQ)(LpaZ D BoaEhuswhnibE ) E22) D (X gasm)s

(E}_{'\) (..f_y); }_c> :) (E_}Sa‘) (gc;\.}.(.) . *:) ° (El(,’\) (i[\;\z :) _%\\‘LK) °
(

A

AQ;{;, &: ‘\J-QL,. . ? ° (’\E \3) (D ’B Z

J O
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