Formal Description of Programming Concepts - 11
D. Bjgrner (ed.)

North-Holland Publishing Company

© IFIP, 1983

Recursive Decomposition Ordering

Jean-Pietre JOUANNAUD

Cenire cie Recherche on Informatique de Nancy
Campus Scieatifique, BP 239
54050 Vandocuvre-ics-Nancy, FRANCE

Pierre LESCANNE
Centre de 3echarche en Informalique de Nancy
and
Laboratory for Compuier Science, Massachusellts Institute of Technology,
545 Technology Square
Cambridge. Massachusetts, 02139, U.S.A.

Fernand REINIG
Centre de Recherche en Informatique de Nancy
Campus Scientifique, BP 239
540506 Vandoeuvre-lés-Nancy,FRANCE

Abstract: The Recursive Decomposition Ordering, a simplification ordering
on terms, is useful to prove termination of term rewriting systems. In this
paper we give the definition of the decomposition ordering and prove that it
is a well-founded simplification ordering containing Dershowitz's Recursive
Path Ordering. We also show that the Recursive Decomposition Ordering
has a very interesting incremental property.

Résumé: L'ordre récursif de decomposition est un ordre de simplification
utilisé pour prouver la terminaison des systémes de réécriture de termes.
Dans cette communication, nous donnons la définition de I'ordre récursit
de décomposition, nous prouvons qu'il est bien fonde, qu'il est un ordre de
simplification et qu’'il contient l'ordre récursif sur les chemins de

Dershowitz. Nous montrons aussi que I'ordre récursif de decomposition a

une intéressante propriété d'incrementalité.

1. Introduction

Term rewriting systems are an important model for non deterministic computations [21]. Theretore,
methods for proving termination of term rewriting systems can provide a method for proving termination in
other areas of programming. Term rcwriting systems have also become a major tool in many fields related
to programming, like abstract data type specifications (e.g., to establish their completeness by the
Knuth-Bendix superposition procedure [13, €]). program verification, theorem provers, and decision
procedures for equational theories [1, 5, 24]. The Knuth-Bendix completion algorithm completes a non

confluent set of term rewriting rules into a confluent (ueiquely tenninating) one and is used 1o rove the

J.-P. Jouannaud et al.

equivalence ol abstract data lype specilicatiuns via consistency of theories [3, 8, 18). The Knuth-Bendix
completion algorithin requires a universal method for proving finite tarmination, as in Huel's proof (7). In
other words, if the terinination of the final set of rules is proved using a nocthcrian ordering, this ordering
must be sufficient to prove the termination progerty of all the intermediate els of term rewriting rules
g:2nerated by the algorithm. Unfortunately, Huet and Lankfcrd have shown tihat the finite termination of
torm rewriting systems is undecidable [Q]. Thus, it is impossible to find a universal procedure to check for
finite termination of any system, and people have been forced to look for specif ¢ techniques (see [10] fora

sarvey).

In that vein Gutlag, Kapur, and Musser [4] proposed a method based on superposition of terms which
ic similar to that used by Knuth and Bendix to prove confluence. Here we are mostly intercsted in
s inplification orderings. These are ordarings compatible with the struclure of terms and which have the
subterm properly. Dershowitz establiched that simplification orderings are powerful tools for proving
termination and proposed recursive path ordering [2] after Plaisted’s recursive path of sublerms ordering
[20]. These imethods use an ordering on the set of function symbols. In [15] and [16) a new ordering was
used to prove simply the well-foundedness of the recursive path ordering wh2n the ordering on function
symbols is total. In [22] and [23] it was shown that a similar ordering could also be defined when the
crdering on function symbols is only partial, capturing easily the case of terms with variables. This
ordering is a well-founded simplification ordering which has the additional useful properties. First, it
contains striciiy the path recursive ordering. Second, it is monotonic with respect 10 the ordering on the
function symnbols, i.e., it one increases the ordering on tunction symbols then one increases the ordering
on terms. We call the third inajor property incrementality: it is easy to find an expansion of the ordering on
the function symbols when a given pair of terms needs to be ordered. This idea might be used in the
Knuth-Bendix completion algorithin to build the required universal ordering in an incremental and

automatic way as the set of rules is completed.

In the second section of this paper we give classical definitions and notations about terms and

orderings [10]. In the case of a total ordering on function symbols the decomiposition ordering is based on

a decomposition of terms into three parts which are compared lexicographically [16]. In the case of a
partial ordering on function symbols these dccompositions are quadruples, and, instead of one
decomposition for a term, a set of decompositions is associaled with each term and comparisons of sets of
decompositions provide the decomposition ordering [22, 23]. The third chapter is devoted to extending
these concepts to ground terms (i.e., terms without variables). In Section 5 and Section6 the
decomposition ordering is proved to be a siinplilication ordering and a well-founded ordering. In Section 7
we prove that the decomposition ordering is more powerful than the recursive path ordering. An extension
of the decomposition ordering to non-ground terms is given in Section 8. The incrementality property is

illustrated in the conclusion.

Recursive Decomposition Ordering 333

2. Orderings and Terms
2.1 Set and Multiset Ordering

An ordering < on a set E can be exiended to the set <{F) of sets on E by:
S<KLTiIS#Tand V x (x€ Sand x€ T) = 3y (yC Tand y¢ S and x< y).
Intuitively, a muitiset on E is an unordercd collection of elements of E, with possibly many occurrences of
given elements. A multiset can be seen as a mapping E-»N where XN is the cet of natural numbers. Let
AL{E) be the set of all the finite multisets on E, i.e., the multiscts M such that th:eir supporl {x€E | M(x)#0}
is finite. The empty multiset { } is the multiset such that { }(x) =0, for all x in E. A set is a particular case of
a multiset such that S(x) is 0 or 1. Usully multisets are written as lists {x,... ,x} with a straightforward

interpretation. If M is a multicet, x€EM means M(x)> 5 0. An ordering on E can be extended to multisets
[11]by
M<K Niff M#N and Vy ([N(y) < yM(y)] == [(3 x€ E) y<x and M(x)<NN(x)]).
he extension to sets is a particular casc of the extension to muilisets. It the ordering is well-founded on E

the extensions are well-founded on AL(E) and HE).
2.2 Terms and Occurrences

I this paper we will deal with terims with fixed arity function symbols. But all the results can easily be
extended to varyadic terms. Suppose a set F of function symbols and a function ar:F— Nis given. T(F X) is
the set of terms on F with variables in X. s€ T(F,X) is either a variable or of the form (s 40008) with f€ F
such that ar(f)=m and s,,....s, are in T(F,X). T(F,X,0) is the set of box terms. A box term is either the
symbol [J or has the form f(s,,...,s) for f€ F such that ar(f) = m and there exists i€[1..m] with s,€ T(F,X,00)
and, for i#j, st T(F,X). Intuitively, T(F, X, O) is the sct of terms with one terminal occurrence of (. The
symbol 0] may be viewed as the empty term. It is used to deal with function symbois having fixed arities. If
X is empty, we will write T(F) and T(F,X) instead of T(F,0) and T(F,X,0) and we call these terms, ground

terms.

We assume by convention that ar(0J) = ar(x) = O for all x€X. Terms may be viewed as labeled trees
in the following way. A term is a partial function of _Nj (the monoid over N _ with ¢ as empty word) in
F U X, such that the domain or set of occurrences Occ(t) = {u€ N‘i | t{v) is defined} verifies:

(1) € € Occ(r)

(2) UICOCC(t(...t,...) iff Vi 1<i<ar(f) = u€Occ(t).
f u and v belongs to N* then u/v is a w€N% such that ww=u. In the following, |I] =
| {u€Occ(t) | t/u» T} | where t/u is the subterm of ¢ at the occurrence u. (fu—1'] is the term obtained by
replacing t/u by t' in t. We detine the set of paths of s as the set Path(s) = {p€O0cc(s)|ar(s(p)) = 0}. Given
a path p, the set of prefixes of p in s is Prelix(s, p) = {p€O0cc(s)|u<Lp} if s/p#0 and Prelix(s, p)
= {p€0cc(s)|u<p}if s/p=0. Given a path p and a prefix u of p, we define succ(u, p) as ui if ui€Prelix(s,
p) and succ(p, p) = w, we will state t/c0 = [, thus t/succ(p, p) = O. A substitution is a mapping o: X—
T(F,X) such that o(x) = x except for a finite number of variables x€X. It can be extended to a mapping o

T(FX)=> T(FX} by a(t(s,.05,) = 1(0(8,),na(s,)

]

T ————————
- —

-

e

R34 J.-P. Jouannaud et al.

2.3 Simpiification Orderings

An ordering < on T(F,X) is a simplilication ordering if it has the properlies:
Subterm Property: 1< i(....t,...).
Compatibifity Property: 1, < t, = f{..,t;,..) <T(.15.).

Dershowitz’s Theorem [2]: A term rewrriting system R = {g, = d, | i€ J} with a finite number of
is finitely terminating if there exist a simplification ordering < such that for all i in and fo
substitution ¢, o(g;) > a(d)).

3. Decomposition Ordering for Ground Terms
We define first the concept of elementary decomposition of terms in T(F, C1).

Definition 1: Given a term ¢, a path p€Path(t) and an occurrence u€Prelix(1,p), the clemel
decomposition dﬁ(l) of t in u along the path p is the quadruple <g, ', 7, "> where

g=1(u),

t'=t/succ(u,p),

Yis the multiset {t/uj | 1<j<ar(t(u)), i#succlu.p)}

" is the "box term" {[u—0O).
i1 the following, we never refer to the ciementary decomposition in u where (/u = [, thus we do not dé

such a decomposition.

Example 1: Let

! = d

TN

Ny
VA NN
| l

r r

then d2''(1) = <g; T ; {a); .
r
Assume now that a partial function Q: T(F)X.N: —>°}(N:). called an occurrence choice,

Q(t,p) is defined if p€Path(t) and such that Q(t,p)C Prelix(s, p) is.given. We extend the previous d
to the set Q(t,p) and we obtain the set dg(l) (or more simply d®(1) if this is not ambiguous) that we
decomposition of t along p:

d@() = {d0(1) |u€Qlt,p)}.
Note that for any Q and any p, d&([]) is the empty set.

Recursive Decomposition Ordering 335

In the same way, assume a partial function F:T(F)—»‘J(AN‘*), called paih cheice, such that P(t)CPath(t).
¥e extend once more the definition and obtain a set of sets of decompositions. dg(l) (or more simply d(?) if
;ambiguity on P and Q), that we call a decomposition of t:
dgin = (dQ(n | pCP(}-

ample 2: If ¢ is chosen as in Example 1 and if P(1) = {111,3}, Q(1,111) = {1.111} and G(1,3) = {e} then
f

L /"\ g/ \g\a Q‘ .g.
N={{im:) Ogadsn) < O () fywy) {6 a {niaima); O)),
', ma a s r r
r
We are now able to define the decomposition ordering. Notice that in addition to the ordering < on
this definition uses two other orderings 2.0“ and <. 20&’ is an ordering on T(F) and < is an
dering on decompositions which depends upon the choices P and Q. In order to simplify notations, the

ultiset extension of <, and %Op will be written <<, and %&()r’ instead of <OP<QP and gopgop'

Jain Definition: Given a partial ordering < on F, a path choice P and an occurrence choice Q, we

e the recursive decomposition ordering (or more simply decomposition ordering) & in the following

st it dB(s) <Kgp<Kge dB)

difs) =<k s’ £ 8™ <gp AN =Lg g™
in a lexicographicat way:
(dec.1) f <Fg
(dec.2) dpolsucc(u.p)(sv) << oF dg/succ(v.q)(,v)
(dec.3) 3¢ o
(dec.4) d“o(s”) <<OP da(t").

: 1) In general, we will have p€ P(s), u€ Q(s, p), g€ P(t) and g€ Q(t, g). Notice, however, that dﬁ(s)
di() has a meaning although p€Path(s)-P(s), u€Prefix(s,p) -Q(s,p), g€Path(t)-P(t),
€Prefix(1, g) - Q(1.q). We will use this fact in further proofs.
2) Cases (dec.2) and (dec.4) in the main definition do not use a path choice, because the path is
xed. Therefore it is not necessary to extend the concept of path choice for terms in T(F,0).

Full examples are given in Appendix.
heorem 1: 2Qp and <, are strict orderings.

Proof: We prove the property fcr <cp. It will be true fcr éop which is a multiset extension of <OP'
e proof is easily done by induction, since the extensions of orderings as lexicographical ordering or set

ering preserve together irreliexivity and transitivity. |

336 J.-P. Jouannaud et al.

4. Choices in Decomposition Ordaring

The choice of P and Q in the previous delinitions seems to be a main point. In this section, v
tv'o possible choices: the first one consists of taking all ihe occurrences and paths, the

cunsists of keeping only the maximum occurrences and paths (in a sense we will make precise
first one provides easier proofs and th: second one leads to mote elficicnt implementtions, bi
duefine the same decomposition ordering.

4.1 Entire Choice

Here we define two choices P, and Q,. They are called the entire choice because they corre

ofi

tc choosing all the paths or occurrences in the term. P is defined by P, (1) = Path(t). Q, isd

Q,(t, p) = Prefix{t, p). We will write dj and d: for the associated sets and sels of sets, instead

!
1
!
l
t
‘|
!
!
a
i

dgt . The associated ordering will be wrilten 2” and <,,.
*

In the following, we will use also the ordering <, and &,p associated with the choices Q, and

4.2 Maximal Choice

We define here the maximai choice which corresponds to selecting from among the patl

{ occurrences the maximal ones.

Definition 3, Maximal Paths: The set Mp(t) of the maximal paths of aterm = 9l nity) is defined by:
(1)Mp(t) = eifn =0
(2) Mp(t) = U iMp(t)
i€d
such that T = {1, | i€3} is a minimal and complete sel of maximal elements of S = {1t e,
Minimality (VLET)(V1,€T) =1, €,).

=k

Completeness (VliGS)(3li€ Tyt 2

iSasli

Let now define P, andQ .
P, (1) = Mp(1)
Q, (t.p) = {vEPrelix(t, p) | (Yw) [w<v = "(!(v) <l(w))] and [v<w<p = T(1(v) <pt(w)i}

We will write d® (t) and d? (1) instead of df, and dg< .2 and < will be the a

+ o+ +

orderings.
4.3 Decomposition Ordering is Almost Independant of the Choices

Our aim now is to prove that ¢ , . and 2" are the same ordering. More precisely, we want to
2" and 2013 are the same ordering if the choices exhibit the tollowing minimality condition:
P 2P, ().

Q(t,»)2Q (tp)forailp €P (1)

Recursive Decomposition Ordering 337

Lemima 1: Let pCPath(s) and u € Prelix(s, p). Then there exisis u'CQ , (s, p) such that di(s) <p dP(s),

fcr any choice that satisfies the minimality conditions.

Progf: Ifu€Q | (s, p) then v’ = u.
IfudQ , (s, p) then there exits u'€Q , (s, p) such that s(u) <s(u').
If s(u) <s(u’) the result is true.
If s(u) = s(u’) then u' <u and s/succ(u, p) is a strict subterm of s/succ(u’, p). Th resuit follows from (dec.2)
and Lemma 2. 1

Lamma 2: Let p€Path(s) and k<p. Then d2/*(s/k) << d&(s), for any choices P and Q which satisly the

minimality condition. The inequality is sirict if k¢ that ineans s/k is a strict subterm of s.

Proof: By induction on |p| - |«|
Basic Case: It |p| - |k] = 0, then s/k is a term reduced either to O then dg"(s/k) ={} or to the symbo! s(p)
which occurs in s. The result will be true if a symbol greater or equal to s(p) appears in the decomposition

of s, that comes then from the minimality condition.

General Case: Letu € Q(s/k, p/k). For any decomposition of s/k in u along p/k, we want to find a greater

decomposition of s in v along p. Two cases may happen:

- ku€ Q(s,p). Then v=ku works. The two decompositions are compared using case (dec.4) of the
main definition applied to d{(s/k[u—0]) and d?)“(s[ku‘—l.‘_l]). The result is obtained from the induction
hypothesis because the path ku in s{ku—0] has length Jku| - 1 < y|p]. the subterm occurrence being the
same (that is k).

- ku ¢ Q(s, p). Thus there exists v € Q, (s,p) = Q, (1, p) CQ(s, p) such that s(v)>s(ku). This case
divides into two subcases:
- s(v) > s(ku), then the result is straightforward.
~s(v) = s(ku), then v<ku and the result is obtained using case (dec.?2) of the main definition applied
to d'(’)/“s““‘"'P”"(s/k/succ(u.p/k) and ¢2/svect-Pp/succlv, p)). On one hand, p/k/succlu, p/k)
= p/succ(ku, p)is a strict subterm of p/succ(v. p) because v<ku. On the other hand,
lol = (vl + 1) = [(kul + 1) = (vl + D] = Ipi =1k = lul =1 < ylol - K]
The wished result is thus true by using induction hypothesis. 1

Proposition 1: <, and <, are the same ordering if the choices verily the minimality condition.

Proof: We prove s <! if and only if s <, 1 by induction on |s] + [(|. Both == and = ways use Lemma
1 in order to delete the sunplementary computation (for the = way) or to add the missing ones (for the =

way). L]

We now want to prove the equivalence of <, and <, . Once more the method is based upor a

lemma which proves that the supplementary computation performed by <, is useless.

338 J.-P. Jouannaud et al.

Lemma 3: Let s be aterm in T(F) and p 2 path in s. !poP+ (s) then there exist (/€P+ (z) such that:
di(s) <K, dis).

Proof: By induction on |s|. If p€Path(s) ~ P, (s), then there exists ¢, mEN% and i € N* such that:
-p = c.i.m.
- the sublerm s/c¢ belongs to a maximal class of the subterms at the depth c.
-, = s/c.idoes not belong to a maximal class of the subterm ol s/c.

In addition there cxists j€ X* such that

s; = s/c.jand si&‘psi.

Therefore there exists n€P(s) such that dj(s) <<,p di(s;). By induction, n can be supposed to
tclongtoP ™ {sl.). Clearly ¢.j.n belongs tc P | {s). Let g be ¢.j.7, then the result
d3Hm(s) << yp d5H(s)

is obtained by the following lemma.]

Lemma 4 Let s be atermin T(F) and ¢, n, m be in J\‘t and i,j be in .N+ such that c.i.n and ¢.j.m are paths
ins. 11 dP(s/c.i) <<, p d(s/c.j) then d§*M(s) <<, p d5H7(s).

Proof:By induction on [c| + |m|. For all prefix u of ¢.i.m, one must find a prefix v of c.j.n such that
dctM(s) <, pdS 1 (c).

Three cases can be distinguished:

1) u<c: then suppose u = v. The result is true by case (dec.2) by using the inequality
di"‘:""("'c'i"")(s/sw:c(u,c.i.m))<<,.P di”cc("'c Mg /succ(u,c.j.m))

which is true by induction hypothesis applied to s/succ(u, ¢) with |c/succ(u, ¢)| + Im| < e} +Im].
2)u=c.Thenv =c and the result is true by case (dec.2) and the hypothesis d7'(s/¢.i) << ,d}(s/c.j).
3) u<c. Then there exists hEN* such that v =c.i.h and K€ X*, such that: d]'(s/c.i) %,Pd;’(s/c.j).

Let v be c.j.k and let us prove dg_::;',"(s)<,pdg:}j"(s). If (dec.1), (dec.2) or (dec.3) are used, the result is
straightforward. If (dec.4) is used, that leads to prove d$*(s[c.i.he-0] <<, dSH(s[c.jk—DO] which
results from dﬁ(s/o.i[ho-D]) <<,p d¥ (s/c.ilk+-0]) by using the induction hvpothesis with |c| + {h| <xlel

+ |m|.]

Recursive Decomposition Ordering 339

Proposiition 2: <, and <, are a same orderinig it I verifies the minimality cendition.

Proot: We prove s%,Pl e sg.“l by induction |s] +). Both <= and == ways use lemma 3 in order to

dclete the sugplementary computation (for the <= way) or udd the missing ones {for the == way). i

Theorem 2: If the choices confirnto th e minimality condition, then the ordeting 20!’ and 2" are the

same. In particular, the orderings 2 P and %“ are the same.
Progf: We use successively Proposition 1 and Proposition 2, a

The definition of 2* , can now be made intrinsic, that means that instead of using <44 In the

dc linition of the maximal path and the maximal occurrence, we may use <, itself withcut changing the

+

ordering as it is proved in [22].

in the following, we write 2 for any decomposition ordering whose choices verify the minimality

conditions. We will use %” for the most proofs.

5. Decomposition Ordering is a Simplification Ordering

Subterm Lenima: t 2 f(....0,.0). Preof: By lemma 2.1
Compatibility Lemma: 1, € 1, = (...} ity

Proof: By induction on [f(....t;,..)] + (...t)1 Let p €Pathlf(....1,,...)) and u€Prefix(f(....1,,...),0). Two
cascs may happen. '
Case 1: p = kg and f(....t,....)/k #t, or u=¢. We obtain easily the result dg(i(...,11‘..A))<d5(l(.4..12....)) by
using case (dec.4) of the main definition and the induction hypothesis.
Case 2:p = kg and {(...,t,,...)/k = t, and u*e¢. Thus q € Path(1,). As 11%12, there exists q' € Path(t,) such
that (Vv<qg) 3 v <4q") ds(l,) < d;’.'(rz). If the proof of the last inequalily is by case (dec.1), (dec.2) or
(dec.3) of the main definition, the result is straightforward. If the proof is by case (dec.4) of definition, the

result is achieved by using the induction hypothesis.]
Corollary: 2 is a simplification ordering.

6. Decomposition Ordering improves over Recursive Path Ordering

Let us recall Dershowitz's definition of the Recursive Path Ordering [2].

Definition Congruence of Permutation: i(s,....s) z g(t,,....1) iff f= g and there exists a permutation o€Sn
*

such thats; = lo(i)'

Detinition: The recursive path ardering over T(F) is recursively defined as follows:

=1 1S,) Qllyt) =t
g :

(rpo.1) f=gand {s,,....s :)<2{11,...,rn)

w

340 J.-P. Jouannaud et al.

or (rpo.2) f<.gand for all s;, si%l

or (rpo.8) ~1f<gg and for some t séti ors: 4

this definition can be made "less deterministic”, by changing (rpo.3) to:

* *
(rpo.3') for some s <li ors=t

Theorem 3 (Dershowitz [2]): & is a simplification ordering. If < is is well founded on F, then &is

well-founded on T(F). lf <_is total on F, then 2 restricted to T(F)/: is total.

* o " .
We prove now that 2 contains <. We first prove some technical lemmas, which prove actually that %

is a fixed point of the functional which defines &
Lemma 5: d°(s)<<d(g(t,,....t,)) and [< g imply di"(l(s1,....sm)) <LK G(tyeat)

Proot: By induction upon |s/.

Basic Case:|s;]| = O, thatiss; = . The result is true because the only possible decomposition takes place
in e and because f <, g.
General Case: Let u<ip. Two cases may be distinguished:

-u = e then dP(I(....s;,...)) <d¥ (1) because [<g.

- u = iv, there exist w <g such that d?(s,) <d (¢). If the proof is performed by case (dec.1), (dec.2) or
(dec.3)of the main definition, then d;‘v’(s)<d‘v7v(1) in the same way.

~- If the proof is performed by case (dec.4), then we have : d'(s,[v—0])<<d*({[w0]). By the
induction hypothesis, we get d"(s[ive—D]) <<d"(({w—0]), which proves the desired result by case (dec.4)

of the main definition. 1
Lemma 6: For all i, s, &1 and [<,q implies f(s,,....s) &1.

Proof: Straightforward from Lemma 5. 1
Lemma 7: d*(s) <<d"(r;) implies d™((..;;s;,-..) <AV (.., tj.-.)-

Proof: By induction on [s]. We have to prove that for any p<iu there exist g<jv such that
dY(H(....5) < Y (I(.oot;p-.)). Two case must be distinguished.
—p=¢,then g = . The result follows from the hypothesis using (dec.2).
—-p=ip'. Then there exists g' such that dZ'(Si)<d;‘U])' It itis proved by {dec.1), (dec.2) or (dec.3) of
definition, then the desired resuit is proved in the same way. If it is proved by case (dec.4), then we
obtain d"‘(si[p'o—[]])<<d‘7'(1i[q‘o—D]) which proves the desired result by (dec.4). 1

Lemma 8: {...,si,...}2&{...,1].,...} = f(...,li,...)&f(...,ti,...).
Proof: By applying Lemma 7. | |

Lemma 9:If <_is totalon F, 2 is total on T(F)/:.

Recursive Decomposition Ordering 34]

Proof: By induction on max(le], [4f). Suppose <. is tetal and neither 2 nor t%s. let us prove that
st {. By the induction hypothesis, there exist in s a path p and an occurrence u such that dg:(s)gdg(s), for

all other paths p' and occurrences u'. The same thing happens for q and vin t. Let d be <f, s', ¥, s> and
d;(l) be <g, t', I, I'>. Because neither s%! nor l%s and by the induction hypothesis, f=g, s'-:{’, yi g

* % . * * - .o
(where = = is the congruence on multisets deduced from =) and s" =¢t"". Then itis easy to see thats=t. 1

Theorem 4: Given a partial ordering <. on F, we have % (= 2 If < is total then 2 = % Otherwise the

inclusion is slrict (whenever there exists a function symbol f€F such that ar(f)>2).

Proof: We can replace "iff" by "if" and 2 by 2 in the definition of recursive path ordering. By lemma
8 % verifies (rpo.1), by lemma 6 2 verifies (rpo.2), by subterm lemma and transitivity 2 verifies (rp0.3).
Then % c 2 is a consequence of the least fixed point property of 2. That ends the first part of the proof.

To prove that RS <p is total, we remark that both < and % are total ordering on T(F)/: and

* * ¥ s .
do not compare terms s and t such that s=t. As < C 2 we necessarily have %= & in this case.

To prove that the inclusion is strict if < is not total, we give a counter example. To build this counter

e«ample, we only need a binary function symbol f. Assume now a and b are incomparable and let

,/‘\. - /\
VANYAN N\ VN
/N, /\ /N N\

We assume without loss of generality that a and b are symbols of arity 0. If it is not the case we replace a

and

by a(....c,...) and bby b(...,c,...). Itisnot possible to compare s and t using 2 because

N . SN\ N L SN\
FANRVAN VANVAN

is false. On the other hand,

2 NN
AN

342

J.-P. Jouannaud et al.

is also false. However, we have s < 1 because d''(s)<d' ') and d'2(s) <d2''(1). 1
: d
7. Well foundednes of <
The well-foundedness is based on the following lemma.
s d, — %
Monotonicity Lemma: <. C <= < T <.
Proof: Easy, see [22]. 1
Theorem 5: 2 is well-founded if and only it <_is well-founded.

Proof: Assume 2 is not well-founded. Thus, there exists an infinité decreasing sequence
s1gszg ...gsng ... Let now < be a total well-founded ordering (i.e., a well-ordering) on F which contains
<F (such an ordering exists by a variant of Zermclo's Theorem which can be seen as a translinite
topological sort). Using the monotonicity lemma, we obtain s|>d—52>d—... >d—sn>d—... But -d< = by Theorem

3, which contradicts the well-foundedness of the recursive path ordering [2, 15]. [B
8. Extension of the decomposition orderings to non-ground terms

We will now define two formally different extensions of the decomposition ordering to non-ground
terms. These two extensions are proved to be equivalent . The first one is more tractable for proofs, the
second one leads to more efficient implementations. Moreover, these extensions are coherent with the
definition of the decomposition ordering on ground terms, i.e.,

S&I = a(s)%o(l) for any substitution o.

Definition by extension of the basic ordering: Let <F a partial ordering on F. The decomposition ordering
% on T(F) is extended to T(F, X) by simply extending < to FUX in the following way:
a<pyyp iff a€F, bEF and a<pb.

In other words, the <FUX ordering is the same as < for functions symbols. Variable symbols can
be compared with no other symbols using <FUX‘ The orderings 2 and < deduced from this definition will
be written %‘ and <, for the time being. This definition of the decomposition ordering leads to inefficient
computations. For instance, let us suppose that s/p€X and (/q€X and s/p#t/q. It is quite obvious in this
case that the two decomposition sets d?(s) and d?{t) cannot be compared using the new {‘. However they
will be recognized to be incomparable after a lot of useless computations. We give ncw a new definition of
¢ on T(F, X) which avoids this drawback. The basic idea is to modify the definition of the multiset

extension << in order to compare sets of decompositions d”(s) and d?(f) only when it is necessary.

Definition by extension of the decomposition definition: d"(s)<<x d9(1) iff
(1) s/p&X and dP(s) <<d91)
(2) s/p€X and 1/q =s/p and d°(s) <<d(1).

Recursive Decomposition Ordering 343

In the following, we write << instead of <<,. Using this definition of <<, it is now possible to
decrease the size of the sot G(s, p) of given occurrences in s along the path p, by ruling out the

o=currences o i s/p is a variable.

Definition: Q(s, p)C Prefix(s, p). its/p ¢ X

Q(s, p) C {u€ Ocels) |u<p),ifs/p € X

Q,(s,p) = {vEPrefix(s, p) | (Y w<v), T(s(v) <s(w)) & (Vv<w<p) T(s(v)<s(w))}, if s/pg X
Q,(s,p) = {(v<p (VY w<v) Ts(v)<s(w) & (Yw>v) Ts(v)<s(w)}, if s/p€E X.

Notice the analogy between the definitions of Q(s, p) and Q _ (s, p) when s/p =-D and when s/p€X.
The orderings 2 and < deduced from this definition will be written %2 and <, Itis clear that the ordering
%' does not depend upon the choices P and Q, as stated by Theorem 2. But it is not so obvious for the

ordering %2. So we will prove that %1 and %2 are the same ordering, which will prove the property for %2.
Theorem 6: %‘ = 22.

Proof: Let us use the same choice for both orderings. In fact, the choice Q1 of the ordering %1 is not
exactly the choice Q, of the ordering 22, because if s/p € X then p € Q, (s, p) and p¢ Q,s, p). Both

choices are the same in all the other cases.

Let us now prove that s%” = s%zl, by induction on [s| + |i]. Let p€ P,(s) and g€ P,(1) such that
d°(s) <<,d%t). Two cases can occur.

Case 1:If s/p = x€ X thct/q = x because p € Q,(s, p) and x is incomparable with any other symbol and

therefore x must appear in a decomposition along the path g in t. Thus it is possible to compare d?(s) and
dd(t) with <K, Let u€ Qy(s, p). Then u€ Q,(s, p) and there exists v#q and v€ Q,(t, g) such that
dg(s)<1d3(r). Using now the four cases of the definition and the induction hypothesis, we obtain |
dP(s) < ,d9(1) and thus dP(s) << ,d (). ‘, |
Case 2: 1l s/p € X, the Q (s, p) = Qufs, p). It t/q ¢ X, there is no problem because Q,(r,q) = Q,(t, q). Ift/q ‘

€ X then g € Q,(t. g) and g € Qut, q). However, d%(s)<,dJ(t) implies that v#q because #(q) is not

comparable with s(u)€ X. The result is easily obtained by induction as in Case 1.

Let us prove now that s%2r implies s&,t by induction on |s| +|i|. In the same way as before, i
df(s) <,dd(t) lollows from dP(s) <, dd(t) if s/p € X. If s/p € X and t/q€ X, vie have to prove the inequality: i
<slp); Oi{) islp—0P <, <q); O } itle=0D |

and d’(s[p+~—0]) <<, d¥(t[g—0]) follows in the same way as before from d"(s)<<2d°(r). 1

Notice that all theorems proved in previous sections remain valid because of the definition %1.
Theorem 7: % is closed under instantiation, i.e., s%t = o(s)%a(l), for any substitution . {

Procf: Straightforward using definition by extension of the decomposition definition. B

344 J.-P. Jouannaud et al.

9. Conclusion

A major advantage of the decomposition ordering is its utility in easily building, from a set of s
rules to be oriented, an ordering on the set F of function symbols. We will illustrate this pro
example from Dershowitz [2, 20], a system which provides normal disjunctive forms of p
erxpressions:

(i) 7" x = x

(i) 7(xVy) = 7x A "y

(i) M(x Ay) = 7wV "y

(V)X AlyVz) = (x Ay) V(x A2z2)

MyVz)Ax—=(y Ax)V(z \x).
The termination of the rule (i) is immedizte by the subterm property. Let us prove the termination of |
(ii). That means

s= " Ay ¢ (xVy) = t.
The decompositions are:

diN) = KxVy (1D, <Vax; {y)i D)

di2(n = K xVyi (1D <V k) 2 OD)

dls) = KA D {yli < x (1 OA D)

da2l(s) = (KA x {yl DO, <y { A D)
Then we will get d}'(s) €& al2(), ana a2'(s) €& a2, only if A< = or A < V. By ex
symbols A and V we will get the condition "V < = or V <. A" from (iii). Let us now orient the

s=ANVEADEXAY V2 =t

di'(s) = (KVix Ay {x Az}; D>, <A x: {y}: (QAy)V(x Azp).

dj(s) = {<Vix Ayi{x Az}, DD, <Ay {x}i..)

d2'(s) = {(KV;x Az; {x Ay} DD, <A: x; {z};..0)

d?(s) = KV;x Az, {x Ay}, O, <A; z; {x};..0}

dyn) = (KA xi {y V z); D)

d2'() = KAy Vz; {x}; D <V ys {2)i.0)

d2'(0) = KAy V z; {x}: O <Viz; {y)i 0)
In order to get d}'(s) g dj () and d2'(s) S d}(r we need V < A. This condition provides succ
the comparison of s and . The rule (v) can be oriented by the same condition. From those col
get easily the following ordering on F: V <g A < 7. Such a process can obviously be per
starting from a given partial ordering on F.

This property of the recursive decomposition ordering which leads to the automatic cons!
the right ordering < on the function symbols is a consequence of our definition when two symbols
are incomparable. In that case the two decompositions <f;s"; ; s''> and <g; '; 9: "> are inco

Thus the comparison process stops whenever two such decompositions are required to be comp

The idea is then to add at this step the pair <f,g> to the ordering <F in order to get

decompositicns. Such a technique does not work with the recursive path ordering be

w
S
w

Recursive Decomposition Ordering

comparison fails when it exhausts one of the two terms. Because of this essential feature, our ordering is

more suitable than Dershowitz's to any applicaticn which requires automatic proofs of termination. Our

ordering is thus useful in implementing the Knuth-Bendix completion algorithm. A non-incremental

version of the decomposition ordering is now implemented and we are currently implementing the

incremental one.

Acknowledament: We would like to thank Nachum Dershowitz and Jean-Luc Remy for their heipful

s1ggestions and John Guttag for reading the manuscript.

10. References

10.

12.
13.

Boyer R. S., Moore J S., A Computational Logic, Academic Press (1979).

Dershowitz N., Ordering for Term Rewriting Systems, Proc. 20th Symposium on Foundations of
Computer Science (1979), 123-131.

th

Goguen J.A., How to prove Algebraic Inductive Hypothesis Without Induction, 5" conf. on

Automated Deduction, Lecture Notes in Computer Science, 87 (1980), 356-373.

Guttag J.V., Kapur D., Musser D.R., On Proving Uniform Termination and Restricted Termination of
Rewriting Systems, 9" Int. Coll. on Automata, Languages and Programming, Aarhus, Denmark
(1982).

Hsiang J., Refutational Theorem Proving using Term Rewriting Systems, Dept of Computer
Science, University of lllinois at Urbana-Champaign (1981).

Huet G., Conlluent Reduction: Abstract Properties and Applications to Term Rewriling Systems, J.
ACM, 27 (1080), 797-821.

Huet G., A complete proof of correctness of the Knuth-Bendix Completion algorithm, J. Comp. Sys.
Sc., 23 (1981), 11-21.

Huet G., Hullot J., Proof by Induction in Equational Theories with Construclors, Proc. 21th
Symposium on Foundations of Computer Science (1980).

Huet G., Lankford D.S., On the Uniform Haiting Problem for Term Rewriting Systems, Rapport
Laboria 283, IRIA, Mars 1978, INRIA Rocquencourt, France.

Huet G., Oppen D.C., Equations and Rewrite Rules: a Survey, in Formal Languages perspectives
and Open Problems, Ed. Book R., Academic Press (1980).

. Jouannaud J.P., Lescanne P., On Multisel Orderings, to appear in Inform. Proc. Ltrs.

Kamin S., Lévy J.J., Attempts Ior.genEIaliZing the Recursive Path Ordering to appear.

Knuth D.E., Bendix P., Simple Word Problems in Universal Algebra, in Compulational Problems in
Abstract Algebra, Ed. Leech J., Pergamon Press (1970), 263-297.

. Lescanne P., Two Implementations of the Recursive Path Ordering on Monadic Terms, 19" Annual

Allerton Conf. on Communication, Control, and Computing, Allerton House, Monticello, Illinois
(1981), 634-643.

. Lescanne P., Some properties of Decomposition Ordering, Symposium AFCET "The Mathematics

for Computer Science”, Paris, (march 16-18, 1982).

. Lescanne P., Decomposition Ordering as a Tool to prove the Termination of Rewriting Systems, 7ih
IJCAI, Vancouver, Canada (1981), 548-550.

J.-P. Jouannaud et al.

. Lescanne P, Reinig ., A Well-Founded Recursively Defined Ordering on First Order Terms, Centre
de Rechcrche =0 lniormatique de Nancy, France, CRIN £0-R-005 (1380).

. Musser D.L., Ca Proving Inductive Propcrties of Abstract Data Types, Proc. 7" ACM Symposium on
Principles of Mogranmming Laguages (1980), 154-162.

. Plaisted D., Well-Founded Orderings fcr Froving Termination of Systems of Rewrite Ruies, Dept of
Computer Science Report 78-932, University of lllinois at Urbana-Champaign, July 1978.

. Plaisted D., A Recursively Delined Ordering for Proving Termination of Term Rewriting Systems,
Dept of Computer Science Fepcert 78-943, University of lllinois at Urbana-Champaign, Sept. 1978.

. Raoult J-C., Vuillemin J., Opera‘ional and Semantic Equivalence Between Recursive Programs, J.
ACM., 27 (1980), 772-796.

2. Reinig F., Les Ordres de Décomposition: un outil incrémental pour prouver Ia terminaison finie de
systémes de réécriture de termes, Thése Université de Nancy, Octobre 1981.

. Reinig F., Jouvannaud J.P., Decomposition Orderings: a new lamily ol decompostion orderings,
Centre de Recherche en Informatique de Nancy, France, CRIN 81-R-040.

. Thompson D. H., ed, AFFIRM Reterence Manual, USC Information Science Institute (1979).

Recursive Decomposition Ordering

APPENDIX: Examples of decompositions

Lat f < g <h and a < b.

s = f L= f
|
Q/gli\a n/n\a
/N I\ | |
m a m a m b
| | | |
r r r b
i
a
P{s) = {111, 12} P(L) » (111, 2111)
Q(s. 111) = (1, 11, 111} Q(t. 111) = (1, 11,

Q(s. 12) = {1, 12) Q(t. 2111) = {2. 21)

111 111
d (s) 4 {v)
Q Q
f
111 m VAN 111 m
d (s) =<g: t: {3): 0O g a> d (t) = <hi]
1 r /\ 1 r
m
|
r
f
111 /1IN 111
d (s) = <m; r: (}s g g a > d (L) = <m: r: {}:
1 AR 11
aa llw a
r
f
111 71N\ 111
d (s} = <r: {}: 9 g a > d (t) = <ri i {)s
111 /1 N 111
m ama
! |
O r

111)

n—a'—a—:>«
7

—T - —T—

7

B O — T —

F

®
v

v

o
v

347

J.-P. Jouannaud et al.
12 2111
d (s) d (t)
Q Q
/1\ [ERZAN
12 in 1 2111 {
d (s) =<g:a: (1}; O g a > d (t) = <h: b: (}: 2" O a>
1 c /\ 2 | |
m a a m
| |
r r
f f
12 VAN 2111 /1\
d (s) =<a; : {(}:9g g a> d (t) = <b: b: (}J: h h a>
12 VAR 21 |
rln Oma a m O
Pob :

SESSION DISCUSSION

Responder: G.Cousineau, Paris

Cousineau: I wish to address the problem of implementation. My reason for that is
that I am involved in a project which implements a system which manipulates mathe-
matical theories and programs. So we should normally benefit from the kind of work
reported here. ©¢9¢ The last speaker claimed he had produced an ordering which was
much more powerfull than recursive path ordering, and if true this will have very
great importance in connection with Knuth-Bendix completion. ©°0 So we must state
precisely the problem in order to discuss this problem of implementation of the
recursive decamposition ordering and see what we can do with it. ©9¢ Our system
deals, among other things with equational theories, and among things it can do, it
can do Knuth-Bendix campletion, Peterson-Stickel campletion, and also prove equali-
ties in the initial algebra. So the first two are certainly related to the last two
papers, because in doing Knuth-Bendix campetion, we do ordering on terms, this is
crucial, and the third point is certainly related to the talk of Padawitz. ooo0
So let me recall: what is Knuth-Bendix (KB) completion (KBRC) . KBC is going fram
an equational axian system § to a rewriting system R which is canonical in the
sense that we can check equality in the system § only by rewriting rules, and see
whether we cane to the same normal form. To do KBC: — we recall the method: Let us
just look at the campletion method. We start with a set of equations. We have first
to orient the equations in such a way that the resulting system is Noetherian. So
we have the problem of proving termination. Then we compute critical pairs of the
system. If there are none, or if they are just such that their left and right
members have the same normal form then the obtained system is canonical, and we
are finished. And for those whose members have different normal forms, we orient
them using again the recursive path ordering. And then add them to the system and
iterate the process. Now, to orient the rule and prove that the rewriting system
obtained is terminating you need same ordering, that was the subject of the last
talk, and the ordering that we have implemented is recursive path ordering. So here
(Cousineau points: ¢) I just recall the definition of recursive path ordering. You
start with an order on symbols, and you define recursively the order on terms using
the definition that Jouannaud has presented. ©°°¢ It happens that we have applied
KBC to a lot of classical mathematical structures including groups, rings, modules
over rings, etc. And that to be able to do ordering of terms we had to use not only
the recursive path ordering of Derschowitz, but an extension that was defined by
Kamin & Ié4vy. And this is crucial. In the Kamin and 1é&vy extension of recursive
path ordering each function symbol can be of either type multiset or lexicographic.
In the definition we have more choice. The definition is the following: if the
head symbols of the two terms are ordered by the order on symbols, then the def-
inition is the same as for recursive path ordering. But if the head symbols of two
terms are the same, then we can campare sub-terms either in the multiset way or in
the lexicographic way. This is crucial if, for example, you want to deal with
associativity as a rewrite rule. So, now we would like to understand what we could
gain by using recursive decamposition ordering instead of recursive path ordering.
So my first question to Jouannaud would be: is the recursive decamposition ordering
also an extension of this Kamin and I4vi ordering?

Jouannaud: I guess that you mean: Am I able to define a lexicographic extension?
OK. Up to now I did not succeed, but I only worked half a day on that problem. But
it seems to me that it is not so easy. Because, using paths maybe camnot fit with
lexicographic ordering. But I am not sure.

Cousineau: OK. So for the mament we must be careful. We know that recursive path
ordering with is (¢) definition works for a lot of structures, but we are still not
sure whether recursive decamposition ordering will work.

Jouannaud: I know that it can be used, not with this definition, but with another

350

Session Discussion

one vhich is much simpler. With this simple definition, I can have a lexicographic
extension, but it is not as powerful as the recursive decomposition ordering.

Cunningham: Could we have a source?

Cousineau: You should write to Jean-Jacques lLevy at INRIA. 9929 My second point is
that we do mot want to do only KBC, but also Peterson-Stickel completion. That
means: we want to be able to deal with associative amd commutative theories. The
problem here is that if you have camutativity then you can no more have a termina-—
ting rewriting system. So you have to deal in a different way with cammutativity.
And, moreover, when symbols are cammutative you cannot deal with associativuty the
way you did before. So you have to deal with associative and commutative symbols in
a special way. And that is done by an extension to the KB algorithm which is due to
Peterson and Stickel. Now we do not manipulate terms, but terms modulo camutativi-
ty and associativity of certain symbols. One good point is that we have been able
to extend the recursive path ordering to deal with associativity and commutativity.
And the way to do this is very simple. When we have associative and commutative
symbols, for example, let us take binary + (plus), instead of representing it as a
binary (dyadic) symbol, we represent it as a vari-adic symbol, with a list of
arguments, and we apply the recursive path ordering defined here (¢). The crucial
point for doing that is that the recursive path ordering is compatible with the
associativity and comnutativity property. That is: if two terms are equivalent
modulo associativity and camutativity, they are equivalent in the equivalence
associated with the recursive path ordering. So I come to my second question. Do
you think we can also extend the recursive decamposition ordering to associative
and caomutative theories?

Jouannaud: My answer in this case is: Yes, don't ask me for the paper. Because it
has'nt been written. But there is no problem in building any equational theory into
the recursive decamposition ordering. It is valid mot only for associative and
commutative theories, but for any.

Cousineau: Maybe I have alast point about this paper. And that is the problem of
implementing this order. My experience with recursive path ordering is very good.
It took me one day and one night to put the recursive path ordering in our system
including the user interface. It is an order which is very simple to program. What
is your opinion about the implementation of recursive decamposition ordering?

Jouannaud: It is very easy, because in LISP you can use functionals as arguments.
But in that case, you get same kind of "a brute force" implementation. If you want
to get a really good implementation, then you have to do much more.

Wagner: I am actually interested in the connection between term-rewriting systems
and the work on abstract data types, because of the question of implementing (ab—
stract) data types. Most of the systems that I am aware of have problems because
they could'nt handle such things as camwtativity. But I gather that that has now
been resolved. But does it actually provide an effective, reasonable system.

Qousineau: Yes, very reasonable. And if you are interested I have here the listing
of sessions of the system dealing with associativuty and commutativity. You can
have a look.

Wagner: Can you actually, in effect, run programs in this system? How far up, how
I am also interested in the speakers camment on this, by the way — how they feel.

Padawitz: We have no system. But I think the point with comutativity and associ-
ativity is that it is not enough for data types. If you remember my example with
arrays, there is an axiom which looks like commutativity, but it is not real cam—
mutativity. For such examples the methods which incorporate commutativity and

Session Discussion 351

associativity don't work. They do mot work for equations which are a little bit
different fram "classical" commutativity axiom. This was one reason for me to
introduce the notion of relative confluence with respect to some rules which may
be, for example, associativity and commutativity axioms, but it may be also more
than these. There is no requirement to the basic rules except relative confluence.
Especially the basic rules do not need to be normalizing, or normalizing modulo
something .

Jouannaud: I can also answer this question. In my "talk" I mentioned two systems.
System REVE which is implemented by Pierre Lescanne, and the system FORMEL - and
the system FORMEL is exactly the system of Guy Oousineau and Gerard Huet. So I
practiced on this system. I want to say that it is a very powerful system. You can
perform proofs with this system. I have used it in a quite different way, which was:
we had to prove that an axicmatization was not minimal. So, in fact we suspected
one axiom to be a logical consequence of the others. And we effectively proved it
using this system, by removing the axiom fram the set of axiams, arranging the
others as a set of rules and computing with several hundred new rules. And after
maybe half an hour MILTICS system camputation, we had our axiom generated by the
system. So it is a very powerful system which can be used for purposes of program
proof, but also for many other purposes. I think it is very important to have such
systems.

Wagner: Do you think you can debug specifications?

Jouannaud: Yes, sure. You know the work of Misser. You can prove (in)consistencies

with these systems. Using KBC you can prove (in)consistencies. So it is debuaging
specifications.

Wagner: That is a very sophisticated form of debugging.
Jouannaud: Yes, it was a special case, but it works with this case.

Cunningham: With some trepidation I ask the responder: is he aware of any work that
extends these techniques to partial algebras.

Cousineau: No, in fact, that was also one of my questions to the second author.
The only thing we know how to do presently in our system for initial algebras is
using the method of Huet and Hullot which was published in FOCS, I think in 1980.
This works in the case where you can partition your sets of symbols between what is
called constructor defined symbols and the other which are called differencing
rules. In the set of axioms which are satisfying some definition principles. The
definition principle is, in a few words: any ground term is equivalent only to
same ground term using only constructors — as one point — and the second point:
two ground terms using only constructors are equal in the theory if they are ident-
ical. So in that case we can proved that an equation t=¢ is satisfied in the
initial algebra by doing the campletion method. And that is a question I would like
to ask to the second speaker: have you been interested in implementing such methods,
and do you think that this kind of method could be adapted to your notion of partial
algebra? Of course, if you introduce an undefined symbol, i.e. it can certainly
not be a constructor, but maybe we could replace the condition on constructors -
with another condition which is less strict. I mean: instead of requiring that two
terms are equivalent if they are identical, we could ask just for a confluent,
terminating rewriting system for this ground term with constructors.

Padawitz: Two points: first to the partial functions. The aim of introducing a
discrete specification which has a least element is to allow correctness proofs
of the recursive, partial functions with respect to a discrete damain. If you have
proved this correctness, then you can forget the discrete specifications. The
discrete specification is only there to get the proof: to see that the discrete

352 Session Discussion

damain is really specifiable. The other point is the following: The conditions I
give for discrete specifications are also conditions which are sufficient for what
is called completeness and consistency of data types with respect to some basic
data type. So one has two specifications: one is included in the other, and one
wants to prove that the semantics of the enriched specification includes the seman-
tics of the basic specification. To get this property I have similar sufficient
conditions like confluence and normalization conditions which guarantee complete—
ness and consistency. Referring to the definition principle mentioned by the re—
sponder, the constructors are just the operations of the basic specification. The
definition principle then says that every term can be reduced to constructors. And
if constructor terms are equivalent, then they are identical. This condition, I
think, is too restrictive for the following reason: one reason is campleteness:
this is just the property that you can reduce every term to a constructor term. The
other reason is consistency: this means that terms of constructors which are con-
gruent in the extended specification are already congruent in the basic specific-
ation. The definition principle would require that they are already equal. But
this is sometimes a too restrictive.

Culik: I have a question to Bergstra: Different equivalences (coming, for instance,
fran Manna's book, you mentioned unfolding, and he has also isanorphism equivalence)
can be just treated samehow. In your point of view there are special cases. I would
like to know samething more. While function equivalence is undecidable, the iso—
morphism equivalence is decidable, and therefore it is much more suitable, for in-
stance, in proving the correctness of a campiler. Can you be more specific about
the relationships among them, e.g. the process equivalence, is (it) really decid-
able, and therefore also execution sequences? And, because we are constructing the
campiler we can always restrict ourselves to this decidable case. But, however
decidable, it still can be unfeasible. Can you comment on that?

Bergstra: That is not so easy for me. I have not said anything about feasibility.
And this is, maybe, the key point (of course). So I assume this kind of isamorph-
ism equivalence is within the scope of these methods. What gets lost is the modu-
larity of the issue. And this is already a problem in pencil-and-paper work. So
mathematically it is within the scope of our method.

Culik: Well, I assumed you could tell us immediately how to formulate isamorphism
in the Manna sense (PS: there is an incaccuracy in his definition) in your frame—
work, because it would help me to understand that.

Bergstra: Well, that is mot my interest. I want a general theory, not nice trans-
formations.

Cousineau: (to Bergstra:) How should we take your paper. Should we take it as a
theoretical result relating two different proof systems, or proof methods for
programs, or should we take it as something that could help, in some sense, in
doing the proofs?

Bergstra: So you are asking me: what the applications of this kind of work would
be? Now, of course, I prepared myself for that question, because you said you would
ask it. (Laughter) In the time I worked together with John Tucker we had long dis-
cussions on the applicability of our work. And we came to the conclusion that among
the many kinds of applications that one can imagine one application is the applica-
tion to teaching — which is big business too. The clear mathematical analysis that
we aim at could have an application to teaching. Just explaining these notions and
their relations. If it has a spin—off in terms of providing efficient proof systems,
then it is mot up to me to predict this in any way. I would recall the fact that
carbinatory logic was invented to get around set theory, and is.now applied to get
around sequential programming. Schénfinckel would not have predicted that presume—
ably. So — I am not ranking our work to these kind of issues — but nevertheless

Session Discussion 353

I am making the point that on principle I have not had the idea that in whatsoever
way this will lead to applicable systems. I think that these mathematical facts
are such that their main application (is) in the development of the field and in
teaching. Because in teaching itself it is not so essential that everything has an
application. Is that an answer?

Cousineau: Yes, Ch yes.

Culik: I was teaching a program correctness course to graduate students 2 years ago
using Manna's book. I could lecture on Greatest Common Divisor all-right, and prove
it correct. But when challenged, by my students, to produce other examples, I had
to say: Sorry, but I did not prepare myself — constructing proper assertions, and
so on. 299 We are in this business faced, ultimately, with proving correctness of
real programs. And I do not think we have succeeded in doing so. This is the real
difficulty. Even for teaching, the practicability of proof was, and is, so dis-ap-
pointing. I have very deep doubts that it can be overcame. We are here (w.r.t.
Bergstra's talk) on the second floor: in the meta-theory. Trying to formalize
proofs. We are forgetting (mathematically) about the difficulties, the real dif-
ficulties in problem-solving. It just disappeared samehow. But if you are thinking
about real problems, this difficulty will be there. And my opinion is that there is
no way to believe that all these formalized proofs will succeed. It failed in Mathe-—
matics 50 years ago. Bnd therefore we should look for something else.

Reynolds: In response to the question that was just raised. I have been teaching a
course in programming for graduate students for a decade now in which I have always
presented considerable material on program proving in the style of Hoare. BAnd my
answer to your objections, which I have also heard fram my students as well, is
that we do not reasonable expect a professional programmer to formally prove every
program that he writes, but (we) expect him to understand formal proofs as ground
work for the intuition needed for producing actual, informal proofs. When a mathe-
matician is presenting a proof he will write down some formulae. He will certainly
not proceed to give the details of the formal proof at the level that: here we use
camutativity, and we here we use associativity, and there distributivity, and so
on. But he understands how to do that. Everyone in his audience understands how to
do that. And there is a common agreement that given a little bit of good will, he
won't try to pull the wool over anybody's eayes. It is an entirely different thing
when one starts to fiddling such equations, without knowing such things as distri-
butivity or associativity or commutativity, to an audience with the same characte-
ristics. Then one can very easily get informal proofs of quite incorrect programs.
Anytime one programmer walks into ancther and says: why does this program work, the
response he gets is a proof. And the problem is to train programmers in such a way
that they do not convince each other that incorrect programs are correct. And
formal proofs help in that. Not because people are going to do formal proofs of
every program, they write, but because it gives them the necessary ground work to
build up intuitions about how much they have to think, and in what areas they have
to think, about whether their programs are right or not.

Bergstra: May I add one more camment (to my previous remarks): Of course, the prime
difficulty in many cases is to find intermediate assertions, invariants, and so on.
But in our paper we provide a calculus where these things are just treated as var-
iables. So you just have RI which is a variable which stands for an assertion, R2
and so on. And then one gets a calculus about assertions. And the nice thing is
that one gets to conclusions even without ever actually finding such an assertion.
So the point of our paper is that you need not immediately turn to finding an
assertion: as soon as you spot a point where an assertion could be written down it
need not be the actual next step to find such an assertion. You can also introduce
a variable which stands for it, and then you start the formal calculations with
that variable — and came to conclusions which are relevant to the problem. So that
would be my technical response to Culik's question.

