
l

i

.

corCompletion Procedures as ,
Transition Rules + Control

act
IS I

De:
Pierre LESCANNE* the

Centre de Re che rche en Informatique de Na n cy pre
to :LORIA
thaCam pus S cientifique, BP 239,
thJ54506 Varulceusrre-les-Nomcij. Fran ce
co •email: lescanne@poincare .crin.£r
obj
bJ

Abstract

A description of the completion of a set of identities by a set of inference rules has

allowed recent progresses in proving its completeness. But there existed no attempt

to use this description in an actual implementati on. This paper shows that this is

feasible using a functional programming language namely CAM £. The implementation

uses a toolkit , a set of transition rules and a short procedure for describing the control.

A major role is played by the data structure on which both the transi tion rules and

the control operate . Three versions of the classical Knuth-Bendix completion and two

Wli versions of the unfailing completion are proposed.	 I mel
at I

1 Completion procedures as sets of transitions rules	 to t
as I

The interest of rewriting techniques in programming, algebraic and computer algebra spec­ the
ification s is well-known as is its abil ity to provid e pr oof environments essentially based on

foll
complet ion procedures [FG84,GG88 ,KS83 ,Fag84,L es83]. In this introducti on, I suppose the thn
read er is familiar with this concep t. Indeed my goal is not to present it , but to st udy how

COD
me thods develop ed essentially with a th eoret ical purpose, namely proving completeness can tior
be used to pr esent simple sh ort and understand abl e programs. Th is paper can also be seen tra
as a set of exe rcises on the use of a function al language to program high level procedures
and as a bridge between th eory and practice. Readers who want to get more introduc­
tory informations ar e invited to look at Appendix A or to Dershowitz survey Completion 2
and its Applicati ons [Der 87]. The completi on pr ocedure is a method used in equat ional

Inlogic to built from a set of identities an equivalent canonical set of rewri te rul es i.e., a
whconflu ent, noetherian and in terreduced set of rule s used to compute normal forms. If one
ordtracks the hist ory of the presentation of this proc edure, one can notice differen t methods

of descriptio n. In th eir seminal pap er [KB70] Knu th and Bendix describe essentially th e III

procedure in natural language (see Appendix B), in [Rue 8G] Huet uses a style simila r to
Knu th 's book , Th e Art of Com puter Proqramrniruj , in [Hue81] he uses a pr ogram structured
by whil e loops , in [Kir84] H. Kirchner uses a recursive pro cedu re and in [For84] Forgaard
proposes an orga niza tion of the procedure around task s t o be performed. In th e following, a

"The research was sp on sored by PRC "programma tion avancee et ou ti ls de I'intelligen ce ar ti ficielle" ,
CNRS and INRIA In

rul

mailto:lescanne@poincare.crin.�r

spec­
xl on
e the
how

s can
seen

lures
idu c­
etion
ional
e., a
f one
hods
r th e

ir to
ured
aard

19, a

elle" ,

29

complet ion will be seen as a set of infe rence rules or more precisely a se t of transi tion rul es
act ing on a d a ta structure. The idea of using inferen ce rules wh en dealing with completion
is not new and leads to the beautiful pro ofs of completeness proposed by Bachmai r and
Dershowitz [Bac87 ,BDH86,BD87] an d the ir followers [GKK88,G an 87]. The com pleteness is
th e ability of the proced ur e to eve ntually generate a proof by normalization or a rewrite
proof for eve ry eq ua tional theor em . In this paper , I want to sho w how this description leads
to act ual, n ice and elegant p rogra ms when used as a progr amming method and I illu strate
tha t by an ac tual CAML implem entation [FOR87b] . Appendix C gives the basi c notion s
th at are useful to un de rs tand the progr ams. Actually the inference rul es one conside rs in
completion are spe cific in th e sense t hat they tran sform a t- uple of objects into a t-uple of
objects with t he sa me structure . This is why I refer to the m as transition rules. Thus th e
basic compon ents of su ch a pr ocedure a re four ,

•	 a data structure on whi ch the t rans ition rules ope rate, some t imes called the uni ­
ver se,

•	 a set of transition rules, th at a re the basi c ope rati ons on th e data s t ructure ,

•	 a control, that is a description of the way the transition rules are invoked" ,

•	 a toolkit that is shared by se veral completion procedures.

When one wants to de scribe a spe cific com plet ion procedure, usually one uses the following
method. First one chooses the data st ruc t ure, t he n one cho oses transi tion rules and ofte n
at t he same time the cont rol. The to olkit is something that remains from one procedure
to the other in many cases , it was pa rt ly bor rowed from the " CAML Anthology" [FOR87c]
as a natural attempt to reuse pieces of codes already debugged and tested. As we will see
the contro l is typically dat a d riven and can be eas ily ex pr esse d by rewrite rul es . In the
following, t he influen ce of these choices on th e e fficie ncy of the pr ocedure will be illu strated
throu gh three refin em ents of th e Knuth-Bendix completion procedures and a two unfailing
completion s. Indeed, we will see how , sta r ti ng from a naive implementation of the comple­
tion, improvements can be obtain ed by chang ing th e data s tr uc t ure and conseq uent ly the
transition rules and th e con t rol. These ideas a re implemented in my progr am ORME.

2 The N-completion

In this sec tion, I give a naiv e implementation of th e com plet ion, called the N-completion,
where N stand s for naive. It is already a n improvem ent of th e set of rul es of Appendix A in
order to take th e com putation of critical pairs into account. Its control par t is fully given
in Figur e 1 and its data s t ruc t ure has three components, namely

• E is a set of identit ies, eit he r cri t ica l pairs or given iden tities,

•	 T is a set of rul es , t he non marked rul es in Hu et 's terminology [Hue81],

• R is a set of rules whose crit ical pairs have been computed , t he marked rules .

In the pr ocedure, ordering is a par ameter wh ich is a relation used to ori en t the id entities into
rules, by the way it is also a parameter of Orientation . There are three kinds of t ransition

ITo give a gastronomic comparison [Ore83!, t he cont ro l is t he recipe.

30

let rec N_Completion ordering (R,T,E) let COMP = N_Completion ordering in let rec S_Co
match (T ,E) with match (T,S , O,D -> (R,[l,[I)	 (* success *) [J,O,[] -:

C::J,[] -> COMP [repeatlist [SimpjJeft_T_by];SimpjJeft_T_by_R;
-,C :-l.­SimplleftRjby_T ;SimplJeft_R_by_R;

SimplrightT'BimplrightR]
(Deduction(R,T,E)))

C::J,O,[]I -L:J -> let	 (R',T',E') = repeatJist[Remove_triviatE;Simpl_E](R,T,E) in 10

(match E' with
 -,[J,C:Jll -> COMP(R' ,T' ,E')
I C:J	 -> COMP(Orientation ordering (R' ,T' ,E')

? failwith "non orientable equation")) ;;

Figure 1: The N-completion

rules, their names are taken according to Dershowitz [Der87] (see also Appendix A). De­
duction computes critical pairs, in this case it computes critical pairs between one rule in T,
usually the smallest one to be more efficient, and all the rules in R . Orientation chooses an
identity that can be oriented by an ordering and produces a rule , if no identity is orientable,
it fails. This requires an reduction ordering, currently ORME contains an ordering based on
polynomial interpretations [BL87b], implementing other orderings would not be too difficult
since the CAML Anthology [FOR87c] contains the recursive path ordering and a CAML
implementation of the transformation ordering also exists [BL87a,Gal88]. Remove.trioial.E
removes from E a trivial iden ti ty. The rules SimpLlejL T_by_T, Simpl.lejt: T_by_R etc. sim­
plify terms in the rules or the identities. repeaUist repeats the application of of a list of
inference rules until they all fail. The control given in Figure 1 has essen tially three steps,
namely success, when T and E are empty, computing critical pairs after simplification of
the rules , when E is empty, and orienting an identity into a rule after simplification of the
identities , when E is not empty. In the orientation part it could happen that by simplifi­
cation all the identities disappear, in this case one does nothing, that is just translated by
a recursive call to COMP with the same parameters. The recursive calls mean that one
restarts the process. The completion terminates with success when E and T are empty.
The system works as a machine where the identities enter E and proceeds through T and R.
Its description is therefore really similar to this of an automaton .

3 The S-completion

Another name for rewrite systems is sometime simplifying systems and the theory of rewrite
systems is a theory of simplification , that could be applied to many fields other than com­
puter algebra or software specification. Therefore the main aim of orienting identities is to
use them to simplify whenever it is possible. But as noted by Hsiang and Mzali [HM88], the
N-completion makes a bad use of simplification . Indeed a rule is not used for simplification
as soon as it has been generated. Thus in a better implementation, when an identity is
oriented into a rule it enters a set S where it is used to simplify all the other identities and

rules. In the,

•	 E like iI

•	 S a set (
and tha

•	 T a set
computt

•	 R likei

The only diff
before enterin
It is performs
identity or ru

4 The j

The S-comple
between all tl
pairs betweer
simplifiers. In
critical pairs :
are computed
(for not yet c

• E like il

• S like ir

31

let rec S_Completion ord ering (R,T,S,E) = let COMP = S_Completion ord ering in
match (T,S ,E) with

O,O,[] -> (R,[],[],[J) (* success *)

I -,C::J,- -> (COMP (R' ,T' @S' ,[] ,E')
where R',T',S',E' =

repeat Iist [Simplleft,T_by_S;Simptright5_by_S;
SimplleftRjby_S;Simptright_R_by_S] (R,T ,S,E))

I C::J,[],[] -> COMP (Dedu ction (R,T,S,E))
10

I Jl.L::J - > let (R' ,T ' ,S ' ,E') = repeatjist[Remove_triviatE;SimptE](R,T,S,E)

in (match E' with

[] -> COMP (R ' ,T ' ,S ' ,E ')

I C::J -> COMP (Orientation ordering (R',T',S' ,E')

? failwith "non orientable equation"));;

Figure 2: Th e S-completion

rules. In the S- completion, the data structure is made of four components,

• E like in the N- completion ,

• S a set of oriented identities or rules th at are used to simplify others identities or rules
and that I call the simplifiers , during the completion S contains zero or one rule,

• T	 a set of rules already used for simplifying, but whose critical pairs are not yet
computed ,

• R like in th e N- completion.

The only differen ce with th e N- completion is the set S through which a rule has to go,
before entering T. The st ep of simplification is clearly distinguished from the three others.
It is performed when S is not empty. Th e completion proces s ends when there is no more
identity or rule in E , Sand T.

4 The ANS-completion

The S-complet ion can still be improved since it computes at the same time th e critical pairs
between all th e rules in R and one rule in T. It should be better to compute the crit ical
pairs between one rule in R and one rule in T at a tim e. As previously , S contain the
simplifiers. In addition , a set C is crea ted to contain one rule extracted from T with which
critical pairs with rules of R are computed. To keep t rack of th e rules whose critical pairs
are computed with the rule in C, R is split into two sets A (for ~r eady computed) and N
(forgot yet computed). Thus the data stru cture contains ,

• E like in th e S-completion ,

• S like in the S- completion,

32

•	 T is a set of rules coming from S and waiting to enter C,

•	 C is a set that cont ains one or zero rule and whose critical pairs are computed with
one in N,

•	 N is th e part of R whose critical pairs have not been comp uted with C but whose
cri t ical pairs with AU N have been computed,

•	 A is a set whose crit ica l pairs with A u N U C have been computed.

The tr an siti on rules a re ad apted to work with th is new data s t ruct ure and th ree new rul es
ar e introdu ced. Dedu ction computes the critical pair s between th e smallest rule in N and
th e rule in C. InternaLDedu ction computes th e critical pairs obtai ned by superp osing the
rule(s) in C on its elf (themselves). A_C 2N moves th e ru les in A and C in to N to start a new
"loop" of computation of critical pairs, accordi ng to th e emptyness of the components of
th e data st ructure . The pro cedure has now clearly six part s, namely success , simplification,
ori entation, deduction , in tern al deduction and begin ning of a new loop of computation of
critical pair s. Typ ically this cannot be easily s t ructured by a while loop becau se a t each time
the it eration on th e com putations of th e cri tical pa irs can be interru pt ed by a simplification.
A data d riven cont rol is th en much better (Figure 3) .

5 The unfailing completion

The prev ious method may fail becau se at certain tim e no rul e can be oriented , thi s is for
instance the case if (x * y = y * x) E E . A method called either unf ailing completion or
unf ailing Knuth-Bendix or UKB has been proposed by Hsian g and Rusinowitch [HR87] and
Bachmair, Dershow itz and Hsian g [BDH86] and is complete for proving equational th eorems
in equational th eories. The idea is to refute the equality to be proved , thu s vari abl es become
Skolem constants, term s become ground terms and th e equ ality becomes a disequ ali ty i.e.,
a negation of an equality. On e does not orient th e identities. But becau se one works with
an ordering tot al on ground term s, one knows tha t for any pair of ground terms one can
tell which one is sim pler and therefore one can tell whether a term that matches a side of
an identity can be t ra nsformed in th e other side in a decreasing way. In some sense , th ese
new pairs of terms are not rules but "abstrac t" sets of rul es on ground terms . To pre cise
the difference with iden titi es and rules , let me prop ose th e word liken ess for th em. The
aim of unfailing completion is then to ma ke confluent the rewrite relation on ground term s
defined by likenesses . Such a relat ion which is confluent on ground term s is called ground
conflu en t . Although th e likenesses are not orien ted , one tri es however to sa ve generation of
too many critical pairs by not keeping those of th e form (s, t) obtain ed from a superp osit ion
u by s t-----! U t-----! t if eit her 7L < s or u < t ; because thi s kind of equality will never be
used for rewriting ground terms. This is what makes this procedure different from classi cal
par amodulation . As a refutation procedure, a t each ste p, an attempt to refute th e negation
of th e disequality is perform ed. The data structure of thi s naiv e unfailin g complet ion is a
follow

•	 E is again th e set of identities,

•	 C is a set th at contai ns one or zero likenesse and whose critica l pai rs are computed
with one in N ,

let rec ANS_
let COM

match (N,C,'
-,[J, [J ,[] ,[] ­

,,_,C::J ,_

I _,_ ,_,[],C::J

I C::J ,U,-,[],

I [],[-L[],[] ­

I -,[] ,C::J ,[] ,O

with

nose

'ules
and
the

new
.s of
:ion ,
n of
;ime
.ion.

; for
nor
and
ems
ome
i.e.,
with
can
,e of
hese
c ise
Th e
rms
-und
n of
tion
. be
tical
tion
is a

rted

33

let rec ANS_Completi on orde ring (A,N,C ,T,S,E) =
let COMP = ANS_Completion ordering in

match (N,C,T ,S,E) wi th
.Il.ll.ll.ll - > (A,N,C ,T ,S ,E) (* success *)

I-,_,_L:J,_ - > (CO MP (A',N' ,C' ,T '@S',[],E')
where A' ,N' ,C ' ,T ' ,S ' ,E ' =

repeatl ist [SimpIJeft_A_by_S;Sim plright_A_by_S;
SimpUeft_N_by_S;Simp IJight_N_by_S; 10

Simplj eftCjby_S;Simptright _C_by_S;
Sim pUeft_T_by_S;Simptright_T_by_S]

(A,N,C, T,S, E))

1-,-,-,[j,L::J - > let A ' ,N ' ,C' ,T' ,S' ,E' repeat_list[Remove_triviatE;
Simpl_E](A,N,C ,T ,S,E) in

(match E ' wi t h
[] - > COMP (A' ,N' ,C' ,T' ,S' ,E ')

I C: :J -> COMP(Orien tation ord ering (A ' ,N ' ,C ' ,T ',S ',E ')
? failwi th II non orien table equat ion ")) 20

I C::J,[-L[],[] - > COMP (Ded uct ion(A, N,C,T,S,E))

I [] ,[-L [] ,[] - > C OMP (A_C2N cri t (Int ern al_Ded uct ion (A,N,C,T,S, E)))

I JJL :J ,[]'[] - > (COMP([],A@N,[r],T' ,[],[]) whe re r,T' = least Size T); ;

Figure 3: The ANS-completion

,

:

34

let rec Unfailin g Complet ion ord erin g (e,A,N ,C,E) =

let COMP = UnfailingCo mpletion ord erin g in
let e ' = Gnormalize ordering (A @ N @ C @ E) e
if matches « x - x» e '

in

and rules.
ANS-com
by spli ttii
and a R-j

then (e' ,A,N,C, E) (" refutation ") • E is
else match (N,C, E) with

-,[LU -> (e ' ,A,N,C ,E) (" en d of the com pletio n *) • RS

I-,[],C::J - > let (A ' ,N' ,C ',E ') Clean_E (SimplE ord erin g • ES

(Simpl_N orde ring (A,N,C, E)))) 10 • RT
in (m a t ch E' with

[] - > CO MP (e ' ,A ' ,N ' ,C ' ,E ') • ET
I eq :: E" - > COMP(e ', F_Subsumption orde ring (0, A ' @ N' , [eq), E")))

• RC

I C::J,C::-k - > CO MP(e ' , (Ded uction ordering (A,N,C,E))) • EC

I [J,LL - > COMP (e', (A_C2N (Inte rnalDeduction ordering (A,N,C, E))));;	 • RN

Figure 4: The unf ailing comp letio n	 • EN

• RA

• N is a set f liken ess whose critical pairs have not been computed with C but whose • EA

crit ical pairs with	 AU N have been computed, The transi
completun

• A is a set whose critic al pairs with AU N U C have been computed.
be oriente

It should be noti ced that the idea of compu tin g the critica l pairs betw een only two pairs improvem­

at a tim e is used , but not t he idea of putting a high priori ty to simplificati on and since gets now [
there is no simplifi cation th e identities enter directly C from E . With th e disequ ality to be
refuted , the procedure has five par ameters. The last four ones remind th e data struc ture of 7 COl
the classical completio n. Obvi ously, th ere is no Orientatio n t ransiti on rule, but t here are
Deduction an d Interiuil.Deduct ioii as pr eviou sly. << x rv X >> is an ext ernal notation for The mai n
t he disequ ali ty whose bo th sides are x. There are four s teps in this pr ocedure, either success actions an
or, simplifi cation , or deduction or, th e beginning of a new "loop" of computation of crit ical t ion s. Th
pairs. If one runs thi s algorithm on examples, one quickly realizes th at many generated or ERIL [
identities are instances of exist ing identiti es or obtained by inserting in a same context sides tion [Hue8
of instances of identities and th erefore do not carry new information. Rules Sub sumption and leads
or F_Sub sumption remove th ese useless identities. Subsumption filters the identities that Sin ce one
matches another one and F_Sub sum ptio n t ries to remove ident ities of th e form CIs] = Crt], tation is I
wher e C[] is a contex t, when th e identity s = t alr ead y exists. Gn ormalize take s a ground modificati
term and returns it s norm al form using identi ties. However , when rewriting with iden tities t o study v
as in refutation care must be taken with vari abl es th at can be in trod uced . The usual solut ion a low level
is to instantiate th em by a new least constan t . still ca n b

can be qu
the unf ail 6 An improved unfailing completion: the ER-completion
procedure

The pre vious unfailing completion has th e advantage of being sho rt and easy to understand . of com pOD

However its main dr awback is that it makes no difference between non orie ntable identi t ies found .

E)))) 10

E' ')))

whose

pairs
since
to be
ire of
e are
n for
ccess
itical
'ated
sides
itiot»
that
7[t],
und
ities
lion

nd.
.ies

35

and rules . This can be fixed by refining considerably the data structure, using ideas from the
ANS-completion . The new data structure contains eleven components. They are obtained
by splitting the corresponding components of the ANS-completion into two parts , a E-part
and a R-part.

• E is not changed and is again the set of identities,

• RS the simplifiers obtained from rules E by orientation,

• ES the identities from E that cannot be oriented, they are used in F_Subsumption,

• RT the R-part of T,

• ET the E-part of T,

• RC the R-part of C ,

• EC the E-part of C,

• RN the R-part of N,

• EN the E-part of N,

• RA the R-part of A,

• EA the E-part of A,

The transition rules are changed accordingly and one gets a procedure I call the ER-unfailing
completion (see Figure 5) which performs as a classical completion if all the identities can
be oriented. The fact that everything which is orientable is actually oriented is a major
improvement for the efficiency of the procedure. The structure of the completion procedure
gets now more complex and requires studies on how to make it more modular.

7 Conclusion

The main idea of the approach presented here is to decompose the algorithm into basic
actions and to describe some kind of abstract machine where these actions as the instruc­
tions. This may remind either Forgaards description of REVE based on tasks [For84],
or ERIL [Dic85] where users have access to the basic operations or Huets first descrip­
tion [Hue80]. The rigorous and formal approach of this paper gives precision and concision
and leads to a better understanding of the program and therefore to a better confidence.
Since one is closer to the proof of completeness there are more chance that the implemen­
tation is both correct and complete. Another important aspect of this approach is that
modifications and improvements are easily done, Basically this level of programming allows
to study very high level optimizations [Ben82] and when an efficient procedure is discovered ,
a low level implementation can be foreseen. Here I made many implementation choices that
still can be discussed, but since they are rather explicit this discussion is easy and changes
can be quickly made. However, as well illustrated by the Eli.completioti compared with
the unfailing completion, it should also be noticed that the complexity of the completion
proced ures descri bed by transition rules increases ex ponen tially wi th the size of the number
of components of the data structure , which implies that some kind of modularity has to be
found.

l

I

l

36

Another int er. let rec UnfailingCompletion ordering (e,((EA,RA,EN,RN,EC, RC,ET ,RT ,ES,RS,E) as STATE)) =
let COMP = UnfailingCompl eti on ordering and ord = ord ering in shots exist , th eref

let e ' = Gnormalize ordering (EA @ EN @ EC @ ET @ ES @ E) e " state. Thus back:
where e " = (normalize (RA @ RN @ RC @ RS @ RT) e) in kind of backtrack:

if mat ches « x - x> e ' already complet ed
then (priutetate "REFUTATION" (e ' ,STAT E);(e ' ,STAT E)) (* refutation ') Bu t th is appr
else match (EN,RN,EC ,RC,ET, RT ,ES,RS,E) with computes	 one crit

-,-, [j,[] ,[]'O,[j,[j,[j - > (e '.STAT E) t" end of the completion *)
actions that canu
fully formaliz e allI _,_,_,_,_....,_L	 :J ,_ -> (COMP(e ' ,EA ' ,RA ' ,EN' ,RN ' ,EC' ,RC' ,ET I ,RT' @RS' ,ESb,[],E')

where (EA ' ,RA' ,EN I ,RN ' ,EC' ,RC ' ,ET ' ,RT ' ,ES ' ,RS ' ,E ') = Simp_by_RS (STAT E)) questi on [GS88,HJ
All th e pro ced

I -,- ,-,-,- ,-L:J ,[J.- - > (CO MP(e .EA ' ,RA ' ,EN ' ,RN' ,EC ' ,RC ' ,ET' @ES',RT',[] ,RS' ,E') d ure s that were ru
where (EA ' ,RA ' ,EN ' ,RN' ,EC ' ,RC' ,ET' ,RT ' ,ES ' ,RS ' ,E ') = can b e ob tained fr

F_Subsum e_by_ES ord (STATE)) I would like tc
Jouannaud , Jean-I

I _,_._,_,_,_,[],[],C::J - > let ((EA ' ,RA ' ,EN ' ,RN' ,EC' ,RC' ,ET ' ,RT ' ,ES' ,RS ', E ')
provided me with

as STAT E ') =
A nthology and Ala Clean_E ord	 (STATE) in (m at ch E ' with

[] - > COMP (e' ,STATE') 20

I C :J ->	 COMP (e ' ,Orien ta t ion ord (ST AT E '))) References
I - ,C::J.[j.f-l·- ,-.[],[],[j - > COMP(e' , RN_RC_Deduc tion (STAT E))

[Bac87]	 L. Bach
Illinois, I C:J .-,U.Lk-.[],[],[] - > CO MPte ' . EN_RC_Dedu ction ord (STATE))

[BD 87]	 L. Baehr I _L:J ,[J ,[L-. [] ·[]·[] - > COMP(e' . RN_EC_Dedu cti on ord (STATE)) In Proce
Springer I C :J ,-. L]'[k-,[] ,[],[j - > CO MP(e ', EN_EC_Deducti on ord (STAT E))

30	
[BDH86] L. Baehr I [] ,[j,[J,[J ,-,- ,[],[j,[j - > CO MP (e '. A_C2N (RC_Intern al_Dedu ct ion(STATE)))

Proc. By
I [] ,[j,U ,O ,- ,- ,[],[j,[j - > COMP (e' , A_C2N (ECJnternal_Dedu ct ioll ord (STAT E)))	 USA), I!

[Ben82]	 J . L. Be I - ,-,[j,[].C::J ,[j,[],[],[] - > (COMP(e ' ,[j,[j,EA@EN,RA@RN,[e],[j,ET ' ,[],[] ,[j,[j)

where e,ET ' = (least Size ET))

[BL87a]	 F. B elle ~I - ,- ,O, [],[J ,C :J, [J, [] ,[J - > (COMP (e' ,[],[],EA@EN,RA@RN,[j,[r],[] ,RT' ,[],[],O)
in Alg eb where r ,RT' = (least Size RT))

I -,- ,[]JJ,C::JL:J ,[].[],[] - >
 [BL87b]	 A. BenC
let r,RT' = least Size RT and e,ET ' = least Size ET in

mial intrif Size r <= Size e 4 1

then CO MP(e ' ,F_Subsume_by_ES ord ([],[j,EA@EN,RA @RN,[j,[r],ET,RT' ,[],O ,[])) 9(2) :137
else COMP(e ' ,F_Subsume_by_ES ord ([] ,[],EA@ EN,RA@RN,[eJ,[j,ET ' ,RT .[],[j,[J))

[Der87]	 N. Dersl
lut ion OJ

Figure 5: The ER unfailing comp letion Driv e, A

[Dic 85] A.J.J. r
berger ,
(Austria

[DMT88] N. Ders
tion of r

mailto:EA@EN,RA@RN,[eJ,[j,ET',RT.[],[j,[J

=

37

Another interesting aspect of the progr amming by transition rul es is that simple snap­
shots exist , th erefore th e process can eas ily be stopped aft er eac h rule and restarted on thi s
state. Thus backtrackin g on the choi ce of the orderings as im plemented in REVE or a ny
kind of backtracking to insure fairness [DMT88], backups, br eak poi nts or integr ation of a n
already compl eted rewrite system in another eq ua tional th eory ca n be eas ily handled .

But this approac h does not address low level cont rols, for instance refinem ents th at
computes one critical pair at a time. This indeed requ ires a level of granula rity in th e
actions that can no t be handled by th e curren t form of the data st ruct ure. Attempts to
fully formalize all the tasks, including su bstit utio ns and unifi cati ons should answ er th is
question [GS88. HJ88].

All the procedures presented in this pap er a re a part of ORME , a set of CAML pr oce­
dures that were run for complet ing a set of examples. Both th e programs and the examples
can be obtained from th e author upon request .

I would like to t hank Leo Bachmair , Fr an coise Bellegar de, J ieh Hsian g, Jean- Pierre
Jouannaud, J ean-L uc Remy, Michael R usinowitch and th e EURECA group at CRIN who
provided me wit h stimulat ing dis cussions, Gerad Huet who gave me access to th e CA ML
Anthology and Alain Lavill e for wise adv ices on how to use CA M L.

References

[Bac87]	 L. Bachmair . Proof methods f or equational theories. PhD thesis , University of
Illinois , Urbana-Cha mpaig n, 1987.

[BD87]	 L. Bach mair a nd N. Dersh owitz. Comp let ion for rewriting modul o a cong ruence .
In Proceedings Second Conference on R ewriting Techn iques and Applications,
Springer Verl ag, Bord eau x (Fra nce) , May 1987.

[BDH86]	 L. Bachmair , N. Dershowitz, and J. Hsiang. Orderings for eq uational proofs. In
Proc. Sy m p. Logic in Computer Sci ence, pages 346-357 , Boston (Mass achuset ts
USA) , 1986.

[Ben82]	 J. L. Bentley. Writ ing Efficien t Program s. Prentice Hall , 1982.

[BL87a]	 F . BeUegar de and P. Lescanne. Tran sform ation ord erin gs. In 12th Coll. on Trees
in Alq ebra and Proqramminq , TAPSOFT, pages 69-80, Springer Verlag, 1987.

[BL87b]	 A. Ben Ch erifa an d P. Lescanne. Termination of rewriting sys tems by polyno­
mial interpret at ions and its implem entation. Science of Com puter Programming,
9(2):137-160, Oct ober 1987.

[Der87]	 N. Dershowitz. Com plet ion and its a pplications. In Proc. Colloquiu m on R eso­
lution of Equations in A lgebraic Struc tures, MCC, 3500 West Balconi es Cente r
Drive , Austin, Texas 78759-6509, May 4-6 1987.

[Dic85]	 A.J.J. Dick. ERIL equat ional reasoning: an interactive laboratory. In B. Buch­
berger, editor , Proceedings of the EURO CAL Conference, Springer-Verl ag, Linz
(Austria), 1985.

[DMT88]	 N. Dershowitz, L. Mar cus, and A. Tarl ecki . Existen ce, uniqueness and cons t ruc­
tion of rewr ite systems. S IAM J. Comput., 17(4) :629-639, August 1988.

38

[Fag84] F. Fages. Le systeme KB. Manuel de reference , presentation et bibliographie,
mise en reuvre. Technical Report, Greco de Programmation, Bordeaux, 1984.

[FG84] R. Forgaard and J. Guttag. REVE: A term reumtmq system generator with
failure-resistant Knuth-Bendix. Technical Report, MIT-LCS, 1984.

[For84] R. Forgaard. A program for generating and analyzing term rewriting systems.
Technical Report 343, Laboratory for Computer Science, Massachusetts Institute
of Technology, 1984. Master's Thesis.

[FOR87a]	 Projet FORMEL. The CAML Primer. Technical Report, INRIA LIENS, 1987.

[FOR87b]	 Projet FORMEL. CAML: the reference Manuel. Technical Report , INRIA-ENS,
March 1987 .

[FOR87c]	 Projet FORMEL. The CAML Anthology. July 1987. Internal Document.

[Gal88]	 B. Galabertier. Implementation de l 'ordre de terminaison par transformation.
Technical Report, CRIN, Septembre 1988.

[Gan87]	 H. Ganzinger. A completion procedure for conditional equations. In Proc , 1st
International Workshop on Conditional Term Rewriting Systems, pages 62-83 ,
Springer-Verlag, 1987 . Extended version to appear in Journal of Symbolic Com­
putation.

[GG88]	 S. Garland and J . Guttag. An Overview of LP, The Larch Prover. Technical
Report, MIT, 1988.

[GKK88]	 1. Gnaedig , C. Kirchner , and H. Kirchner. Equational completion in order­
sorted algebras. In M. Dauchet and M. Nivat, editors, Proceedings of the 13th
Colloquium on Trees in Algebra and Programming, pages 165-184, Springer­
Verlag, Nancy (France) , 1988.

[GS88]	 J . Gallier and W. Snyder. Complete sets of transformations for general E­
unification . Journal of Theorical Computer Science, 1988.

[HJ88]	 J . Hsiang and J-P. Jouannaud. General e-unification revisited. In Proceedings
of 2nd Workshop on Unification, 1988.

[HM88]	 J . Hsiang and J. Mzali . Algorithme de Completion SKB. Technical Report, LRI,
Orsay, France, 1988. Submitted.

[HR87]	 J. Hsiang and M. Rusinowitch. On word problem in equational theories. In
Proceedings of 14th International Colloquium on Automata, Languages and Pro­
gramming, Springer- Verlag, Karlsruhe (West Germany), 1987.

[Hue80]	 G. Huet. A complete proof of correctness of the Knuth-Bendix completion algo­
rithm. Technical Report 25, INRIA, August 1980.

[Hue81]	 G. Huet. A complete proof of correctness of the Knuth and Bendix completion
algorithm . Journal of Computer Systems and Sciences, 23:11-21 , 1981.

[KB70]	 D. Knuth and P. Bendix. Simple Word Problems in Universal Algebra,
pages 263-297. Pergamon Press, 1970 .

[Kir84] H. Kircl
stract d
[erence
(Califon

[KS83] K. Kapu
rule labe
pages 33

[Les83] P. Lescai
Generate
Lanquaq:

[Ore83] F. Orejas
1983.

A Introduct

Let us take a simple
and @ and satisfy th

and a function flatte

The term flatten([x
flatten(x) by three n
by the fourth rule an'
sition and (tlatten(x
pair rewrite to the!
divergent.

is a convergent critic

is a divergent critica
without such diverge

phie,
14.

with

:ems.
itute

987.

E;NS,

~tion.

;. l st
2-83,
~om-

inical

.rder­
isu.

nger­

al E­

dings

LRl,

I. In
Pro­

algo­

etion

iebra,

39

[Kir84]	 H. Kirchner. A general inductive completion algorithm and application to ab­
stract data types. In R. Shostak, editor, Proceedings 7th international Con­
ference on Automated Deduction, pages 282-302 , Springer-Verlag, Napa Valley
(California, USA), 1984.

[KS83]	 K. Kapur and G. Sivakumar. Experiments with an architecture of RRL, a rewrite
rule laboratory. In Proc. of an NSF Workshop on the Rewrite Rule Laboratory,
pages 33-56, 1983.

[Les83]	 P. Lescanne. Computer Experiments with the REVE Term Rewriting Systems
Generator. In Proceedings, 10th A CM Symposium on Principles of Programming
Languages, ACM , 1983.

[Ore83]	 F. Orejas. Good food considered helpful. Bulletin of EATCS, 20:14-22, June
1983.

A Introduction to completion procedures

Let us take a simple example namely the type Lists where the constructors are [], [_], a, b
and @ and satisfy the relations

[]@x-->x

x@[]-->x

(x@y)@z-->x@(y@z)

and a function flatten is given by:

flatten([])-->[1
f1atten(a)-->a

f1atten(b)-->b

f latten(a@x)-->a@flatten(x)

f latten(b@x)-->b@flatten(x)

flatten([x]@y)-->flatten(x)@flatten(y)

The term flatten([x]@[]) can be rewritten into flatten([x]) by the second rule and into
flatten(x) by three rewrites, namely to flatt en(x)@flatten([]) by the last rule, to flatten(x)@[]
by the fourth rule and to flatten(x) by the second rule. flatten([x]@[]) is called a superpo­
sition and (flatten(x)@flatten([]),f1atten([x])) a critical pair. If both parts of the critical
pair rewrite to the same terms, the critical pair is said convergent, otherwise it is said
divergent .

is a convergent critical pair and

(flatten(x) @flatten([]), flatten([x]))

is a divergent critical pair. A completion procedure is a way to generate a rewrite system
without such divergent critical pairs with the same proving power. It is based on inference

40

rules like the following ones where one works on a data structure with two sets, namely E
that contains the identities and R that contains the rules or oriented identities.

Delete: EU{s=s};Rf-E;R
Compose:E; R U {s --> t} f- E; R U {s --> u}if t --+R u
Simplify: E U {s = t} ;R f- E U {s = u}; R if t --> R u
Orient: E U {s = t} ;R f- E; R U {s --> t} if s > t
Collapse: E; Ru {s --> t} f- E U {u = t}; R if S -->R u by a rule

I --> T E R with s I> I
Deduce: E ;R f- E U {s = t}; R if S +-R U -->R t for some u

Delete removes trivial identities from E. Compose reduces th e right-hand side of a rule if
it can be rewritten by a rule in R. Simplify simplifies an identity. Orient transforms an
identity into a rule provided the left-hand side is greater than the right-hand side for a given
ordering. Collapse transforms an identity into a rule when the left-hand side is rewritten.
Deduce creates new identities from superpositions.

The inference rule are used as long as they apply and the procedure can stop because
E is empty and no rule applies or can stop with failure when no identity can be oriented
or can run forever. It is complete if given an identity a = b to be proved there exists a step
i such that the R,-normal form of a is equal to the R;-normal form of b, where R; is the
value of Rat i t h step. Under some assumptions of fairness not given here the procedure is
complete.

B Original description of the Knuth-Bendix procedure

The next paragraph is a strict quotation of the Knuth-Bendix paper [KB70] . I found
intersting to give the actual description of the algorithm we work on for now close to two
decades. The corollary which is mentioned describe the concept of critical pair and (6 .1)
shows the stability of the congruence generated by a set of identities after adjunction of an
equational consequence.

The following procedure may now be used to attempt to complete a given
set of red uctions.

Apply the tests of the corollary to Theorem 5, for all >'1, A2 and p: If in
every case (J~ = (J~ , R is com plete and the proced ure terminates. If some choice
of AI , A2, P, leads to (J~ =i= (J~, then either (J~ > (J~, (J~ > (Jb or (JbU(J~ . In the
latter case, the process terminates unsuccessfully, having derived an equivalent
(Jb =' (J~(R) for which no reduction [...J can be used. In the former cases, we add
a new reduction ((J~, (J~) or ((J~, (Jb), respectively, to R and begin the procedure
again .

Whenever a new reduction (A', pi) is added to R, the en tire new set R is
checked to make sure it contains only irreducible words. This means, for each
reduction (A, p) in R we find irreducible words Ao and Po such that A~ Ao and
p --:. Po, with respect to R - {(A ,p)} . Here it is possible that Ao = Po in which
case by (6.1) we may remove (A, p) from R. Otherwise we might have Ao > Po or
PO > Ao , and (A,p) may be replaced by (Ao , po) or (po, Ao) respectively [.. .J. We
might also find that AoUpo, in which case the procedure terminates unsuccessfully
as above.

c Some

CAML is a pc
here are the fl

let introduce:
occurrer

where is sim:

match patter
in the p
correspo
and are,
means a
any list·

failwith sign:

A full descript

ly E

lie if

IS an

~iven

tten .

;ause
anted
. step
s th e
Ire is

found
o two

(6.1)
of an

41

C Some basic notions of CA M L

CAML is a polym orphic functional la nguage of th e ML family. Its basi c cons t ruc t ions used
here are th e followin g.

let intr odu ces an identi fiers a nd its definition by a subex pression t hat will replace each
occurrence of th e iden t ifier in t he body th at follows an d which is int rod uced by in.

where is simi la r to let , but is placed af ter th e body.

match patt ern with iden ti fies a st ruc t ure that will be chec ked for a use as a rewrite syste m
in th e part th a t follows th e with. E ach rul e is introduced by a pattern and th e
corresponding com putatio n follows th e sign - >. The rules a re se parated by signs I
and are evalu a ted wit h a pri ority according to th eir po sition . In a pattern, th e sign _
means any valu e. For instan ce, (; :: .) match es a ny non empty list and [_] m at ch es
any list with one element. T he empty list is [J .

failwith signals a n exception to t he a ca lle r , such an exce ption is caught "by a?

A full desc ription ap pears in [FO R8 7b, FOR87a].

