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Abstract 

A description of the completion of a set of identities by a set of inference rules has
 
allowed recent progresses in proving its completeness. But there existed no attempt
 
to use this description in an actual implementati on. This paper shows that this is
 
feasible using a functional programming language namely CAM £. The implementation
 
uses a toolkit , a set of transition rules and a short procedure for describing the control.
 
A major role is played by the data structure on which both the transi tion rules and
 
the control operate . Three versions of the classical Knuth-Bendix completion and two
 

Wli versions of the unfailing completion are proposed.	 I mel 
at I 

1 Completion procedures as sets of transitions rules	 to t 
as I 

The interest of rewriting techniques in programming, algebraic and computer algebra spec­ the 
ification s is well-known as is its abil ity to provid e pr oof environments essentially based on 

foll 
complet ion procedures [FG84,GG88 ,KS83 ,Fag84,L es83]. In this introducti on, I suppose the thn 
read er is familiar with this concep t. Indeed my goal is not to present it , but to st udy how 

COD 
me thods develop ed essentially with a th eoret ical purpose, namely proving completeness can tior 
be used to pr esent simple sh ort and understand abl e programs. Th is paper can also be seen tra 
as a set of exe rcises on the use of a function al language to program high level procedures 
and as a bridge between th eory and practice. Readers who want to get more introduc­
tory informations ar e invited to look at Appendix A or to Dershowitz survey Completion 2 
and its Applicati ons [Der 87]. The completi on pr ocedure is a method used in equat ional 

Inlogic to built from a set of identities an equivalent canonical set of rewri te rul es i.e., a 
whconflu ent, noetherian and in terreduced set of rule s used to compute normal forms. If one 
ordtracks the hist ory of the presentation of this proc edure, one can notice differen t methods 

of descriptio n. In th eir seminal pap er [KB70] Knu th and Bendix describe essentially th e III 

procedure in natural language (see Appendix B), in [Rue 8G] Huet uses a style simila r to 
Knu th 's book , Th e Art of Com puter Proqramrniruj , in [Hue81] he uses a pr ogram structured 
by whil e loops , in [Kir84] H. Kirchner uses a recursive pro cedu re and in [For84] Forgaard 
proposes an orga niza tion of the procedure around task s t o be performed. In th e following, a 

"The research was sp on sored by PRC "programma tion avancee et ou ti ls de I'intelligen ce ar ti ficielle" , 
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complet ion will be seen as a set of infe rence rules or more precisely a se t of transi tion rul es 
act ing on a d a ta structure. The idea of using inferen ce rules wh en dealing with completion 
is not new and leads to the beautiful pro ofs of completeness proposed by Bachmai r and 
Dershowitz [Bac87 ,BDH86,BD87] an d the ir followers [GKK88,G an 87]. The com pleteness is 
th e ability of the proced ur e to eve ntually generate a proof by normalization or a rewrite 
proof for eve ry eq ua tional theor em . In this paper , I want to sho w how this description leads 
to act ual, n ice and elegant p rogra ms when used as a progr amming method and I illu strate 
tha t by an ac tual CAML implem entation [FOR87b] . Appendix C gives the basi c notion s 
th at are useful to un de rs tand the progr ams. Actually the inference rul es one conside rs in 
completion are spe cific in th e sense t hat they tran sform a t- uple of objects into a t-uple of 
objects with t he sa me structure . This is why I refer to the m as transition rules. Thus th e 
basic compon ents of su ch a pr ocedure a re four , 

•	 a data structure on whi ch the t rans ition rules ope rate, some t imes called the uni ­
ver se, 

•	 a set of transition rules, th at a re the basi c ope rati ons on th e data s t ructure , 

•	 a control, that is a description of the way the transition rules are invoked" , 

•	 a toolkit that is shared by se veral completion procedures. 

When one wants to de scribe a spe cific com plet ion procedure, usually one uses the following 
method. First one chooses the data st ruc t ure, t he n one cho oses transi tion rules and ofte n 
at t he same time the cont rol. The to olkit is something that remains from one procedure 
to the other in many cases , it was pa rt ly bor rowed from the " CAML Anthology" [FOR87c] 
as a natural attempt to reuse pieces of codes already debugged and tested. As we will see 
the contro l is typically dat a d riven and can be eas ily ex pr esse d by rewrite rul es . In the 
following, t he influen ce of these choices on th e e fficie ncy of the pr ocedure will be illu strated 
throu gh three refin em ents of th e Knuth-Bendix completion procedures and a two unfailing 
completion s. Indeed, we will see how , sta r ti ng from a naive implementation of the comple­
tion, improvements can be obtain ed by chang ing th e data s tr uc t ure and conseq uent ly the 
transition rules and th e con t rol. These ideas a re implemented in my progr am ORME. 

2 The N-completion 

In this sec tion, I give a naiv e implementation of th e com plet ion, called the N-completion, 
where N stand s for naive. It is already a n improvem ent of th e set of rul es of Appendix A in 
order to take th e com putation of critical pairs into account. Its control par t is fully given 
in Figur e 1 and its data s t ruc t ure has three components, namely 

• E is a set of identit ies, eit he r cri t ica l pairs or given iden tities, 

•	 T is a set of rul es , t he non marked rul es in Hu et 's terminology [Hue81], 

• R is a set of rules whose crit ical pairs have been computed , t he marked rules . 

In the pr ocedure, ordering is a par ameter wh ich is a relation used to ori en t the id entities into 
rules, by the way it is also a parameter of Orientation . There are three kinds of t ransition 

ITo give a gastronomic comparison [Ore83!, t he cont ro l is t he recipe. 
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let rec N_Completion ordering (R,T,E) let COMP = N_Completion ordering in let rec S_Co 
match (T ,E) with match (T,S , O,D -> (R,[l,[I)	 (* success *) [J,O,[] -: 

C::J,[] -> COMP [repeatlist [SimpjJeft_T_by];SimpjJeft_T_by_R; 
-,C :-l.­SimplleftRjby_T ;SimplJeft_R_by_R; 

SimplrightT'BimplrightR] 
(Deduction(R,T,E)) ) 

C::J,O,[]I -L:J -> let	 (R',T',E') = repeatJist[Remove_triviatE;Simpl_E](R,T,E) in 10
 

(match E' with
 -,[J,C:Jll -> COMP(R' ,T' ,E') 
I C:J	 -> COMP(Orientation ordering (R' ,T' ,E') 

? failwith "non orientable equation")) ;; 

Figure 1: The N-completion 

rules, their names are taken according to Dershowitz [Der87] (see also Appendix A). De­
duction computes critical pairs, in this case it computes critical pairs between one rule in T, 
usually the smallest one to be more efficient, and all the rules in R . Orientation chooses an 
identity that can be oriented by an ordering and produces a rule , if no identity is orientable, 
it fails. This requires an reduction ordering, currently ORME contains an ordering based on 
polynomial interpretations [BL87b], implementing other orderings would not be too difficult 
since the CAML Anthology [FOR87c] contains the recursive path ordering and a CAML 
implementation of the transformation ordering also exists [BL87a,Gal88]. Remove.trioial.E 
removes from E a trivial iden ti ty. The rules SimpLlejL T_by_T, Simpl.lejt: T_by_R etc. sim­
plify terms in the rules or the identities. repeaUist repeats the application of of a list of 
inference rules until they all fail. The control given in Figure 1 has essen tially three steps, 
namely success, when T and E are empty, computing critical pairs after simplification of 
the rules , when E is empty, and orienting an identity into a rule after simplification of the 
identities , when E is not empty. In the orientation part it could happen that by simplifi­
cation all the identities disappear, in this case one does nothing, that is just translated by 
a recursive call to COMP with the same parameters. The recursive calls mean that one 
restarts the process. The completion terminates with success when E and T are empty. 
The system works as a machine where the identities enter E and proceeds through T and R. 
Its description is therefore really similar to this of an automaton . 

3 The S-completion 

Another name for rewrite systems is sometime simplifying systems and the theory of rewrite 
systems is a theory of simplification , that could be applied to many fields other than com­
puter algebra or software specification. Therefore the main aim of orienting identities is to 
use them to simplify whenever it is possible. But as noted by Hsiang and Mzali [HM88], the 
N-completion makes a bad use of simplification . Indeed a rule is not used for simplification 
as soon as it has been generated. Thus in a better implementation, when an identity is 
oriented into a rule it enters a set S where it is used to simplify all the other identities and 

rules. In the, 

•	 E like iI 

•	 S a set ( 
and tha 

•	 T a set 
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•	 R likei 
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let rec S_Completion ord ering (R,T,S,E) = let COMP = S_Completion ord ering in 
match (T,S ,E) with 

O,O,[] -> (R,[],[],[J) (* success *) 

I -,C::J,- -> (COMP (R' ,T' @S' ,[] ,E') 
where R',T',S',E' = 

repeat Iist [Simplleft,T_by_S;Simptright5_by_S; 
SimplleftRjby_S;Simptright_R_by_S] (R,T ,S,E)) 

I C::J,[],[] -> COMP (Dedu ction (R,T,S,E)) 
10 

I Jl.L::J - > let (R' ,T ' ,S ' ,E') = repeatjist[Remove_triviatE;SimptE](R,T,S,E)
 
in (match E' with
 

[] -> COMP (R ' ,T ' ,S ' ,E ' )
 
I C::J -> COMP (Orientation ordering (R',T',S' ,E')
 

? failwith "non orientable equation") );;
 

Figure 2: Th e S-completion 

rules. In the S- completion, the data structure is made of four components, 

• E like in the N- completion , 

• S a set of oriented identities or rules th at are used to simplify others identities or rules 
and that I call the simplifiers , during the completion S contains zero or one rule, 

• T	 a set of rules already used for simplifying, but whose critical pairs are not yet 
computed , 

• R like in th e N- completion. 

The only differen ce with th e N- completion is the set S through which a rule has to go, 
before entering T. The st ep of simplification is clearly distinguished from the three others. 
It is performed when S is not empty. Th e completion proces s ends when there is no more 
identity or rule in E , Sand T. 

4 The ANS-completion 

The S-complet ion can still be improved since it computes at the same time th e critical pairs 
between all th e rules in R and one rule in T. It should be better to compute the crit ical 
pairs between one rule in R and one rule in T at a tim e. As previously , S contain the 
simplifiers. In addition , a set C is crea ted to contain one rule extracted from T with which 
critical pairs with rules of R are computed. To keep t rack of th e rules whose critical pairs 
are computed with the rule in C, R is split into two sets A (for ~r eady computed) and N 
(forgot yet computed). Thus the data stru cture contains , 

• E like in th e S-completion , 

• S like in the S- completion, 
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•	 T is a set of rules coming from S and waiting to enter C, 

•	 C is a set that cont ains one or zero rule and whose critical pairs are computed with 
one in N, 

•	 N is th e part of R whose critical pairs have not been comp uted with C but whose 
cri t ical pairs with AU N have been computed, 

•	 A is a set whose crit ica l pairs with A u N U C have been computed. 

The tr an siti on rules a re ad apted to work with th is new data s t ruct ure and th ree new rul es 
ar e introdu ced. Dedu ction computes the critical pair s between th e smallest rule in N and 
th e rule in C. InternaLDedu ction computes th e critical pairs obtai ned by superp osing the 
rule(s) in C on its elf (themselves ). A_C 2N moves th e ru les in A and C in to N to start a new 
"loop" of computation of critical pairs, accordi ng to th e emptyness of the components of 
th e data st ructure . The pro cedure has now clearly six part s, namely success , simplification, 
ori entation, deduction , in tern al deduction and begin ning of a new loop of computation of 
critical pair s. Typ ically this cannot be easily s t ructured by a while loop becau se a t each time 
the it eration on th e com putations of th e cri tical pa irs can be interru pt ed by a simplification. 
A data d riven cont rol is th en much better (Figure 3) . 

5 The unfailing completion 

The prev ious method may fail becau se at certain tim e no rul e can be oriented , thi s is for 
instance the case if (x * y = y * x) E E . A method called either unf ailing completion or 
unf ailing Knuth-Bendix or UKB has been proposed by Hsian g and Rusinowitch [HR87] and 
Bachmair, Dershow itz and Hsian g [BDH86] and is complete for proving equational th eorems 
in equational th eories. The idea is to refute the equality to be proved , thu s vari abl es become 
Skolem constants, term s become ground terms and th e equ ality becomes a disequ ali ty i.e., 
a negation of an equality. On e does not orient th e identities. But becau se one works with 
an ordering tot al on ground term s, one knows tha t for any pair of ground terms one can 
tell which one is sim pler and therefore one can tell whether a term that matches a side of 
an identity can be t ra nsformed in th e other side in a decreasing way. In some sense , th ese 
new pairs of terms are not rules but "abstrac t" sets of rul es on ground terms . To pre cise 
the difference with iden titi es and rules , let me prop ose th e word liken ess for th em. The 
aim of unfailing completion is then to ma ke confluent the rewrite relation on ground term s 
defined by likenesses . Such a relat ion which is confluent on ground term s is called ground 
conflu en t . Although th e likenesses are not orien ted , one tri es however to sa ve generation of 
too many critical pairs by not keeping those of th e form (s, t) obtain ed from a superp osit ion 
u by s t-----! U t-----! t if eit her 7L < s or u < t ; because thi s kind of equality will never be 
used for rewriting ground terms. This is what makes this procedure different from classi cal 
par amodulation . As a refutation procedure, a t each ste p, an attempt to refute th e negation 
of th e disequality is perform ed. The data structure of thi s naiv e unfailin g complet ion is a 
follow 

•	 E is again th e set of identities, 

•	 C is a set th at contai ns one or zero likenesse and whose critica l pai rs are computed 
with one in N , 

let rec ANS_ 
let COM 

match (N,C,' 
-,[J, [J ,[] ,[] ­

_,_,_,C::J ,_ 

I _,_ ,_,[],C::J 

I C::J ,U,-,[], 

I [],[-L[],[] ­

I -,[] ,C::J ,[] ,O 



with 

nose 

'ules 
and 
the 

new 
.s of 
:ion , 
n of 
;ime 
.ion. 

; for 
nor 
and 
ems 
ome 
i.e., 
with 
can 
,e of 
hese 
c ise 
Th e 
rms 
-und 
n of 
tion 
. be 
tical 
tion 
is a 

rted 

33 

let rec ANS_Completi on orde ring (A,N,C ,T,S,E) = 
let COMP = ANS_Completion ordering in 

match (N,C,T ,S,E) wi th 
.Il.ll.ll.ll - > (A,N,C ,T ,S ,E) (* success *) 

I-,_,_L:J,_ - > (CO MP (A',N' ,C' ,T '@S',[],E') 
where A' ,N' ,C ' ,T ' ,S ' ,E ' = 

repeatl ist [SimpIJeft_A_by_S;Sim plright_A_by_S; 
SimpUeft_N_by_S;Simp IJight_N_by_S; 10 

Simplj eftCjby_S;Simptright _C_by_S; 
Sim pUeft_T_by_S;Simptright_T_by_S] 

(A,N,C, T,S, E)) 

1-,-,-,[j,L::J - > let A ' ,N ' ,C' ,T' ,S' ,E' repeat_list[Remove_triviatE; 
Simpl_E](A,N,C ,T ,S,E) in 

(match E ' wi t h 
[] - > COMP (A' ,N' ,C' ,T' ,S' ,E ') 

I C: :J -> COMP(Orien tation ord ering (A ' ,N ' ,C ' ,T ',S ',E ') 
? failwi th II non orien table equat ion " )) 20 

I C::J,[-L[],[] - > COMP (Ded uct ion( A, N,C,T,S,E)) 

I [] ,[-L [] ,[] - > C OMP (A_C2N cri t (Int ern al_Ded uct ion (A,N,C,T,S, E))) 

I JJL :J ,[]'[] - > (COMP([],A@N,[r],T' ,[],[]) whe re r,T' = least Size T); ; 

Figure 3: The ANS-completion 
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let rec Unfailin g Complet ion ord erin g (e,A,N ,C,E) = 

let COMP = UnfailingCo mpletion ord erin g in 
let e ' = Gnormalize ordering (A @ N @ C @ E) e 
if matches « x - x» e ' 

in 

and rules. 
ANS-com 
by spli ttii 
and a R-j 

then (e' ,A,N,C, E) ( " refutation ") • E is 
else match (N,C, E) with 

-,[LU -> (e ' ,A,N,C ,E) ( " en d of the com pletio n *) • RS 

I-,[],C::J - > let (A ' ,N' ,C ',E ') Clean_E (SimplE ord erin g • ES 

(Simpl_N orde ring (A,N,C, E )) )) 10 • RT 
in (m a t ch E' with 

[] - > CO MP (e ' ,A ' ,N ' ,C ' ,E ') • ET 
I eq :: E" - > COMP(e ', F_Subsumption orde ring (0, A ' @ N' , [eq), E" )) ) 

• RC 

I C::J,C::-k - > CO MP(e ' , (Ded uction ordering (A,N,C,E))) • EC 

I [J,LL - > COMP (e', (A_C2N (Inte rnalDeduction ordering (A,N,C, E))) );;	 • RN 

Figure 4: The unf ailing comp letio n	 • EN 

• RA 

• N is a set f liken ess whose critical pairs have not been computed with C but whose • EA 

crit ical pairs with	 AU N have been computed, The transi 
completun

• A is a set whose critic al pairs with AU N U C have been computed. 
be oriente 

It should be noti ced that the idea of compu tin g the critica l pairs betw een only two pairs improvem­

at a tim e is used , but not t he idea of putting a high priori ty to simplificati on and since gets now [ 
there is no simplifi cation th e identities enter directly C from E . With th e disequ ality to be 
refuted , the procedure has five par ameters. The last four ones remind th e data struc ture of 7 COl
the classical completio n. Obvi ously, th ere is no Orientatio n t ransiti on rule, but t here are 
Deduction an d Interiuil.Deduct ioii as pr eviou sly. << x rv X >> is an ext ernal notation for The mai n 
t he disequ ali ty whose bo th sides are x. There are four s teps in this pr ocedure, either success actions an 
or, simplifi cation , or deduction or, th e beginning of a new "loop" of computation of crit ical t ion s. Th 
pairs. If one runs thi s algorithm on examples, one quickly realizes th at many generated or ERIL [
identities are instances of exist ing identiti es or obtained by inserting in a same context sides tion [Hue8 
of instances of identities and th erefore do not carry new information. Rules Sub sumption and leads 
or F_Sub sumption remove th ese useless identities. Subsumption filters the identities that Sin ce one 
matches another one and F_Sub sum ptio n t ries to remove ident ities of th e form CIs] = Crt], tation is I 
wher e C[ ] is a contex t, when th e identity s = t alr ead y exists. Gn ormalize take s a ground modificati 
term and returns it s norm al form using identi ties. However , when rewriting with iden tities t o study v 
as in refutation care must be taken with vari abl es th at can be in trod uced . The usual solut ion a low level 
is to instantiate th em by a new least constan t . still ca n b 

can be qu 
the unf ail 6 An improved unfailing completion: the ER-completion 
procedure 

The pre vious unfailing completion has th e advantage of being sho rt and easy to understand . of com pOD 

However its main dr awback is that it makes no difference between non orie ntable identi t ies found . 
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and rules . This can be fixed by refining considerably the data structure, using ideas from the 
ANS-completion . The new data structure contains eleven components. They are obtained 
by splitting the corresponding components of the ANS-completion into two parts , a E-part 
and a R-part. 

• E is not changed and is again the set of identities, 

• RS the simplifiers obtained from rules E by orientation, 

• ES the identities from E that cannot be oriented, they are used in F_Subsumption, 

• RT the R-part of T, 

• ET the E-part of T, 

• RC the R-part of C , 

• EC the E-part of C, 

• RN the R-part of N, 

• EN the E-part of N, 

• RA the R-part of A, 

• EA the E-part of A, 

The transition rules are changed accordingly and one gets a procedure I call the ER-unfailing 
completion (see Figure 5) which performs as a classical completion if all the identities can 
be oriented. The fact that everything which is orientable is actually oriented is a major 
improvement for the efficiency of the procedure. The structure of the completion procedure 
gets now more complex and requires studies on how to make it more modular. 

7 Conclusion 

The main idea of the approach presented here is to decompose the algorithm into basic 
actions and to describe some kind of abstract machine where these actions as the instruc­
tions. This may remind either Forgaards description of REVE based on tasks [For84], 
or ERIL [Dic85] where users have access to the basic operations or Huets first descrip­
tion [Hue80]. The rigorous and formal approach of this paper gives precision and concision 
and leads to a better understanding of the program and therefore to a better confidence. 
Since one is closer to the proof of completeness there are more chance that the implemen­
tation is both correct and complete. Another important aspect of this approach is that 
modifications and improvements are easily done, Basically this level of programming allows 
to study very high level optimizations [Ben82] and when an efficient procedure is discovered , 
a low level implementation can be foreseen. Here I made many implementation choices that 
still can be discussed, but since they are rather explicit this discussion is easy and changes 
can be quickly made. However, as well illustrated by the Eli.completioti compared with 
the unfailing completion, it should also be noticed that the complexity of the completion 
proced ures descri bed by transition rules increases ex ponen tially wi th the size of the number 
of components of the data structure , which implies that some kind of modularity has to be 
found. 
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Another int er. let rec UnfailingCompletion ordering (e,(( EA,RA,EN,RN,EC, RC,ET ,RT ,ES,RS,E) as STATE)) = 
let COMP = UnfailingCompl eti on ordering and ord = ord ering in shots exist , th eref 

let e ' = Gnormalize ordering (EA @ EN @ EC @ ET @ ES @ E) e " state. Thus back: 
where e " = (normalize (RA @ RN @ RC @ RS @ RT ) e) in kind of backtrack: 

if mat ches « x - x> e ' already complet ed 
then (priutetate "REFUTATION" (e ' ,STAT E);(e ' ,STAT E)) (* refutation ') Bu t th is appr
else match (EN,RN,EC ,RC,ET, RT ,ES,RS,E) with computes	 one crit 

-,-, [j,[] ,[]'O,[j,[j,[j - > (e '.STAT E) t" end of the completion *) 
actions that canu 
fully formaliz e allI _,_,_,_,_....,_L	 :J ,_ -> (COMP(e ' ,EA ' ,RA ' ,EN' ,RN ' ,EC' ,RC' ,ET I ,RT' @RS' ,ESb,[],E' ) 

where (EA ' ,RA' ,EN I ,RN ' ,EC' ,RC ' ,ET ' ,RT ' ,ES ' ,RS ' ,E ' ) = Simp_by_RS (STAT E)) questi on [GS88,HJ 
All th e pro ced 

I -,- ,-,-,- ,-L:J ,[J.- - > (CO MP(e .EA ' ,RA ' ,EN ' ,RN' ,EC ' ,RC ' ,ET' @ES',RT',[] ,RS' ,E' ) d ure s that were ru 
where (EA ' ,RA ' ,EN ' ,RN' ,EC ' ,RC' ,ET' ,RT ' ,ES ' ,RS ' ,E ') = can b e ob tained fr 

F_Subsum e_by_ES ord (STATE)) I would like tc 
Jouannaud , Jean-I 

I _,_._,_,_,_,[],[],C::J - > let ((EA ' ,RA ' ,EN ' ,RN' ,EC' ,RC' ,ET ' ,RT ' ,ES' ,RS ', E ' ) 
provided me with 

as STAT E ' ) = 
A nthology and Ala Clean_E ord	 (STATE) in (m at ch E ' with
 

[] - > COMP (e' ,STATE' ) 20
 

I C :J ->	 COMP (e ' ,Orien ta t ion ord (ST AT E '))) References 
I - ,C::J.[j.f-l·- ,-.[],[],[j - > COMP(e' , RN_RC_Deduc tion (STAT E)) 

[Bac87]	 L. Bach 
Illinois, I C:J .-,U.Lk-.[],[],[] - > CO MPte ' . EN_RC_Dedu ction ord (STATE)) 

[BD 87]	 L. Baehr I _L:J ,[J ,[L-. [] ·[]·[] - > COMP(e' . RN_EC_Dedu cti on ord (STATE)) In Proce 
Springer I C :J ,-. L]'[k-,[] ,[],[j - > CO MP(e ', EN_EC_Deducti on ord (STAT E)) 

30	 
[BDH86] L. Baehr I [] ,[j,[J,[J ,-,- ,[],[j,[j - > CO MP (e '. A_C2N (RC_Intern al_Dedu ct ion(STATE))) 

Proc. By 
I [] ,[j,U ,O ,- ,- ,[],[j,[j - > COMP (e' , A_C2N (ECJnternal_Dedu ct ioll ord (STAT E)))	 USA), I! 

[Ben82]	 J . L. Be I - ,-,[j,[].C::J ,[j,[],[],[] - > (COMP(e ' ,[j,[j,EA@EN,RA@RN,[e],[j,ET ' ,[],[] ,[j,[j)
 
where e,ET ' = (least Size ET ))
 

[BL87a]	 F. B elle ~I - ,- ,O, [],[J ,C :J, [J, [] ,[J - > (COMP (e' ,[],[],EA@EN,RA@RN,[j,[r],[] ,RT' ,[],[],O) 
in Alg eb where r ,RT' = (least Size RT ))
 

I -,- ,[]JJ,C::JL:J ,[].[],[] - >
 [BL87b]	 A. BenC
let r,RT' = least Size RT and e,ET ' = least Size ET in 

mial intrif Size r <= Size e 4 1 

then CO MP(e ' ,F_Subsume_by_ES ord ([],[j,EA@EN,RA @RN,[j,[r],ET,RT' ,[],O ,[] )) 9(2) :137 
else COMP(e ' ,F_Subsume_by_ES ord ([] ,[],EA@ EN,RA@RN,[eJ,[j,ET ' ,RT .[],[j,[J)) 

[Der87]	 N. Dersl 
lut ion OJ 

Figure 5: The ER unfailing comp letion Driv e, A 
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Another interesting aspect of the progr amming by transition rul es is that simple snap­
shots exist , th erefore th e process can eas ily be stopped aft er eac h rule and restarted on thi s 
state. Thus backtrackin g on the choi ce of the orderings as im plemented in REVE or a ny 
kind of backtracking to insure fairness [DMT88], backups, br eak poi nts or integr ation of a n 
already compl eted rewrite system in another eq ua tional th eory ca n be eas ily handled . 

But this approac h does not address low level cont rols, for instance refinem ents th at 
computes one critical pair at a time. This indeed requ ires a level of granula rity in th e 
actions that can no t be handled by th e curren t form of the data st ruct ure. Attempts to 
fully formalize all the tasks, including su bstit utio ns and unifi cati ons should answ er th is 
question [GS88. HJ88]. 

All the procedures presented in this pap er a re a part of ORME , a set of CAML pr oce­
dures that were run for complet ing a set of examples. Both th e programs and the examples 
can be obtained from th e author upon request . 

I would like to t hank Leo Bachmair , Fr an coise Bellegar de, J ieh Hsian g, Jean- Pierre 
Jouannaud, J ean-L uc Remy, Michael R usinowitch and th e EURECA group at CRIN who 
provided me wit h stimulat ing dis cussions, Gerad Huet who gave me access to th e CA ML 
Anthology and Alain Lavill e for wise adv ices on how to use CA M L. 
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A Introduction to completion procedures 

Let us take a simple example namely the type Lists where the constructors are [ ], [_], a, b 
and @ and satisfy the relations 

[ ]@x-->x 

x@[ ]-->x 

(x@y)@z-->x@(y@z) 

and a function flatten is given by: 

flatten([ ])-->[ 1 
f1atten(a)-->a 

f1atten(b)-->b 

f latten(a@x)-->a@flatten(x) 

f latten(b@x)-->b@flatten(x) 

flatten([x ]@y)-->flatten(x)@flatten(y) 

The term flatten([x]@[ ]) can be rewritten into flatten([x]) by the second rule and into 
flatten(x) by three rewrites, namely to flatt en(x)@flatten([]) by the last rule, to flatten( x)@[ ] 
by the fourth rule and to flatten(x) by the second rule. flatten([x]@[ ]) is called a superpo­
sition and (flatten( x)@flatten([]),f1atten([x])) a critical pair. If both parts of the critical 
pair rewrite to the same terms, the critical pair is said convergent, otherwise it is said 
divergent . 

is a convergent critical pair and 

(flatten(x) @flatten([ ]), flatten([x])) 

is a divergent critical pair. A completion procedure is a way to generate a rewrite system 
without such divergent critical pairs with the same proving power. It is based on inference 
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rules like the following ones where one works on a data structure with two sets, namely E 
that contains the identities and R that contains the rules or oriented identities. 

Delete: EU{s=s};Rf-E;R 
Compose:E; R U {s --> t} f- E; R U {s --> u}if t --+R u 
Simplify: E U {s = t} ;R f- E U {s = u}; R if t --> R u 
Orient: E U {s = t} ;R f- E; R U {s --> t} if s > t 
Collapse: E; Ru {s --> t} f- E U {u = t}; R if S -->R u by a rule 

I --> T E R with s I> I 
Deduce: E ;R f- E U {s = t}; R if S +-R U -->R t for some u 

Delete removes trivial identities from E. Compose reduces th e right-hand side of a rule if 
it can be rewritten by a rule in R. Simplify simplifies an identity. Orient transforms an 
identity into a rule provided the left-hand side is greater than the right-hand side for a given 
ordering. Collapse transforms an identity into a rule when the left-hand side is rewritten. 
Deduce creates new identities from superpositions. 

The inference rule are used as long as they apply and the procedure can stop because 
E is empty and no rule applies or can stop with failure when no identity can be oriented 
or can run forever. It is complete if given an identity a = b to be proved there exists a step 
i such that the R,-normal form of a is equal to the R;-normal form of b, where R; is the 
value of Rat i t h step. Under some assumptions of fairness not given here the procedure is 
complete. 

B Original description of the Knuth-Bendix procedure 

The next paragraph is a strict quotation of the Knuth-Bendix paper [KB70] . I found 
intersting to give the actual description of the algorithm we work on for now close to two 
decades. The corollary which is mentioned describe the concept of critical pair and (6 .1) 
shows the stability of the congruence generated by a set of identities after adjunction of an 
equational consequence. 

The following procedure may now be used to attempt to complete a given 
set of red uctions. 

Apply the tests of the corollary to Theorem 5, for all >'1, A2 and p: If in 
every case (J~ = (J~ , R is com plete and the proced ure terminates. If some choice 
of AI , A2, P, leads to (J~ =i= (J~, then either (J~ > (J~, (J~ > (Jb or (JbU(J~ . In the 
latter case, the process terminates unsuccessfully, having derived an equivalent 
(Jb =' (J~(R) for which no reduction [...J can be used. In the former cases, we add 
a new reduction ((J~, (J~) or ((J~, (Jb), respectively, to R and begin the procedure 
again . 

Whenever a new reduction (A', pi) is added to R, the en tire new set R is 
checked to make sure it contains only irreducible words. This means, for each 
reduction (A, p) in R we find irreducible words Ao and Po such that A~ Ao and 
p --:. Po, with respect to R - {(A ,p)} . Here it is possible that Ao = Po in which 
case by (6.1) we may remove (A, p) from R. Otherwise we might have Ao > Po or 
PO > Ao , and (A,p) may be replaced by (Ao , po) or (po, Ao) respectively [.. .J. We 
might also find that AoUpo, in which case the procedure terminates unsuccessfully 
as above. 

c Some 

CAML is a pc 
here are the fl 

let introduce: 
occurrer 

where is sim: 

match patter 
in the p 
correspo 
and are, 
means a 
any list· 

failwith sign: 

A full descript 



ly E 

lie if 

IS an 

~iven 

tten . 

;ause 
anted 
. step 
s th e 
Ire is 

found 
o two 

(6.1) 
of an 

41 

C Some basic notions of CA M L 

CAML is a polym orphic functional la nguage of th e ML family. Its basi c cons t ruc t ions used 
here are th e followin g. 

let intr odu ces an identi fiers a nd its definition by a subex pression t hat will replace each 
occurrence of th e iden t ifier in t he body th at follows an d which is int rod uced by in. 

where is simi la r to let , but is placed af ter th e body. 

match patt ern with iden ti fies a st ruc t ure that will be chec ked for a use as a rewrite syste m 
in th e part th a t follows th e with. E ach rul e is introduced by a pattern and th e 
corresponding com putatio n follows th e sign - >. The rules a re se parated by signs I 
and are evalu a ted wit h a pri ority according to th eir po sition . In a pattern, th e sign _ 
means any valu e. For instan ce, (; :: .) match es a ny non empty list and [_] m at ch es 
any list with one element. T he empty list is [J . 

failwith signals a n exception to t he a ca lle r , such an exce ption is caught "by a? 

A full desc ription ap pears in [FO R8 7b, FOR87a]. 




