
λυ, a calculus of explicit substitutions
which preserves strong normalisation

Zine-El-Abidine BENAISSA, Daniel BRIAUD,
Pierre LESCANNE and Jocelyne ROUYER-DEGLI

Centre de Recherche en Informatique de Nancy (CNRS)
and INRIA-Lorraine

Campus Scientifique, BP 239,
F54506 Vandœuvre-lès-Nancy, France

email: Zine-El-Abidine.Benaissa@loria.fr, Daniel.Briaud@loria.fr
Pierre.Lescanne@loria.fr, Jocelyne.Rouyer@loria.fr

September 27, 1995

Abstract

Explicit substitutions were proposed by Abadi, Cardelli, Curien, Hardin and Lvy
to internalise substitutions into λ-calculus and to propose a mechanism for computing
on substitutions. λυ is another view of the same concept which aims to explain the
process of substitution and to decompose it in small steps. It favours simplicity and
preservation of strong normalisation. This way, another important property is missed,
namely confluence on open terms. In spirit, λυ is closely related to another calculus of
explicit substitutions proposed by de Bruijn and called Cλξφ. In this paper, we intro-
duce λυ, we present Cλξφ in the same framework as λυ and we compare both calculi.
Moreover, we prove properties of λυ; namely λυ correctly implements β reduction,
λυ is confluent on closed terms, i.e., on terms of classical λ-calculus and on all terms
that are derived from those terms, and finally λυ preserves strong normalisation in the
following sense: strongly β normalising terms are strongly λυ normalising.

1 Introduction

The main mechanism of λ-calculus is β-reduction defined as
�
λx � a � b � a � b � x � , where � b � x �

is the substitution of the term b to the variable x. In classical λ-calculus (Barendregt, 1984)
the mechanism of substitution is described by a specific and external formalism. This
description is part of the epitheory (Curry & Feys, 1958) which means it is not integrated
into the theory. In the introduction to their book Curry and Feys insist on the importance
of substitution in logic in general and especially in the framework of λ-calculus. They
write on page 6 of (Curry & Feys, 1958) that the synthetic theory of combinators “gives the
ultimate analysis of substitutions in terms of a system of extreme simplicity. The theory
of lambda-conversion is intermediate in character between synthetic theories and ordinary
logic ... and it has the advantage of departing less radically from our intuition.” In other
words, they say that λ-calculus treats substitution better than ordinary logic, but not as
well as it should and not as well as combinatory logic does, but λ-calculus is closer to our
intuition of a function than combinatory logic. λ-calculi of explicit substitutions answer
this challenge since they contain in the same framework both a version of the β-rule and
a description of the evaluation of the substitution. Thus explicit substitutions fulfill both
Curry and Feys’s wishes of an internalisation of the substitution mechanism and of a system

1

which does not depart from our intuition. There are two approaches to calculi of explicit
substitutions.

De Bruijn’s approach which is also ours aims to describe faithfully the mechanism
of substitution with the character of “extreme simplicity” advocated by Curry and Feys for
combinatory logic. Historically, the first calculus in this family was introduced by de Bruijn
(de Bruijn, 1978) under the name Cλξφ, see also (Kamereddine & Nederpelt, 1993; Rose
& Bloo, 1995; Kamareddine & Rı́os, 1995). Another calculus belonging to this family,
which is extensively studied in this paper was proposed by one of us in (Lescanne, 1994).
Those calculi attempt to describe (perhaps naively) the principles of the implementation of
λ-calculus. They do not aim at efficiency.

The other approach, which we propose to call the λσ family, has been proposed by
Abadi, Cardelli, Curien, Hardin, Lvy and Field around 1989 (Abadi et al., 1990; Abadi
et al., 1991; Field, 1990; Hardin & Lévy, 1989; Curien et al., 1992; Rı́os, 1993). It fol-
lows previous research by Curien who proposed in 1983 categorical combinators (Curien,
1983; Curien, 1986b; Curien, 1986a) a combinatory logic more intuitive than the classical
one. Hardin in 1987 (Hardin, 1987; Hardin, 1989) studied confluence on open terms for
that calculus. Categorical combinators are more intuitive in the sense that they are based
on λ-calculus, more precisely on λ-calculus with Cartesian products and keep its struc-
ture. An important contribution toward explicit substitutions is the λρ calculus (Curien,
1991) which is a calculus for weak reduction. The calculi of the λσ family insist on con-
fluence on open terms, i.e., on terms with variables of sort term and substitution. For that,
they introduce a cons operation and a composition of substitutions which plays a central
role. Contrary to expectation, Melliès (Melliès, 1995) has shown that those calculi do not
preserve strong normalisation. More precisely, he has shown that the simply typed term
λv � �

λx � �
λy � y � � �

λz � z � x � � � �
λw � w � v � of the classical λ-calculus starts an infinite derivation in

the calculus λσ of (Abadi et al., 1991), or in the calculus λσ � of (Hardin & Lévy, 1989).
This derivation goes through terms that contain compositions and cons.

2 The λυ-calculus

First let us remind the unfamiliar reader with De Bruijn’s indices (de Bruijn, 1972). The
first idea that comes in mind if one wants to avoid explicit naming of bound variables is
to draw pictures. For instance, one replaces the variables by a dummy name like a box �
and one draws a line between the variable and its binders. In Fig. 1 we have represented
a few terms. This is exactly the approach proposed by Bourbaki (Bourbaki, 1954). De
Bruijn follows the same idea, for him variables are natural numbers, the indices. The
index of a variable is the number of λ’s one crosses before the λ that binds that variable.
For instance in λxλyλz � x the index of the only occurrence of x is 3 and in the notation of
λ-terms with indices, x will be replaced by 3. The indices allow us to associate directly a
variable (an index) with its binder, therefore there is no need for the name of a variable next
to each λ. Thus from a term a one creates an abstraction by adding just a λ on the front of
a. For instance, λ1 is equivalent to λx � x in the usual λ-calculus, λ1

�
λ1 2 � is equivalent to

λx � x �
λy � y x � and λλλ3 is equivalent to λxλyλz � x.

One main feature of λυ (read lambda-upsilon) is that its set of operators is minimal
in the sense that it contains only operators that are necessary to describe the substitution
calculus. There are four operators on terms namely abstraction, application, closure and
variables. The three operators on substitutions slash, lift and shift are introduced by need.
The operator closure � � introduces substitutions into the calculus. λυ uses de Bruijn’s
indices (de Bruijn, 1972) and we write variables 1, 2,..., n, n � 1, ... Notice the underlining
which creates a variable (an index) out of a natural number. It is a basic operator of the
theory and in particular it receives an interpretation in Fig. 3 for proving strong normali-
sation of υ. A term that does not contain any closure is called a pure term and when we
want to insist that a term contains a closure we call it impure. The terms considered in this

2

λ x . x

λ x . x

λ

λ y . x y
λ λ

λ x y λ z . x λ λ λ λ

λ 1

λ 1 λ 2 1

λ λ λ 3

Figure 1: Bourbaki’s style notations

paper are closed, which means that they do not contain free variables. In λυ, the β-rule
is replaced by a more elementary rule. Unlike our predecessors who called a similar rule�
Beta � , we call that rule

�
B � in order to avoid confusion with rule β.

�
B � is

�
B � �

λa � b � a � b � �
where b � is the substitution with the intuitive meaning:

b � : 1 �� b
2 �� 1

...
n � 1 �� n

...

This form of
�
B � was introduced by Ehrhard (Ehrhrard, 1988), but we borrowed it from

system τ of Rios (Rı́os, 1993). Other rules are given to get rid of substitutions, these rules
will form the calculus υ. λυ is the calculus

�
B � � υ. The first rule of υ is App , it distributes

a substitution into an application
�
ab � .

�
App � �

ab � � s � � a � s � b � s � �
When a substitution goes under a λ it has to be modified, namely

�
Lambda � �

λa � � s � � λ
�
a � � �

s � � � �
� is called Lift and has the following intuitive meaning:

� �
s � : 1 �� 1

2 �� s
�
1 � � � �

...
n � 1 �� s

�
n � � � �

...

� is a specific substitution that just shifts the indices in a term.

3

(B)
�
λa � b � a � b � �

(App)
�
ab � � s � � a � s � b � s �

(Lambda)
�
λa � � s � � λ

�
a � � �

s � � �
(FVar) 1 � a � � � a
(RVar) n � 1 � a � � � n

(FVarLift) 1 � � �
s � � � 1

(RVarLift) n � 1 � � �
s � � � n � s � � � �

(VarShift) n � � � � n � 1

Figure 2: The rewrite system λυ

� : 1 �� 2
2 �� 3

...
n �� n � 1

...

The meaning of Lambda can be explained as follows. In the expression
�
λa � � s � , s does

not affects the 1’s which occur in a. Similarly, in the expression λ
�
a � � �

s � � � , � �
s � should

not affect the 1’s which occur in a. On the other hand when � � �
s � � is applied to other

variables, it has to take into account that variables under λ have been renamed and to reset
the name of the variables in s

�
n � accordingly. This is done by � . Notice that in λυ there

is no need for a closure rule, i.e., a rule of the form a � s � � t � � a � s � t � � Indeed, in a term of
the form a � s � � t � it is not necessary to tell how t acts on a � s � since by induction one gets rid
of s. Now to specify completely the behaviour of substitutions one has just to describe by
rewrite rules their action on variables. Putting together all these ideas, we get the rewrite
rules of Fig. 2. Notice that the system is essentially lazy, in the sense that the evaluation of
the substitution a � b � � created by

�
λa � b can be delayed. The rewrite system υ terminates or

is strongly normalising. The proof is easy and can be done with elementary interpretations
(functions made of polynomials and exponentials) (Lescanne, 1994; Lescanne, 1992). It is
given in Fig. 3. υ is also an orthogonal rewrite system, which means that it is left-linear
and without superposition. This property is very important both for implementation and
proofs, for instance Luc Maranget (private communication) used it to prove termination (or
strong normalisation) of υ by structural induction. λυ has three sorts of objects, namely

Termsυ a :: � n
�
aa

�
λa

�
a � s �

Substitutionsυ s :: � a � � � �
s � � �

Naturals n :: � n � 1
�
1 �

λυ does not introduce composition of substitutions. This makes the system simpler than
those of the σ family. Indeed for presenting a calculus of explicit substitutions, such a
composition is not absolutely necessary, at least at the logical level and its introduction
in other calculi seems dictated by “efficiency”, laziness and code optimisation or partial
evaluation, i.e., the ability to improve programs by computing under binders. If new rules
dealing with composition need to be introduced, they should be first proved correct as
induction theorems and then added to the system. See (Lescanne, 1994) for a discussion
on the way to mechanise the introduction of composition and a comparison with other
approaches. Among other systems of explicit substitutions, (Lescanne, 1994) introduces
λυ but does not prove any of its properties.

The rest of the paper is structured as follows. In Section 3, we prove that λυ correctly
implements β-reduction. In Section 4, we prove the confluence of λυ. In Section 5, we

4

� � n� � 1 � 2 � � n � � 1
� � n � 1 � � 1 � � � n � � 1 � 1

� � 1 � � 1 � 2
� � ab � � 1 � � � a � � 1 � � � b � � 1 � 1

� � λa � � 1 � � � a � � 1 � 1
� � a � s � � � 1 � � � a � � 1 � � s � � 1

� � � �
s � � � 1 � � � s � � 1

� � � � � 1 � 2
� � a � � � 1 � � � a � � 1

� � n � � 2 � 2 � � n � � 2
� � n � 1 � � 2 � � � n � � 2 � 1

� � a � s � � � 2 � � � a � � 2 � � s � � 2

� � � �
s � � � 2 � 2 � � s � � 2

� � � � � 2 � 3

Figure 3: Interpretations for proving the termination of υ

prove that λυ preserves strong normalisation. In Section 6 we introduce de Bruijn’s calcu-
lus Cλξφ.

3 Soundness of the β-reduction in λυ
We write υ

�
a � for the normal form of the term a w.r.t. υ. Notice that υ

�
a � is pure, that is

υ
�
a � contains no closure. β is the classical β-reduction of λ-calculus. It is the relation a ���

β
b

between pure terms where a ���
B

b � and bpsilon
�
b � � . This definition is correct. Indeed, let us

introduce an external definition of substitution σ0. The classical definition of β-reduction
in terms of this operation (with definitions from (Hardin, 1992)), is

�
λa � b ���

β
σ0

�
a � b �

where σ0 is the instance in 0 of a function σn defined as follows.

σn
�
ac � b � � σn

�
a � b � σn

�
c � b �

σn
�
λa � b � � λ

�
σn � 1

�
a � b � � σn

�
m � b � �

�	
 m � 1 if m � n � 1
τn

0

�
b � if m � n � 1
m if m
 n

where:

τn
i

�
ab � � τn

i

�
a � τn

i

�
b �

τn
i

�
λa � � λ

�
τn

i � 1

�
a � � τn

i

�
m � ��� m � n if m � i

m if m
 i

Notice that τn
i � τm

i � τn � m
i and τ0

i

�
a � � a. We define a translation µ that links impure terms

with σn and τi
n.

µ
�
a � � n �

b � � � � � σn
�
µ

�
a ��� µ �

b � �
µ

�
a � � n � � � � � � τ1

n
�
µ

�
a � �

µ
�
n � � n

µ
�
ab � � µ

�
a � µ

�
b �

µ
�
λa � � λ

�
µ

�
a � �

� n is the nth iteration of n, in other words

� 2 �
s � � � � � �

s � � and � n �
s � � � � � � � � � � � �

s � � � � � � �
where � is repeated n times. Notice that if a is a pure term, then µ

�
a � � a, in particular,

µ
�
υ

�
a � � � υ

�
a � . The following proposition shows that both definitions coincide.

Proposition 1 1. a ���υ b � µ
�
a � � µ

�
b � ,

5

2. υ
�
a � � µ

�
a � ,

3. υ
�
a � b � � � � σ0

�
µ

�
a ��� µ �

b � � ,

4. a ���
β

b if and only if a ���
B

b � and b � υ
�
b � � .

Proof: I � n order to prove the first assertion we consider only rewrites at the root of terms
and for this we consider each rule of υ. The result generalises easily by structural induction
to any rewrite.

�
�
ab � � s � ���υ a � s � b � s �

– case s � � n �
c � �
µ

� �
ab � � s � � � σn

�
µ

�
ab ��� µ �

c � � � σn
�
µ

�
a � µ

�
b ��� µ �

c � �
� σn

�
µ

�
a ��� µ �

c � � σn
�
µ

�
b ��� µ �

c � � �
µ

�
a � s � b � s � � � µ

�
a � s � � µ

�
b � s � �

� σn
�
µ

�
a ��� µ �

c � � σn
�
µ

�
b ��� µ �

c � � �

– case s � � n � � �
µ

� �
ab � � s � � � τ1

n
�
µ

�
ab � � � τ1

n
�
µ

�
a � µ

�
b � � � τ1

n
�
µ

�
a � � τ1

n
�
µ

�
b � � �

µ
�
a � s � b � s � � � µ

�
a � s � � µ

�
b � s � � � τ1

n
�
µ

�
a � � τ1

n
�
µ

�
b � � �

�
�
λa � � s � ���υ λ

�
a � � �

s � � �

– case s � � n �
b � �

µ
� �

λa � � s � � � σn
�
µ

�
λa ��� µ �

b � � � σn
�
λµ

�
a ��� µ �

b � �
� λσn � 1

�
µ

�
a ��� µ �

b � � �
µ

�
λ

�
a � � �

s � � � � � λµ
�
a � � �

s � � � � λσn � 1
�
µ

�
a ��� µ �

b � � �
– case s � � n � � �

µ
� �

λa � � s � � � τ1
n

�
µ

�
λa � � � τ1

n
�
λµ

�
a � � � λτ1

n � 1

�
a � �

µ
�
λ

�
a � � �

s � � � � � λµ
�
a � � �

s � � � � λτ1
n � 1

�
a � �

� 1 � a � � ���υ a,

µ
�
1 � a � � � � σ0

�
µ

�
1 ��� µ �

a � � � σ0
�
1 � µ �

a � � � τ0
0

�
µ

�
a � � � µ

�
a � �

� n � 1 � a � � ���υ n
µ

�
n � 1 � a � � � � σ0

�
µ

�
n � 1 ��� µ �

a � � � σ0
�
n � 1 � µ �

a � � � n � µ
�
n � �

� 1 � � �
s � � ���υ 1

– case s � � n �
b � �

µ
�
1 � � �

s � � � � σn � 1
�
µ

�
1 ��� µ �

b � � � σn � 1
�
1 � µ �

b � � � 1 � µ
�
1 �

– case s � � n � � �
µ

�
1 � � �

s � � � � τ1
n � 1

�
µ

�
1 � � � τ1

n � 1

�
1 � � 1 � µ

�
1 � �

� n � 1 � � �
s � � ���υ n � s � � � �

– case s � � k �
b � �

µ
�
n � 1 � � �

s � � � � σk � 1
�
µ

�
n � 1 ��� µ �

b � � � σk � 1
�
n � 1 � µ �

b � � . By case,
� σk � 1

�
n � 1 � µ �

b � � � n � 1
if n
 k,

� σk � 1
�
n � 1 � µ �

b � � � n
if n � k � 1

6

� and σk � 1
�
n � 1 � µ �

b � � � τk � 1
0

�
µ

�
b � �

if n � k � 1.

µ
�
n � s � � � � � � τ1

0

�
µ

�
n � � k �

b � � � � � � τ1
0

�
σk

�
µ

�
n ��� µ �

b � � �
� τ1

0

�
σk

�
n � µ �

b � � � � By case,
� τ1

0

�
σk

�
µ

�
n ��� µ �

b � � � � τ1
0

�
σk

�
n � µ �

b � � � � τ1
0

�
n � � n � 1

if n
 k,
� τ1

0

�
σk

�
µ

�
n ��� µ �

b � � � � τ1
0

�
σk

�
n � µ �

b � � � � τ1
0

�
n � 1 � � n

if n � k � 1
� τ1

0

�
σk

�
µ

�
n ��� µ �

b � � � � τ1
0

�
σk

�
n � µ �

b � � �
� τ1

0

�
τk

0

�
µ

�
b � � � � τk � 1

0

�
µ

�
b � �

if n � k � 1, from τn
i � τm

i � τn � m
i .

– case s � � k � � �
µ

�
n � 1 � � �

s � � � � τ1
k � 1

�
µ

�
n � 1 � � � τ1

k � 1

�
n � 1 � �

Thus
� n � 2 if n � k
� n � 1 if n
 k.

µ
�
n � s � � � � � � τ1

0

�
µ

�
n � � k � � � � � � � τ1

0τ1
k

�
µ

�
n � � � τ1

0τ1
k

�
n � �

Therefore
� τ1

0

�
n � 1 � � n � 2 if n � k

� and τ1
0

�
n � � n � 1 if n
 k.

� n � � � ���υ n � 1

µ
�
n � � � � � τ1

0

�
µ

�
n � � � τ1

0

�
n � � n � 1 � µ

�
n � 1 � �

a
����υ b implies µ

�
a � � µ

�
b � is proved by induction on the length of the υ derivation from

a to b. This implies 2. The proof of 3 comes from σ0
�
µ

�
a ��� µ �

b � � � µ
�
a � b � � � , by definition

of µ. µ
�
a � b � � � � υ

�
a � b � � � is an instance of 1. 4 is obtained from 3 by induction on the

structure of a.

4 Confluence of λυ on Termsυ

A key point for the confluence of β reduction in classical λ-calculus is the substitution
lemma. It expresses the fact that the following β-contractions are confluent:

�
λx � � λy � M � N � L ���

β

�
λx � M � y : � N 	
� L ���

β
M � y : � N 	�� x : � L 	�

λx � � λy � M � N � L ���
β

�
λy � M � x : � L 	
� N � x : � L 	 ���

β
M � x : � L 	�� y : � N � x : � L 	�	

Indeed, if y �
 FreeVar
�
L � , we have (Barendregt, 1984) Lemma 2.1.16:

M � x : � N � � y : � L ��� M � y : � L � � x : � N � y : � L � �
We find a similar situation in λυ. Indeed, observe that λυ has a sole critical pair,

obtained by the superposition of rule B over rule App:

� �
λa � b � � s � ���

B
a � b � � � s �

� �
λa � b � � s �

����υ �
λa � � �

s � � � b � s � ���
B

a � � �
s � � � b � s � � �

Thus, in order to get local confluence, we need to prove that a � b � � � s � is υ-convertible to
a � � �

s � � � b � s � � � , which we also call substitution lemma:

a � b � � � s �
�� �υ a � � �

s � � � b � s � � �

7

Lemmas 1 to 6 do the job (see a full proof of these lemmas in (Lescanne & Rouyer-Degli,
1994)). Notice that in the following we prove the substitution lemma only for pure terms,
but the result remains true for impure terms since if a is impure

a � b � � � s �
�� �υ υ

�
a � � b � � � s �

�� �υ υ
�
a � � � �

s � � � b � s � � �
�� �υ a � � �

s � � � b � s � � � �
The same lifting from pure terms to impure terms is true for each lemma in this section.

Lemma 1 For n � 1 and i � 0, n � � n � i �
s � �

����υ n.

For readability, we use the following abbreviation

a � � � i � � � a � � � � � � i times � � � � � � �
Obviously,

n � � � i � �
����υ n � i �

Lemma 2 For n � 1 and i � 0, n � i � � i �
s � �

����υ n � s � � � � i � � .

Corollary 1 For n � i � 0, n � � i � � � �
����υ n � 1.

Lemma 3 For i � 0, a � � i � � � � � � i �
b � � �

����υ a.

Lemma 4 For all j � i � 0, a � � i � � � � � � j � 1 � � � �
�� �υ a � � j � � � � � � i � � � � .

Corollary 2 a � � � � � i � 1 � � � �
�� �υ a � � i � � � � � � � , when i � 0 a � � � � � � � � �

�� �υ a � � � � � � .

Corollary 3 For i � 0, a � � � i � � � � i � � � �
�� �υ a � � � i � 1 � � .

Lemma 5 a � � i � � � � � � i � 1 �
s � �

�� �υ a � � i �
s � � � � i � � � � .

Lemma 5 has an important corollary.

Corollary 4 a � � � � � �
s � �

�� �υ a � s � � � � .
Because of its corollary, the next lemma is the key of the confluence of λυ.

Lemma 6 a � � i � 1 �
s � � � � i �

b � s � � � �
�� �υ a � � i �

b � � � � � i �
s � � .

Corollary 5 (Substitution Lemma) a � b � � � s �
�� �υ a � � �

s � � � b � s � � � �
For its use in the next lemma, the Substitution Lemma has to be iterated.

Corollary 6 a � b � � � s1 � � � � � sp �
�� �υ a � � �

s1 � � � � � � � �
sp � � � b � s1 � � � � � sp � � � �

Lemma 7 (Projection Lemma) If a ���
B

b then υ
�
a �

����
β

υ
�
b � . If s ���

B
t then υ

�
s �

����
β

υ
�
t � .

Proof: T � he second statement comes from the fact that if s ���
B

t, then s � � i �
a � � and

t � � i �
b � � with a ���

B
b and υ

�
s � � � i �

υ
�
a � � � and υ

�
t � � � i �

υ
�
b � � � . Hence from the first

statement υ
�
a � ���

β
υ

�
b � and υ

�
s � ���

β
υ

�
t � . Therefore we prove the statement for a and b.

The ordering based on interpretations presented in Fig. 3 is a simplification ordering, which
means that it contains the subterm ordering (written � here). In the sequel we proceed by
noetherian induction on this ordering. Therefore if a ���υ b or if b is a subterm of a i.e.,
a � b, then b is less than a for the interpretation ordering and we can assume the induction
hypothesis on b. We distinguish cases according to the structure of a.

8

� If a � a1a2 is an application and if the B-redex is in a1, since a1a2 � a1 and a1 ���B b1

by induction one gets υ
�
a1 �

����
β

υ
�
b1 � and

υ
�
a1a2 � � υ

�
a1 � υ

�
a2 �

����
β

υ
�
b1 � υ

�
a2 � � υ

�
b1a2 � �

We proceed likewise if the B-redex is in a2 or if a � λa1.

� If the B-redex is a �
�
λa1 � a2 then b � a1 � a2 � � and υ

�
a � �

�
λυ

�
a1 � � υ

�
a2 � . By defi-

nition of β, one has
υ

�
a � ���

β
υ

�
υ

�
a1 � � υ �

a2 � � � � � υ
�
b � �

� If a is a closure then a � a � � s1 � � � � � sp � and b � b � � t1 � � � � � tp � .
– a �

�
a1 a2 � � s1 � � � � � sp � and b �

�
b1 a2 � � s1 � � � � � sp � . The B redex occurs inside a1

with a1 ���B b1 then a1 � s1 � � � � � sp � ���
B

b1 � s1 � � � � � sp � , and as

�
a1 a2 � � s1 � � � � � sp � ���υ a1 � s1 � � � � � sp � a2 � s1 � � � � � sp � � a1 � s1 � � � � � sp � �

by induction

υ
�
a1 � s1 � � � � � sp � �

����
β

υ
�
b1 � s1 � � � � � sp � �

and
υ

� �
a1 a2 � � s1 � � � � � sp � � � υ

�
a1 � s1 � � � � � sp � � υ

�
a2 � s1 � � � � � sp � �

����
β

υ
�
b1 � s1 � � � � � sp � � υ

�
a2 � s1 � � � � � sp � � � υ

� �
b1a2 � � s1 � � � � � sp � ���

and the same if the B rewrite takes place inside a2 or inside a si.

– a �
� �

λa3 � a2 � � s1 � � � � � sp � and b � a3 � a2 � � � s1 � � � � � sp � .
υ

�
a � � υ

�
λ

�
υ

�
a3 � � �

s1 � � � � � � � �
sp � � � � υ

�
a2 � s1 � � � � � sp � � ����

β
υ

�
υ

�
a3 � � �

s1 � � � � � � � �
sp � � � � υ �

a2 � s1 � � � � � sp � � � � �
� υ

�
a3 � � �

s1 � � � � � � � �
sp � � � a2 � s1 � � � � � sp � � � �

and by corollary 6,

� υ
�
a3 � a2 � � � s1 � � � � � sp � � � υ

�
b � �

– a �
�
λa1 � � s1 � � � � � sp � . If a1 ���B b1 or si ���B ti,

λ
�
a1 � � �

s1 � � � � � � � �
sp � � � ���

B
λ

�
b1 � � �

t1 � � � � � � � �
tp � � �

and we can apply the induction hypothesis.

– a � n � s1 � � � � � sp � . The B redex is inside a si with si � � ji
�
ci � � . If i � 1, then

n � s1 �
����υ a1 where a1 is not a closure and

a1 � s2 � � � � � sp � ���
B

a1 � t2 � � � � � tp �

where all the t j are equal to s j except ti which is � ji
�
di � � with ci ���B di. The

result comes by induction. If the B redex is inside s1,

s1 � � j1
�
c1 � � ���

B
t1 � � j1

�
d1 � � �

By case, one gets:

9

� n � 1 and j1 � 0,

1 � c1 � � � s2 � � � � � sp � ���υ c1 � s2 � � � � � sp � ���
B

d1 � s2 � � � � � sp �
1 � d1 � � � s2 � � � � � sp � ���υ d1 � s2 � � � � � sp �

and the result comes by induction.
� n � k � 1 and j1 � 0,

k � 1 � c1 � � � s2 � � � � � sp � ���υ k � s2 � � � � � sp �
k � 1 � d1 � � � s2 � � � � � sp � ���υ k � s2 � � � � � sp �

and the result is immediate.
� n � 1 and j1 � j � 1,

1 � � j � 1 �
c1 � � � � s2 � � � � � sp � ���υ 1 � s2 � � � � � sp �

1 � � j � 1 �
d1 � � � � s2 � � � � � sp � ���υ 1 � s2 � � � � � sp �

and like above the result is immediate.
� n � k � 1 and j1 � j � 1.

k � 1 � � j � 1 �
c1 � � � � s2 � � � � � sp � ���υ k � � j �

c1 � � � � � � � s2 � � � � � sp �
k � 1 � � j � 1 �

d1 � � � � s2 � � � � � sp � ���υ k � � j �
d1 � � � � � � � s2 � � � � � sp �

and the result comes by induction.

Theorem 1 (Confluence Theorem) λυ is confluent on Termsυ.

Proof: T � he proof of the theorem resembles the proof of a similar theorem by Abadi et al.
in (Abadi et al., 1991) which in turn was based on Hardin’s interpretation method (Hardin,
1989) with modifications due to the change of substitution calculus from σ to υ. It relies
on the Projection Lemma.

5 λυ preserves strong β normalisation

The essential difference between ���
β

on one hand and, ���
λυ

and ���
λσ

on the other hand is that β
rewrites with B and then normalises with υ or σ in order to remove all the closures, whereas
λυ or λσ rewrite also with B but perform or postpone reductions of closures created by B.
This raises the following question. Are strongly β normalising λ terms strongly λυ nor-
malising or strongly λσ normalising? The answer is “yes” for λυ whereas Melliès gave
a negative answer for λσ. There are strongly β normalising λ terms, even simply typed
λ terms, which are not strongly λσ normalising. The difficulty is that it could happen that
a ���

B
b and υ

�
a � � υ

�
b � . In that case, the reduced B-redex of a lies in the substitution part

of a subterm which is a closure. That closure is eliminated by rule Rvar or rule FVarLi f t
which are the only rules of υ that can delete a B-redex1. Thus in the projection lemma, it
could be the case that we perform a B-reduction that does not correspond to a β-reduction
on the υ normal form, we could therefore make more (but not infinitely many more) B re-
ductions than β reductions. The key of the proof of preservation of strong normalisation
is the fact that, in λυ, closures can only be created by B unlike λσ where closures are also
created by Map �

a � s � � t � a � t ��� �
s � t � �

Therefore, given a closure the B rewrite that creates it can always be traced back. This will
be expressed more formally through lemmas 8 and 9. First let us recall the reader what we
call a position in a term. Although it has been understood in what precedes, it plays a main
role in the following proofs and has to be made precise.

1App also deletes B-redexes, but Lambda enables them immediately.

10

5.1 Tracing the creation of closures

Definition 1 (Position) A position in a λ term t is a sequence of numbers 1 or 2, such that

� t � ε � t

� If t � p � a � s � , then t � p1 � a and t � p2 � s.

� If t � p � λ
�
a � , then t � p1 � a.

� If t � p � a1a2, then t � p1 � a1 and t � p2 � a2.

� If t � p � b � , then t � p1 � b.

� If t � p � � �
s � , then t � p1 � s.

t � p is called the subterm of t at position p or the occurrence at position p (see (Der-
showitz & Jouannaud, 1990) p. 250). Positions are compared by the prefix order. p
is a prefix of q, if there exists p � such that p p � � q.

Definition 2 (Replacement) The term t � u � p obtained by replacing the subterm of t at
position p by u is the term written t � u � p and defined by

�
�
t � u � p � � pp � � u � p � ,

�
�
t � u � p � � p � � t � p � � u � p � � if p � p � p � � .

�
�
t � u � p � � q � t � q if p and q are disjoint, i.e., q is none of the above cases.

We use the non classic notation t � u � p for the classic notation t � u � p � to avoid con-
fusion with t � u � � . Rewriting the term t at the position p by the rule B into the term t �
means that there exists a substitution (in the usual sense) � such that t � p ��� � �

λa � b � and
t � � t ��� �

a � b � � ��� p which we write t ���
B � p t � . One can similarly define rewrites at p for other

rules of λυ.

Lemma 8 Let a � b
 Termsυ such that a ���
λυ

b � t � d � � i �
e � � �	� p. Then,

1. either a � t �
� d � � � j �
e � � � �	� p � and (e � ���

λυ
e or e � � e),

2. or a � t � �
λd � e � p.

Proof: A � s a rewrites to b, a � u � l � q and b � u � r � q, with l, a λυ-redex, and r the cor-
responding λυ-reduct. We proceed by a case analysis based on the relative positions of
d � � i �

e � � � and of the reduct r. Both are subterms of b, namely b � p � d � � i �
e � � � , b � q � r.

1. p � q are disjoint positions. By definition of rewriting a � p � � b � p � for each position p �
disjoint of q. Therefore: a � p � d � � i �

e � � � .
2. p � q are not disjoint. d � � i �

e � � � is a subterm of r or vice-versa.

(a) r is a strict subterm of d � � i �
e � � � . As λυ only rewrites terms of sort Termsυ, the

reduct is either in d or in e. Thus a � t � d � � � i �
e � � � ��� p with (d � ���

λυ
d and e � � e)

or (e � ���
λυ

e and d � � d).

(b) d � � i �
e � � � is a subterm of r. In that case, the λυ-rewrite produces a reduct

which contains d � � i �
e � � � . Hence, a subterm g of the right hand side of the λυ-

rule matches d � � i �
e � � � itself or matches a term of the form w � d � � i �

e � � ��� which
contains d � � i �

e � � � . If g is a variable, then g occurs in the left hand side and the
result follows. Else, g has to be a closure g � f � s � and matches d � � i �

e � � � . One
of the following rules has been used:

11

� (App). This means

b � u � d � � � i �
e � � � d � � i �

e � � �	� q

or
b � u � d � � i �

e � � � d � � � i �
e � � �	� q �

In the first case, this implies a � u � �
d � d � � � i �

e � � �	� q. The other case is
similar.

� (Lambda). This means : b � u � λ
�
d � � j � 1 �

e � � � ��� q with i � j � 1. This
implies : a � u � �

λd � � � j �
e � � �	� q.

� (B). This means : b � t � d � e � ��� p with i � 0. Then a � t � �
λd � e � p.

� (RVarLift). This means : b � u � n � � i �
e � � � � � �	� q and implies : a � u � n � 1 � �

i � 1 �
e � � ��� q.

Lemma 9 Let a1 � � � � � an

 Termsυ such that ai ���λυ

ai � 1, 1
 i
 n � 1, and an � t � d � � i �
e � � ��� p.

Then,

1. either there is an i such that ai � t � � �
λd � � e � � p � and e � ����

λυ
e,

2. or a1 � t �
� d � � � j �
e � � � �	� p � and e � ����

λυ
e.

Proof: B � y induction on n. The basic case n � 1 is immediate. Suppose :

a1

����
λυ

an ���λυ
an � 1 � t � d � � i �

e � � ��� p

By previous lemma, either an � t � �
λd � e � p and i � n, or an � t � � d � � � j �

e � � � �	� p � with e � ����
λυ

e
and we apply the induction hypothesis.

5.2 Commutation of external positions

Definition 3 (External position) The set Ext
�
a � of external positions of a term a is the set

defined as:

Ext
�
ab � � 1Ext

�
a � �

2Ext
�
b � � � ε �

Ext
�
λa � � 1Ext

�
a � � � ε �

Ext
�
a � s � � � 1Ext

�
a � � � ε �

Ext
�
n � � � ε �

Intuitively external positions are those under no brackets, i.e., in no substitution part of
any closure. A rewrite which takes place at an external position is said external, otherwise
it is said internal. If one wants to make precise that a rewrite ���

λυ
is external (resp. internal)

one writes ���
λυ

ext (resp. ���
λυ

int).

Lemma 10 If p

Ext
�
a � and if a ���

B � p b, then υ
�
a � ���

β
υ

�
b � . In particular, if υ

�
a � is strongly

β normalising, υ
�
a � �

� υ
�
b � .

The proof is similar to the proof of the projection lemma. There is exactly one β rewrite
since υ may not duplicate or eliminate a subterm at an external position.

We also use the contraposition: if υ
�
a � is strongly β normalising, υ

�
a � � υ

�
b � , and

a ���
B � p b, then p is internal.

In the following lemma, 1 � 2��� means one or two rewrites and 0 � 1 � 2��� means zero, one or two
rewrites.

12

Lemma 11 (Commutation Lemma) If υ
�
a � is strongly β normalising, υ

�
a � � υ

�
b � and

a ���
λυ � pint

� ���υ � q ext b then

a
1 � 2���υ ext

�

0 � 1 � 2���
λυ

int

b.

Proof: T � he proof is by case analysis on the first rewrite position p relatively to the second
one q.

� p and q are disjoint, then it is clear that we can permute the two rewrites, thus a ���υ ext
����

λυ
int b.

� p is a strict prefix of q, this case is impossible, indeed if p is an internal position in b
(a rewrite at an internal position remains internal) and b � q is a subterm of b � p then q
is not an external position.

� q is a prefix of p, let us analyse each υ-rewrite rule at q.

– (App) is applied, b � q � c1 � s � c2 � s � , then there are only three possible cases to
rewrite a � q.

- If s � ���
λυ

s and
�
c1 c2 � � s � � ���

λυ
int �

c1 c2 � � s � ���υ ext c1 � s � c2 � s � , then

�
c1 c2 � � s � � ���υ ext c1 � s � � c2 � s � � ���

λυ
int c1 � s � c2 � s � � ���

λυ
int c1 � s � c2 � s � �

- If c �1 ���λυ
int c1 and

�
c �1 c2 � � s � ���

λυ
int �

c1 c2 � � s � ���υ ext c1 � s � c2 � s � ,
then �

c �1 c2 � � s � ���υ ext c �1 � s � c2 � s � ���
λυ

int c1 � s � c2 � s � �
- Similarly if c2 ���λυ

int c �2.

Notice that, the term A � �
c1 c2 � � s �	� q cannot be produced by an internal rewrite

on a at p since a � p is a subterm of a � q and q is an external position.

– (Lambda) is applied, b � q � λc � � �
s � � , then there are only two possible cases,

- If s � ���
λυ

s and
�
λc � � s � � ���

λυ
int �

λc � � s � ���υ ext �
λc � � � �

s � � , then

�
λc � � s � � ���υ ext λc � � �

s � � � ���
λυ

int λc � � �
s � � �

- If c � ���
λυ

int c and
�
λc � � � s � ���

λυ
int �

λc � � s � ���υ ext λc � � �
s � � , then

�
λc � � � s � ���υ ext λc � � � �

s � � ���
λυ

int λc � � �
s � � �

– (FVar) is applied, then b � q � c such that 1 � c � � � ���
λυ

int 1 � c � � ���υ ext c,

with c � ���
λυ

c. Three possible cases which depend on the nature (internal or
external) of the rewrite of c � .

- c � ���
λυ

int c, then

1 � c � � � ���υ ext c � ���
λυ

int c �
- c � ���υ ext c, then

1 � c � � � ���υ ext c � ���υ ext c �
- c � ���

B
ext c, this case is impossible under the hypothesis υ

�
a � � υ

�
b � and

υ
�
a � is strongly β normalising, indeed we have also

a � A � 1 � c � � �	� q ���υ A � c � � q ���B ext A � c � q � b

13

and υ
�
a � � υ

�
A � c � � q � is strongly β normalising then by Lemma 10

υ
�
A � c � � q � �

� υ
�
A � c � q ���

and
υ

�
a � � υ

�
A � 1 � c � � �	� q � � υ

�
A � c � � q ���

υ
�
b � � υ

�
A � c � q � �

then υ
�
a � �

� υ
�
b � .

– (RVar) is applied, then b � q � n, such that,

n � 1 � c � � � ���
λυ

int n � 1 � c � � ���υ ext n, then n � 1 � c � � � ���υ ext n.

– (FVarLift) is applied, then b � q � 1, such that,

1 � � �
s � � � ���

λυ
int 1 � � �

s � � ���υ ext 1, then 1 � � �
s � � � ���υ ext 1.

– (RVarLift) is applied, then b � q � n � s � � � � , such that,

n � 1 � � �
s � � � ���

λυ
int n � 1 � � �

s � � ���υ ext n � s � � � � � then

n � 1 � � �
s � � � ���υ ext n � s � � � � � ���

λυ
int n � s � � � � �

Before iterating the previous lemma, notice that

1 � 2���υ ext � ����υ ext

and
0 � 1 � 2���
λυ

int � ����
λυ

int

and that we may weaken the condition of the Commutation Lemma as���
λυ

int ���υ ext
�

� ����υ ext
�

����
λυ

int �
Therefore the hypotheses of the commutation lemmas of the appendix apply.

Lemma 12 (Iterative Commutation Lemma) Let a0 � � � an be n � 1 terms such that υ
�
a0 �

is strongly β normalising, υ
�
ai � � υ

�
a0 � and ai � 1

����
λυ

int
� ���υ ext ai for 1
 i
 n. Then

a0
n���υ ext

�

� ���
λυ

int � ���υ ext ��� an.

Proof: O � ne applies Lemma 15 of the appendix with S � ���υ ext and R � ���
λυ

int � Eυ, where
a Eυ b means υ

�
a � � υ

�
b � .

Lemma 13 Let a1 be a strongly β normalising pure term. In each infinite λυ derivation of
terms starting with a1 there exists an N such that for i � N all the λυ rewrites are internal.

Proof: A � λυ derivation a1 � a2 � � � � � an � � � � starting from a1 can be written:

a1 ���B ext a �1 ����
λυ

a � �2 ���B ext a �2 � � � a � �i ���B ext a �i ����
λυ

a � �i � 1 ���B ext a �i � 1 � � �

where the rewrites from a �i to a � �i � 1 are either υ rewrites or internal B rewrites. By Lemma 10,

we have υ
�
a � �i � ���

β
υ

�
a �i �

����
β

υ
�
a � �i � 1 ��� hence

a1 � υ
�
a1 �

����
β

υ
�
a � �2 � � � � υ �

a � �i �
����
β

υ
�
a � �i � 1 � � � �

14

p1

a1

a2

p
2

a pq’
q

n
n n

8

8

8

n

FINITE

an+1

Figure 4: A minimal λυ derivation

Since a1 is strongly β normalising, there are only finitely many β rewrites. Therefore the
number of external B rewrites in the λυ derivation a1 � a2 � a3 � � � � is finite. Thus there exists
a P such that for i � P we have only internal B rewrites:

aP

����
λυ

int
� ���υ ext

�

����
λυ

int
� � �

We can also claim that there exists an N � P such that for i � N, the υ rewrites are inter-
nal. Indeed since υ is strongly normalising there exists a natural number naP such that no
λυ derivation starting at aP can begin with more than � aP υ rewrites. If one supposes there
are infinitely many external υ rewrites in an infinite λυ-derivation starting from aP, there
are at least � aP � 1 of them. By Iterative Commutation Lemma, one can create naP � 1
external υ rewrites starting from aP which is not possible.

5.3 Minimal derivations

Definition 4 (Derivation ordering) Let a1 be a term and D and D � two λυ derivations
starting from a1.

D � a1 ���λυ � p1
a2 ���λυ � p2

� � � an ���λυ � pn
an � 1 � � � �

is said to be smaller than

D � � a1 ���λυ � q1
a2 ���λυ � q2

� � � an ���λυ � qn
a �n � 1 � � �

if pi � qi for i � n and qn is a strict prefix of pn.

A derivation starting from a1 can be characterised by the sequence
�
p1 � p2 � � � � � of its

positions, therefore the derivation ordering is nothing but the lexicographic ordering on
those sequences.

15

Definition 5 (Minimal λυ derivation) An infinite λυ derivation D which starts from a
pure term a1 is minimal if there is no infinite derivation starting from a1 which is smaller
than D.

Let us insist on two facts. First the minimal derivation is not minimal among all the
derivations (finite or infinite), but only among the infinite derivations (see Fig. 4). Second,
such a minimal derivation always exists, whenever an infinite derivation exists.

5.4 Main Theorem

We need also another definition which we call frontier and which represents the set of
closures at external positions.

Definition 6 (Frontier) The frontier of a term a, denoted Fr
�
a � , is the set of external po-

sitions p such that a � p is a closure, i.e. is of the form � � .
Theorem 2 (Preservation of normalisation) If a pure term a1 is strongly β normalising,
then a1 is strongly λυ normalising.

Proof: T � he proof is by contradiction. Suppose a1 is a pure strongly β normalising term,
but non strongly λυ normalising. Let us consider a minimal infinite λυ derivation D start-
ing with the term a1. By Lemma 13 there exists N after which only internal λυ rewrites
take place. We have Fr

�
aN � � Fr

�
aN � 1 � , since a closure at the frontier can be created

only by an external rewrite. The cardinal of Fr
�
aN � is finite, we can therefore choose a

position p in Fr
�
aN � such that aN

�
p � c � � i �

bN � � � and such that the minimal λυ deriva-
tion contains infinitely many rewrites below p. The rewrites below each p in Fr

�
aN �

are independent, we can therefore extract from the derivation D an infinite λυ derivation
D � �

�
a1 � � � � � aN � a �N � 1 � � � � � a � j � � � � � starting with the same N first terms and such that all the

internal λυ rewrites after the N th take place inside the closure c � � i �
bN � � � . In D � we have

aN � t � c � � i �
bN � � �	� p ���λυ

int a �N � 1 � t � c � � i �
bN � 1 � � �	� p ���λυ

int
� � � a � j � t � c � � i �

b j � � ��� p � � �

where t is a context, p

Fr
�
aN � and the sequence

�
bN � bN � 1 � � � � � b j � � � � � is an infinite

derivation. From Lemma 9 we know that the closure c � � i �
bN � � � has been created sometime

before N, by a B rewrite. Lemma 9 says also that there exists J � N and a position pJ such
that:

aJ � t � � �
λc � � b � pJ ���B � pJ

t � � c � � b � �	� pJ � aJ � 1

where t � is a context. Moreover b
����

λυ
bN . Let us consider the following infinite λυ derivation

D � � defined as

a1 ���
λυ

a2
...

aJ � t � � �
λc � � b � pJ����

λυ
t � � �

λc � � bN � pJ���
λυ

t � � �
λc � � bN � 1 � pJ

...���
λυ

t � � �
λc � � bl � pJ

...

In D � � , one has either

aJ ���λυ
t � � �

λc � � b0 � pJ and b ���
λυ

b0

����
λυ

bN

16

or
aJ ���λυ

t � � �
λc � � bN � 1 � pJ and b � bN

In both cases, aJ rewrites below pJ . Therefore, D � � is smaller than D. D � � is infinite. That
contradicts the minimality of the derivation D.

Corollary 7 Typed pure terms in Termυ are strongly λυ normalising.

6 De Bruijn’s system Cλξφ and our presentation λξφ
In (de Bruijn, 1978), N. G. de Bruijn presents the first calculus of explicit substitutions
which he calls Cλξφ. As his notations are somewhat difficult to read and different of these
we are used to, we propose to describe his rules in notations similar to those used in the
previous section.

Starting from rule
�
B � , de Bruijn distinguishes two kinds of substitutions: substitutions

that rename variables and substitutions that assign terms to variables. The substitutions of
the first kind are associated with functions θ : � � ��� � . In our notations θ’s correspond to
substitutions of the form � i � � � and � i ��� � , where

�
is the substitution defined below. The

calculus of explicit substitution proposes a notation for representing those functions, and
distinguishes a function from its associated explicit substitution. The explicit substitution
associated with function θ will be written θ. Actually de Bruijn uses ξ

�
n � for our n and

φ
�
θ � for our θ, hence the name Cλξφ. Among those functions de Bruijn considers a function

which he names θ2 and which corresponds to:

θ2 : 1 �� 2
2 �� 1
3 �� 3

...
n � 2 �� n � 2

...

To include this substitution in our notations, we propose to write θ2 as
�

and to call it a
transposition. The behaviour of

�
can be described by its effect on indices as follows:

�
Transp1 � 1 � � � � 2�
Transp2 � 2 � � � � 1�
Transp3 � n � 2 � � � � n � 2

The effect of a function θ : � � ��� � on pure terms is described by de Bruijn with the
following rules. In them, de Bruijn distinguishes constant functions, e.g., c of arity 0, f of
arity 1, and g of arity 2.

�
A1 � c � θ � � c�
A2 � n � θ � � θ

�
n ��

A4 � �
f a � � θ � � f

�
a � θ � ��

A6 � a � θ � � θ � � � a � θ � � θ ��
A7 � �

λa � � θ � � λ
�
a � L �

θ � � ��
A8 � �

g a b � � θ � � g
�
a � θ � b � θ � �

where L
�
θ � �

1 � � 1 and L
�
θ � �

n � 1 � � θ
�
n � � 1, and θ ��� θ �

n � � θ � �
θ

�
n � � .

�
A9 � is a rule

scheme which is just a generalisation of
�
A1 � ,

�
A4 � , and

�
A8 � to functions of arity n � 3 � � � �

Rules
�
A3 � and

�
A5 � are omitted purposely since they are not relevant here. Actually in�

A6 � and
�
A7 � , θ � � θ and L

�
θ � are defined directly on the underlying functions. L is just

the Lift operation that is written � in our notations and � is the composition written � in

17

(B)
�
λa � b � a � b � �

(App1)
�
a b � � c � � � a � c � � b � c � �

(Lambda1)
�
λa � � b � � � λ

�
a � � � � � � � � b � � � � � � � � � �

(FVar) 1 � a � � � a
(RVar) n � 1 � a � � � n

(App2)
�
a b � � � � s � � � � a � � � s � � � b � � � s � � �

(Lambda2)
�
λa � � � � s � � � � λ

�
a � � � � �

s � � � � �
(FVarLift) 1 � � � � �

s � � � � � 1
(RVarLift) n � 1 � � � � �

s � � � � � n � � � s � � � � � � � � � �
(VarShift) n � � � � � � � � n � 1

(Transp1) 1 � � � � � � � � 2
(Transp2) 2 � � � � � � � � 1
(Transp3) n � 2 � � � � � � � � n � 2

Figure 5: The rewrite system λξφ

contemporary notations. Notice that the composition introduced in rule
�
A6 � is not used

elsewhere and is not necessary for a complete definition.
The second kind of substitutions are those of the form t � .

�
B1 � c � t � � � c�
B2 � n � 1 � t � � � n�
B3 � 1 � t � � � t�
B4 � a � � � � t � � � a�
B6 � �

f a � � t � � � f
�
a � t � � ��

B7 � �
λa � � t � � � λ

�
a � � � � t � � � � � ��

B10 � g
�
a b � � t � � � g

�
a � t � � b � t � � �

As above,
�
B11 � is a rule scheme which is just a generalisation of

�
B1 � ,

�
B6 � and

�
B10 � .

Likewise, rules
�
B5 � and

�
B8 � are omitted purposely since they are not relevant here.

This system inspires us a calculus of explicit substitutions which we call λξφ (Fig. 5).
Let us call Termsξφ the set of terms described by the grammar:

Termsξφ a :: � n
�
ab

�
λa

�
a � � � s � � � �

a � t � �
Substitutionsξφ s :: � � �

s � � � � �

Naturals n :: � n � 1
�
1 �

� � � � � � denotes substitutions that rename variables, they are written θ in de Bruijn’s notations.
� � � denotes substitutions that assign a term to the index 1. We call ξφ the system λξφ

� �
B � ,

ξφ can be shown to be strongly normalising by using the lexicographic products
�

� ι � � κ1� � κ2 � . � ι is defined by the interpretation ι : Termsξφ � Termsξ where Termsξ is described
by the grammar:

Termsξ a :: � n
�
ab

�
λa

�
a � t � �

Naturals n :: � n � 1
�
1 �

and ι is described as follows:

ι
�
n � � 1

ι
�
a b � � ι

�
a � ι

�
b �

ι
�
λa � � λ

�
ι

�
a � �

18

κ1
�
n � � 2κ1 � n �

κ1
�
n � 1 � � κ1

�
n � � 1

κ1
�
1 � � 2

κ1
�
ab � � κ1

�
a � � κ1

�
b � � 1

κ1
�
λa � � κ1

�
a � � 1

κ1
�
a � � s � � � � κ1

�
a � κ1

�
s �

κ1
� � �

s � � � κ1
�
s �

κ1
� � � � 2

κ1
��� � � 2

κ1
�
a � � � any

κ2
�
n � � 2κ2 � n �

κ2
�
n � 1 � � κ2

�
n � � 1

κ2
�
a � s � � � κ2

�
a � κ2

�
s �

κ2
� � �

s � � � 2κ2
�
s �

κ2
� � � � 3

Figure 6: Interpretations for proving the termination of υ

ι
�
a � � � s � � � � � ι

�
a �

ι
�
a � b � � � � ι

�
a � � ι �

b � � �
a � ι b if and only if ι

�
a � � ξ ι

�
b � where � ξ is a lexicographic path ordering described in

Termsξ by the precedence that says that an abstraction is less than a closure and less than
an application which could be pictured by the following inequalities λ � � � � and λ � .

κ1 and κ2 are interpretations from Termsξφ to the set of elementary functions over � � .
We conclude that ξφ is strongly normalising. ξφ also is orthogonal, i.e., left-linear and
without superposition, ξφ is then confluent.

There are two critical pairs between B and App1 on one side and between B and App2

on another side. The critical pairs are:

a � b � � � c � � � a � � � � � � � � c � � � � � � � � � � b � c � � � �
a � b � � � � � s � � � � a � � � � �

s � � � � � b � � � s � � � � �

Those critical pairs can be proved as inductive lemmas in Termsξφ �
�� �

λξφ
, i.e., modulo the

equality generated by λξφ on Termsξφ. Then it can be proved that the rewriting relation
����

λξφ

defined on Termsξφ and generated by λξφ is confluent.
The systems λυ and λξφ share the same goal. Both introduce operators by necessity. In

λυ, substitutions of both kinds are lifted when put under λ, whereas in λξφ only renaming
substitutions are because there is a way to avoid lifting of substitutions of type a � . The
calculi are different in the form, but are similar in spirit. We feel that λυ is slightly closer
to the aim of extreme simplicity suggested by Curry, but this is debatable.

7 Conclusion

λυ has had extensions, namely to include η-rules (Briaud, 1995). Preservation of strong
normalisation of λυ together with confluence of λσ � on open terms raises an interesting
challenge, namely, finding a calculus of explicit substitutions which is confluent on open
terms and preserves strong normalisation.

Acknowledgement. We would like to thank Nicolaas G. de Bruijn for an interesting dis-
cussion and for mentioning his papers to us, Alejandro Rı́os for a very careful reading and
discussions, Georges Gonthier and Luc Maranget for suggesting improvements in the proof
of Theorem 2, Roberto Amadio, Philippe de Groote and Paul Zimmermann for interesting
discussions, and Pierre-Louis Curien for encouragement.

19

References

Abadi, M., Cardelli, L., Curien, P.-L., & Lévy, J.-J. 1990 (Feb.). Explicit Substitutions.
Tech. rept. 54. Digital Systems Research Center. Preliminary version in Proc. of the
17th POPL conference, Orlando (Fla., USA).

Abadi, M., Cardelli, L., Curien, P.-L., & Lévy, J.-J. 1991. Explicit Substitutions. Journal
of Functional Programming, 1(4), 375–416.

Barendregt, H. P. 1984. The Lambda-Calculus, its syntax and semantics. Studies in Logic
and the Foundation of Mathematics. Amsterdam: Elsevier Science Publishers B. V.
(North-Holland). Second edition.

Bourbaki, N. 1954. Éléments de mathématiques: Théories des ensembles. Vol. 1. Hermann
& Cie.

Briaud, D. 1995. An explicit Eta rewrite rule. In: Dezani, M. (ed), Int. Conf. on Typed
Lambda Calculus and Applications.

Curien, P.-L. 1983. Combinateurs catégoriques, algorithmes séquentiels et programmation
applicative. Thèse de Doctorat d’Etat, Université Paris 7.

Curien, P.-L. 1986a. Categorical Combinators. Information and Control, 69, 188–254.

Curien, P.-L. 1986b. Categorical Combinators, Sequential Algorithms and Functional Pro-
gramming. Pitman.

Curien, P.-L. 1991. An abstract framework for environment machines. Theoretical Com-
puter Science, 82, 389–402.

Curien, P.-L., Hardin, Th., & Lévy, J.-J. 1992 (Feb.). Confluence properties of weak and
strong calculi of explicit substitutions. RR 1617. INRIA, Rocquencourt.

Curry, H. B., & Feys. 1958. Combinatory Logic. Vol. 1. Amsterdam: Elsevier Science
Publishers B. V. (North-Holland).

de Bruijn, N. G. 1972. Lambda calculus with nameless dummies, a tool for automatic
formula manipulation, with application to the Church-Rosser theorem. Proc. Koninkl.
Nederl. Akademie van Wetenschappen, 75(5), 381–392.

de Bruijn, N. G. 1978. A namefree lambda calculus with facilities for internal definition of
expressions and segments. TH-Report 78-WSK-03. Technological University Eind-
hoven, Netherlands, Department of Mathematics.

Dershowitz, N., & Jouannaud, J.-P. 1990. Rewrite Systems. Chap. 6, pages 244–320 of:
van Leeuwen, J. (ed), Handbook of Theoretical Computer Science. Elsevier Science
Publishers B. V. (North-Holland).

Ehrhrard, T. 1988. Une Sémantique Catégorique des Types Dépendants. Application au
Calcul des Constructions. Thèse de Doctorat d’Université, Universite Paris VII.

Field, J. 1990. On laziness and optimality in Lambda Interpreters: Tools for Specification
and Analysis. Pages 1–15 of: Proceedings of the 17th Annual ACM Symposium on
Principles Of Programming Languages, Orlando (Fla., USA). ACM, San Fransisco.

Hardin, T. 1992. Eta-conversion for the languages of explicit substitutions. Pages 306–
321 of: Kirchner, H., & Levi, G. (eds), Proceedings 3rd International Conference
on Algebraic and Logic Programming, Volterra (Italy). Lecture Notes in Computer
Science, vol. 632. Springer-Verlag.

20

Hardin, Th. 1987. Résultats de confluence pour les règles fortes de la logique combinatoire
catégorique et liens avec les lambda-calculs. Thèse de Doctorat d’Etat, Université
Paris 7.

Hardin, Th. 1989. Confluence results for the pure strong categorical combinatory logic
CCL: λ-calculi as subsystems of CCL. Theoretical Computer Science, 65, 291–342.

Hardin, Th., & Lévy, J.-J. 1989. A confluent calculus of substitutions. In: France-Japan
Artificial Intelligence and Computer Science Symposium.

Kamareddine, F., & Rı́os, A. 1995. A λ-calculus à la de Bruijn with explicit substitutions.
In: PLILP’95. Lecture Notes in Computer Science. Springer-Verlag.

Kamereddine, F., & Nederpelt, R.P. 1993. On stepwise explicit substitutions. International
Journal of Foundations of Computer Science, 4(3), 197–240.

Lescanne, P. 1992. Termination of rewrite systems by elementary interpretations. Pages
21–36 of: Kirchner, Hélène, & Levi, G. (eds), Proceedings 3rd International Confer-
ence on Algebraic and Logic Programming, Volterra (Italy). Lecture Notes in Com-
puter Science, vol. 632. Springer-Verlag.

Lescanne, P. 1994. From λσ to λυ, a journey through calculi of explicit substitutions.
Pages 60–69 of: Boehm, Hans (ed), Proceedings of the 21st Annual ACM Symposium
on Principles Of Programming Languages, Portland (Or., USA). ACM.

Lescanne, P., & Rouyer-Degli, J. 1994 (Jan.). The Calculus of explicit substitutions λυ.
Tech. rept. RR-2222. INRIA-Lorraine.

Melliès, P.-A. 1995. Typed λ-calculi with explicit substitutions may not terminate. In:
Dezani, M. (ed), Int. Conf. on Typed Lambda Calculus and Applications.

Rı́os, A. 1993. Contributions à l’étude des λ-calculs avec des substitutions explicites.
Thèse de Doctorat d’Université, U. Paris VII.

Rose, K., & Bloo, R. 1995 (Apr.). Deriving Requirements for Preservation of
Strong Normalisation in Lambda Calculi with Explicit Substitution. Available as
ftp://ftp.diku.dk/diku/users/kris/Explicit-PSN.ps.

A Two commutation results

In this appendix, we prove two commutation results on abstract relations, which are folk-
lore.

Lemma 14 If R � S
�

S � � R � then
�
R

�
S ��� � S �

S �

�
R

�
S ��� .

Proof: A � ctually one proves
���

n

 � � � �

R
�

S � n
� S

�
S �

�
R

�
S ��� by induction on n. If

n � 0 it is obvious. Otherwise
�
R

�
S � n � 1

� S �
�
R

�
S � � �

R
�

S � n
� S� �

R
�

S � � S �

�
R

�
S ��� by induction

� R � S �

�
R

�
S ��� �

S � S �

�
R

�
S ����

S � � R � �
�
R

�
S ��� �

S � S �

�
R

�
S � � by hypothesis

� S �

�
S � � R � �

�
R

�
S � � �

S �

�
R

�
S � � �

� S �

�
R

�
S � �

Lemma 15 If R � S
�

S � � R � then
���

n

 � � � � �

R
�

S ��� � S � n
�

Sn
�

�
R

�
S � � .

21

Proof: B � y induction on n. If n � 0 it is obvious. Otherwise
� �

R
�

S � � � S � n � 1 �
�
R

�
S � � � S �

� �
R

�
S ��� � S � n

�
S �

�
R

�
S � � � � �

R
�

S ��� � S � n by Lemma 14
� S �

� �
R

�
S ��� � S � n

�
S � Sn

�

�
R

�
S ��� by induction

� Sn � 1
�

�
R

�
S ���

22

