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PART I

SECTION 1
REDUCTION COMPLEXES

Definition l.l. We say that C is a <reduction complex

(and write "Cx C') iff C is a quadruple,

C = WNVyp Zgs Lo T2
such that V. is é set (called the set of C-vertices), Lo is
a non-empty set (called the set of C—ggllg), and _LC, T are

functions (called the C-initial and C=terminal boundary oper-

ators) such that
(Arg —Lc) N (Arg Tc) 2 ZC
and
[(
(Lo 2Ze) v (T2) < ve &
(See Note 1.1 below.) For any € ¢ 3. , (Lc%) is called the
C-initial vertex of ¥ and (T.%) is called the C-terminal

vertex of T . (See Notation l.1(a) below.)

Note l.l. For any function f, (Arg f) is the set of all

arguments of f (i.e., the domain of definition of f). (Term-
inology from Rosser's Textbook; but see Notation l.l(a) belowJ
For any function f and any set A included in (Arg f), f'A is
the set of all values of f for arguments in A (i.e., the im-
age of A under f). (The '« * notation is standard. See

Rosser's Textbook, for example.) For later use we mention
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also (Val f), the set of all values of f (i.e., f“{Arg £)).
Notation l.1l(a). We use simple juxtaposition to indi-
cate application of function to argument, and hence write the

" expressions on the left below, instead of the more usual not-

ations on the right:

Arg f Arg(f)
Val f Val(f)
1 ¥ 1 (%)

Te§ T (%) -

This notation is used systematically throughout this thesis.

Remark l.l. For reasons of a technical nature, it is
in some ways convenient to consider only those reduction com-
plexes — called perhaps "normalized reduction complexes" —
in which the cells are one-termed sequences. Given any re-
duction complex C, one can then define the normalization of C
to be the normalized reduction complex C in which ZE is the
set of all one-termed sequences of cells in Z , i.e.,

Ze = {80'§>}|3 & Zci ’
and Vg, lT, Tz are induced by the one-to-one correspondence
between fizc and- fiic such that ‘f = {(O,‘i)} s i.e.,

Vg = V

c
lEi ='Lc%
TE—S = Tcg L

(To stratify this, define instead Vg = USC V. , 1.3 ={l.§},
TS = {TCE} o« In this case .Laf = lba{§} . (See Rosser's



Textbook.)) Hence there would be no real loss of generality

in altering Definition 1.l so as to require that 2. be a

non-empty set of one-termed sequences. For reasons which may

be regarded as aesthetic, we have not chosen this alternative.
- This results in some "abus de langage" (see Bourbaki), but

avoids some complications (as in Definition 1.1l below).

- Notation 1l.2. Hereafter we suppress the prefix 'C-'
' and write, for example,

'WC o= (V,Z,4,T)

and subscript e
(See Definition 1l.l1.) Explicitly: in all formal contexts the
letters 'V'y, 'st, '|', 'T" occurring without subscripts are
to be regarded as the letters 'V ', '3.°, 1.ty 'T.' res-
pectively; likewise for the words ‘vertex', ‘'cell', 'initial?’,
"terminal'; and likewise for the formulas 'Cimr', CDesc',

CRedn', etc. (occurring below). In the future such prefixes

and subscripts, once introduced, will be similarly suppress-

ed without further explicit warning.

Theorem 1.3. There exists a reduction complex.

Proof. Take V_ = {1y , s = fo} , and
1. =T. = {€0,1y¢ . (See Note 1.3 below.)
Then 1.0 = T.0 =1 . Verify that the re- 0

sulting C 1is a reduction complex.



Note 1.3. A function is considered to be a class of
ordered pairs (withﬁarguments in the left position, values

in the right) (as in Rosser's Textbook and other sources).

Remark 1.3. The example given in the above proof has
needlessly much structure: it may be simplified by taking
1l to be the same as O, in which case V. = 3%. and .LC,= T;
= 2£><2; . The resulting simplified coﬁplex, while logically
adequate as an example, is however insufficiently illustra-
tive of the concept (which is barely illustrated by the ex-

ample given).

Restriction 1l.4. We make the following restrictions:

C 1is a reduction complex.

Note 1.4. Our usége with respect to restricted vari-
ables is basically that of Rosser's Textbook (and others).
We diverge from Rosser's usage with respect to free occurr-
ences of restricted variables. Following the treatment of
Hailperin's Restricted Quantification Paper (system QE{,
Part II Section 5) we are careful to prove (3Ix)P before
using a variable restricted by the condition on x that P;
it follows by Hailperin's Theorem 34 that all our theorems
containing free occurrences of restricted variables are thus
equivalent to theorems with additional hypotheses restricting
the variables. This enables us to avoid“stating the recurr-

ing hypothesis 'Cx C' without requiring us to precede each



theorem concerned by universal quantification of 'C'. The
resulting usage seems remarkably close to the handy (naive)

intuitive usage of everyday mathematics.

Theorem 1.5. (]f)n $eZs: (Bu)o uev.,

Proof. By Definition l.l, Z #@ . (See Note 1.5
below.) Hence (3%5). % e Z. Fix § . By Definition 1.1,

_Lg ¢V . Hence (3u). u eV .

Note 1.5. @ is the empty set.

Restriction 1l.6. We make the following restrictions:

u, v, w, z (and variants) are C-vertices.

gﬂ n gz's ® (and variants) are C-cells.

Definition 1.7. We say that u C-immediately reduces

to v (and write 'u Cimr v') iff (Ag). u=15. v=T%Y.

Note 1.7. This definition is an example of a restricted

lo
definition (for which we know (1959) of no adequate treatment)

in which the free restricted variables 'C'y, 'u', 'v'! occur.
Our usage (like the informal mathematical one) is only parti-
ally defined; the intention is that the restricted
"definition" *Tu Cimr v™ for "(3%). u = 1% . v =3Tf1’“ is
to be essentially equivalent to the condition r}VC):z: px C .

Dzt (Yu,v)ee u,v ¢ Vo .22 u Cimr v.= . (FF). fe Ee, u =



Jéi Y :’Téij . Since it is not the purpose of this thesis
to develop a theory of restricted definitions, we will (with
apologies) not specify our usage completely. (It seems like-
ly that more than one satisfactory specification may be

given.)

Remark 1.8. Let R be any binary relation. Then a
complex C can be constructed so that R = 2 = Cimr . For
take V = (Arg R) v (val R), 2= {(u,v)l uﬁvli =R , Llu,v)
=u , |{(u,v) =v . Obviously not every complex is isomorphic
to a complex constructed in this way, since in such complexes
the following condition, not satisfied in general, is always
satisfied:

W§m): IX=Ln. Tf=Ty .2. ¥=n.
(See diagram to right in which the condition
is not satisfied.) So the general concept of
a reduction complex is essentially more general than the

concept of a binary relation.

Remark 1.9. In order to pave the way for Restriction
1.10 below, we should (in line with Note 1.4) formally assert
the existence of some structure capable of being considered
as the non-negative integers with an infinite element adjoin-
ed. We will assume that the reader is familiar with some

such development, which need not concern us further.



Restriction 1.10. We make the following restrictionss
i, j, k are strictly positive integers.

m, n, p, q (and variants) are non-negative integers.
M, N,(and variants) are non-negative integers or o9,

(See Note 1.10 below.)

‘Note 1.10. The precise meaning of 'oo'! need not con-

cern us here. We use only the two propexrties that

(fn): n e Nn . . n<® and (¥n): neNn.>.n +® =0m,
Most naturally, o could be taken as w (the smallest trans-
finite ordinal number), except that the usual summatiocn no-
tation treats 'oo' differently than it treats 'n'; further-
more, care would then have to be taken to indicate the cor-
rect order in additions. (We follow the usual summation

notation in this thesis.)

- Definition l.ll. We define the set CDesc , called

the set of (connected) C-descents, to be the set of all

(finite or infinite) sequences <@i>?*i (see Note l.ll(a)
below) such that for all i<N we have that @i i
Pisp ¢ Z. 1Py = TY . We define the set CRedn , called

the set of (connected) C-reductions, to be the set of all

finite descents <Pi? « In case N = o,,,<@i> ?gl is

o
i=1
the null reduction X (see Note l.1l(b) below). In case

N =1 it is considered part of the definition that Qle > s

in this case (@i) izl is the singleton reduction (fﬁ of

the (unigue) cell ¥ such that ¢E =% .



Note l.11(a). We use here the bound-variable notation
N -

to indicate a sequence @ with Arg @ = {i\ié;N} ¢ the nota-

tion also indicates that subscript notation is to be used in
indicating the application of ¢ to an argument. This is an
explicit example of a term for a restricted variable. (See
Hailperin's Restricted Quantification Paper; to suit
Hailperin's notation we regard ‘«?i> g;i_was‘ankabbreviation
fOfu\/?(AIQHP.=,{i|iéhN})?) Clearly there exist such @ ..
Note that in case N =0, {ili¢ N} = {i|i< N} by Restriction
1.10. Note hence that while -A:g‘<@i>w?=1 ® {iliéaﬂi ‘o
Arg'(@i) j;i = {i\i <cm% . This agrees with the usual summ-

ation notation.

Note 1.11(b). The precise kind of sequence considered

need not concern us here. The precise nature of the null re-
duction ¥ depends on the precise kind of sequence considered;

for some specifications we would have ® =@ .

Remark 1.l1l., Many concepts concerning descents (and,
specifically, reductions) can be generalized to arbitrary
"chains" (and, specifically, "paths"); for expository simpli-

city we avoid these notions.

Theorem 1.12. (3®). P ¢ Desc . (Ee)e p € Redn .

13

Proof. Clearly ¥ ¢ Redn and Redn < Desc .



Restriction 1.13. We make the following restrictions:

P, ¥V, w,X (and variants) are C-descents.

Pr 0 W T (and variants) are C-reductions.

Definition 1l.l1l4. We define the length H¥ of a descent

R

by the following condition:

#e@pl_ =N,

Remark 1.14(a). (VP): P ¢ Redn . = . #P <o,

Definition 1.15. Where v eVx, we define the sets

From.v, Io.v {of descents, reductions respectively) by the
following conditions:
From.v = {(CPQI;:SI\N =0 Vs LENC®, vy «»_\_CPJ_} .
T{Q)C"‘j = {<Pl :*—-l‘ n=0,v: 1£4dnd®, vy fT(JQ} .

: - . 1
Informally, by "“abus de langage", we write T§ ¢ From v

r = T r o
€ ¢ To v instead of <¥) £ From v , (3 ¢ To v,

Remark 1.15(c). (Yp): p# ¥ .D. (3w) . P e (To w) .
(See Note 1l.15 below.)
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Note 1.15. Where P is any statement and x is any

variable, (le)P_ means that there is exactly one x such
that P. (See Rosser's Textbook; Rosser writes r(Elx)P1

where we write r-(':\Elx)P-1 .)

~Definition 1l.16. We define the sets CCoinitial,

CCoterminal (of sets of descents, reductions respectively)

by the following conditions:
CCoinitial = ET \(EV). ]qﬁfFrom v} ,
CCoterminal = ZT’](HV). T1£?To vg :

Remark l.l16. By this definition, Coinitial < Desc

& ., Coterminal ¢ Redn .

J

Note l.l16. By "abus de langage", we write rfi,qi £

Coinitiall , etc., instead of ' {<$),¢1%] ¢ Coinitial , etc.

Theorem 1.17. P): {Pf e Coinitial

Proof. Case 1. ® =¥ . By Theorem 1.5, (Qu). u ¢V .

Then by Remark 1.15(a), @ < (From v), so (3v)(V¥): ¥ og {Pf .
>, W ¢ (From v) . Case 2. @ #® . Then (3;v). P«
(From v) , so (3v)(Yy¥): YV ¢ {1.o. VY ¢ (From v) .

Note 1l.17. The argument in Case 1l contains our first

explicit use since Theorem 1.5 of the hypothesis that 2 is
non-empty (see Definition 1.1). Clearly {X{eCoinitial .

—



=]11=

. V#@ , using the rest of Definition 1.l but not the non-
emptiness of > . We have of course been using free variables
for cells and Vertigeg,mhgnce have been using the non-

emptiness of X implicitly.
Corollary l.17. (3@) § ¢ Coinitial .
_Proof. By Theorejm‘_l,_l29 (39). @ < Desc . Fix P . By
Theorem 1.17, {P% e Coinitial .
Theorem l1.18. O#P): fPZ £ Coterminal .

Proof. Just like the proof of Theorem 1.17.

Theorem 1.19. (V@ ZN @§ € Coinitial .
Proof. Case 1. CP-’- ¥ . Then. {ﬁ.@] gﬂ}
{ﬁ ®f & Coinitial . Case 2. ® #¥ . Then (3 qu). ‘9 €

(From u) . Fix u. Then X e¢(From u) . .. 7,97 ¢

Coinitial .

Theorem 1.20, (V?): {N,PZ ¢ Coterminal .

Proof. Just like the proof of Theorem 1.19.

Theorem 1.21. (Y®,V,w): P# X . {ﬂ?,l}’?, {9, ws ¢
Coinitial .D. @F,wg ¢ Coinitial . r

Proof. Case 1. Y #¥ . w#X . Since none of @,V,w
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is null, Blu @ ¢ (From u) o+ (Jyv). ¥ & (From v) :
(3;w). w £ (From w) . Fix u, v, w. Since 39,¥¢ =
Coinitial , have u = v , and since {@,w@ € Coinitial ,
have u =w . Hence v =w . This does it.

Case 2. If either of VY ,w = X , by Theorem 1.19 have

{Y,wi ¢ Coinitial automatically.

. Theorem 1,22. (Ve’f’i):“P’% X . fe,ff,ﬁr,fi €

Coterminal . D, {?,E@ ¢ Coterminal .

Proof. Just like the proof of Theorem 1.21.

Definition 1.23. We say that % is a C-coinitial set
of cells (and write '€ ¢ CCoinit) iff T2 : (Vf,n):
E!qe§0 De —L§=-LY]O

Remark 1.23. @ ¢ Coinit

Restriction 1.23. We make the following restrictions:

§;1E,£1,X, (and variants) are C-Coinitial sets of cells.

Definition 1.24. For ¢ = {03){_, ¢ Redn , ¥ =

(Wi)?zl ¢ Desc , we define the sum QJ+C7V' by cases as

follows:
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If ~(3v), e To v . W'i From v , then 0’+C]# =¥ .
If (Jv) .0 sTov . ¥« Fromv , then  ¢*+:¥ is the
unique descent @ = (@Q;f_\i “such that (V_i): 14ién .D.

?

;1 =@ and (Yi): n<id N . 3,¢i=wi=n ¢

__Remark 1.24. This sum is associative and W 1is its

unique null element. There exist reduction complexes in
which this sum is not commutative, since usually P+ X .

D. 0+p =¥ .

Note 1.24. By "abus de langage", we informally write
r 1
Ry ‘pj» o+ 3‘1 instead of r<~§> +@ " , ol (3 respect-

ively.

Remark 1.25. (V(’)(V‘{")S (3+l/r/7‘§§ « S35 #((3 +¥) =
(#p) + (#Y) - :

Theorem 1.26. (\/e)(‘v“fr)z {()9 {3+V§ ¢ Coinitial .

—

Proof. Case l. p:;xi.va(mﬂff:izi° Then
{(39 (J+Yf§ ¢ Coinitial . (Case 2. p Z R . (3+"fr #%¥ . Then
(Fyu). (3 (From u) . Fix u. Then P +V¥ ¢ (From u) . So
{(;9 (J+‘lr§ ¢Coinitial .

Theorem 1.27. (Yo, T): {7, T+ TE ¢ Coterminal

Proof. Just like the proof of Theorem 1.26.



s A

~_Definition 1.28., We say that wu C-gtrictly reduces to

v (and write "u Cred v'), iff (3p): p# @ . p ¢ (From u)n
(To v)-, and we say that u C-reduces to v (and write

"u Cred v iff u=v .v. uCred v .

Remark 1.28(a). (Z89) ¢ Qord . (See Note 1.28 below.)

Note 1.28. Qord is the class of quasi-orderings (i.e.,

reflexive, transitive binary relations). (See Rosser's

Textbock. )

Remark 1.28(b). Let S be any quasi-ordering. Then

a complex C can be constructed so that S = (£&€d) . 1In fact,

R in Remark 1.8 does the trick. (For such

treating S a

o, W

a complex (L&€d) = (LML) ,) Hence the study of reduction in
(

reduction complexes is equivalent to the study of arbitrary

quasi~-orderings.

Definition 1.29. We say that u is C-convertible to v

{and we write Fu Cconv v1) iff either u = v or there

exists a sequence o = <xi>? { of vertices such that o, =
l“._“

5 . o ° o ° v
u.o =v and (Vl).lél<n.3.a4i imr oy yq o Ve

di+l imr dﬁ "

Definition 1.30. We define the set CNormVx of

13

C-normal (or -end) vertices by the following condition:

CNormVx = {v [ ~(3u). v imr u} :



D:ﬁ:‘/ff’_———-

15
)-31
/ﬁg%pym

Ca—w-n-«.\/ 5““’/(31") W G U v & Norn Vo

C Beworn-lfe = gmr/é)‘-u—) ag- rek o L Ve M—rxfo
W 1-32

hj,,,.,_,7 bt C '&4% CHURCH JPos'ssk Y}QOPEAT‘/V
(i —oits TCARCT ) - o foltloiey coclibton
—~ W«o‘ -

?)‘. u'.-":—‘.___

"

(33). vty . Vi g
Dheee— 32 ClR C
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Bemark 1.35. Define a component in a complex C to be
an equivalence class under conversion, and let $ be the
converse of £§g . Then by Theorem 1.33, (ChR C) iff each
connected component is directed by S, in the usual sense of
order-theoretic topology. {See John L. Kelley, General
Topology, New York, (Van Nostrand), 195%, p.65.) Since a
connected component is itself a complex, we then have by
Remark 1.28(k) +that the study of reduction in connected re-
duction complexes with the Church-Rosser Property is equival-

ent to the study of directed sets.

Theorem 1.36. ChR C . = : (Yu,v,w): u imr v . u red w

e O (12z). v Z&d 5 ,  Led ,

L

Proof. See Newman's Paper. The condition on the right

is the easiest to verify. Note that the first {actual) oc-

currence of 'red’ can be changed to an occurrence of 'LES ed,

without changing the truth of the theorem.

Remark 1.36. As pointed out in Newman's Paper, al-

e e e s

C.o: (Wu,vew): u imr v « u imr w o D.

red

though Ch
T ‘ : . :
Z . W z , the converse is not universally

(3z). v

valid. So Thecrem 1.36 is as far as one can go in this

Q.

ad

|

fashion in the direction of "localizing" the Church-Rosser

Property. (See Diagram 1.40 below. )
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Definition 1.37. We say that C has the finite descent

Qrogertlﬁ(apd write "FinDesc Cj) iff the following condition
is satisfieds

(VP). #P <,

Definition 1.38. We say that C is locally-finite (and

write MLocFin C7) iff Coinit < Finite (i.e., iff (V&). ¢

¢ Finite).

Restriction 1.39. We assemble here our restrictions

on variables of the abstract theory of reduction complexes:
u, v, w, z ¢ Vx ,
“3’,7\,(, © g Cell ,
i, j, k e Nn - {03} ,
m, n, p, g ¢ Nn ,
M, N ¢ Nn v {o0? , ' ~
?,Hf,u>,x ¢ Desc ,
P» O W, Te Redn ,
& T, 0,X € coinit
These are to be understood as affecting sub- and superscript-

ed variants of the indicated variables.



Diagram 1.40. The diagram to
the right, in which all cells are
directed downward, represents a re-

duction complex C in which (Yu,v,w):

rad

uimr v.u imrw .o, (3v) . v E2 2.

wZ8d 2 |, but ~ChR C . This ex-

ample was suggested by Professer

Rosser.

-18-



SECTION 2
DERIVATION COMPLEXES

Definiticon 2.1. We say that the pair <C,5)> is a

derivation complex (and write MDerivCx(C,5)7") iff (Cx C)

and § is a set-valued function whose arguments include
all ordered pairs of cells, such that the following five
conditions are satisfied:
(51)  (¥g): S(Em) e %,
(62) (Y3, %'): T ¢ S(€4n) . 2. L% = Ty,
(§3) ¥9): §(%,3) =g,
(54)  (VSm): LS ALy .. 5(5m) = ¢,
(55) (V§.m): &§(5,n) & Finite .
(See Note 2.1 below.)

Note 2.1. 'Finite! is the class of all finite sets

(Rosser’s 'Fin'; see Rosser's Textbook).

Remark 2.1. The ccncept of a derivation operatibn is
a modification of Newman's generalization of Church and
Rosser's concept of residual. (See the Church-Rosser Paper

or Newman's Paper., )

Theorem 2.2. (3$)., DerivCx(C,§) .

-19-
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. Proof. Define for all § N 3 f q For this
& all of (§1)-(§5) hold, as is easily seen.

Restriction 2.3. We make the following restriction:

$ is such that DerivCx(C,5) .

Note 2.3. Thanks to Hallperin's Restricted Quantifi-

cation Paper, we feel free to make this type of restriction

while retaining natural modes of deduction.

Definition 2.4. Where DerivCx(C,%) , & can be

"extended" to a unique extended derivation operation §§

whose arguments are precisely all ordered pairs consisting
of a coinitial set of cells and a reduction (notation:

; 3 . . :
r(§/TI')CﬂS-l instead of rgé(i,ﬂ) ) as defined inductively

by the following two conditions: )

(s6a) (v&): (&/K) =&,
(36b) (Vé)(V'T (VY]) T+ A¥ . O
(8/7m) = U{(f)|g = (/7 .
(See Note 2.4 below.)

Note 2.4. "|]' is our symbol for the set-theoretic

—_— =

operation of manifold union, usually denoted ’'|'. (See

Rosser's Textbook. )

Bemark 2.4. §* can be further extended to a fun§=

tion §** whose arguments are ordered pairs consisting of
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a nct necessarily coinitial set of cells and a reduction, but
we have no use for the further extension, and since our vari-
ables for sets of cells are restricted to be coinitial, we

also have no convenient notation.

Notation 2.5. We write Wf/ﬁ)j instead of R{fi[ﬁ)j
and we write r(i/v])-I instead of r(i/tq))j . In particular,
then, we write '({/4)" instead of "§(¥,q)" . In this nota-
tien the conditions which define a derivation c¢x are the
following five:

(1) (VSum)e (§/) €

(§2) (V< 3" )s f’ 2. 13 =T
(§3) v3): (1/%)

$4) (Vi,ﬂ)ﬁlf # lq e D (fﬁq) =

(§5) VS, m): (/M) ¢ Finite .

Theorem 2.6. (Y& (¥w): (®/w) ¢ 2.

—

Proof. The conclusion follows from ($1) by ($6) using

induction on #7 .

Note 2.6. By our conventions about restricted vari-

ables, this theorem is equivalent to

DerivCx(C,$) . D: (Y&)(Ym): (8/%) ¢ &
(since ' §' occurs free in the unabbreviated version of
(8/%)). A similar situation holds throughout most of the re-

mainder of this thesis.



-D0-

Lemma 2.7. (V&)(¥w)(V¥n): &4 ¢ . W+n ZK . D. _
_\_“(?g'f/?ﬁq) = {Tv]} . (See Note 2.7 below.) ; ‘[:ggi;]

Proof. By (§4) and (§6b), (3/w+n) = U{E/q)l
e (B/0F = UGS/ [T ¢ (3/m . Lf=1n7. By (52),

the conclusion follows.

Theorem 2.7. (Vé)(V?)(Vv): Ve _L(‘(§/r) o iy (Jz(l‘o v) .

Proof. Case 1. p= ¥ . By definition, ¥e(To v) .
Case 2. @ #® . Then (37W) BV] p= \\+Y] fix M, and

use the lemma.

Corollary 2.7. (V@)(VP): (&/p) € Coinit .

Proof. Case 1. p = ¥ . Then (&/p) = § by (56).
Case 2. P #® . If (&/p) =@, have (&/p) e Coinit

automatically. If (§/€) 20, (3v). v ¢ L“(E/p) s fix v
then by the theorem, {¢v{ = La(§/9) , whence (§/P) € Coinit .

Theorem 2.8. (V¥w: @/w%) =& .

Proof. The conclusion follows by ($6) using induction
on #1q
Theorem 2.9. (V¥)(¥W: (§/F+7) =g

Proof. The conclusion follows from (§3) and Theorem

2.8 by (86), using induction on # V.



Theorem 2.10. (¥&)(Ym): (&/7) = U{(§/m) ¥ 8{.

s

Proof. The conclusion follows from ($6b) using induct-

ion on H#T.

Theorem 2.11. (¥&)(Yw)(¥n): Ly £ (1“¢) . o,
(8/N+7) =4 .

Proof. The conclusion follows from (54) and Theorem

2.8 by (56), using induction on #7.

Theorem 2.12. (Y&)(¥7): 4 ¢ Finite . D. (&/7) ¢ Finite .

~ Proof. The conclusion follows from (§5) by (§6),

using induction on #W.

Theorem 2.13. (V@)(VP,G'): P/+G' A0 . D.
(&/p+0) = ((8/p)/a) .

Proof. The conclusion follows from (86), using
induction on # 0. |

Theorem 2.14. (Y&, V) (Yw): Tv¥ ¢ Coinit . D.

(8 v¥/7) = (&%) 2 (¥/x)

Proof. The conclusion follows from ($6) using

induction on # 1.
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‘Definition 2.15. We say that @(C,$)-develops ¢

(and write "®@(C,$)develops ") as defined inductively
on # ® according to the following three conditions:
(Aa) (V&): X develops ¢,
(Ab) WE)VTYE): (+Y) develops & . = .
Tdevelops ¢ . & . § ¢ (&/7)
(Ac) (V&) (VP):. Pdevelops ¢ . = : (VW)(VF):
¢ = e +¥ .o, P develops & .

Note 2.15. The concept of a development is a slight
modification of Newman's abstract form of Church and Rosser's
"sequence of contractions on the parts of" a formula. See

Newman's Paper and the Church-Rosser Paper.

Notation 2.16. In line with our previous notational

conventions, the prefix '(C,§)! and the subscript 'c,S"

once introduced, will be suppressed.

Theorem 2.17. (V&)(V¥): ¥« ® . = . (%> develops .

Proof. I. Let <& . By (hAa), ¥ develops & .
Since ¢ (8/%), it follows by (Ab) that (X +%) develops % .
But W +% =«¥) . II. Let (f) develop . But E+ ¥ =
(¥> , whence (¥ +¥X) develops & . By (Ab) it follows that
Te(d/K) . But (@K =9%.



D

. Notation 2.18. By "abus de langage" we sometime write

-
¥ develops 3 ' instead of Fety develops & '.

Theorem 2.19. (VP): P develops @ . = . (J =% .

Proof. I. Assume as hypothesis that p develops & .
If p#H®, would have that (@7)(3Y). p=7+Y . Fix 7,%.
Then by (Ab), € ¢ (&/1) . But (g/1) = & , whence ¥ ¢
(/1) . So = ¥ . II. Assume as hypothesis that e =¥ .
Then by (Aa), (¥@), p develops ¥ , whence p develops g .

Theorem 2.20. (V&,0)(¥Yw): L1 & . 7 develops H.VD ,

T develops & .

Proof. By induction on #T.

Lemma 2.21(a). (Vi)(VTf,P/): v develops & . p develops
@] « =, (’IT‘+(3) develops & .

Proof. By induction on #(3 4

Lemma 2.21(b). (V§)(V'.r,,(>): T develops & . (7 +P)

c=n

develops & . o, @ develops &/m .

Proof. By induction on #(J .

p develops’' (&/7) . = . (W + P) develops § .

Theorem 2.21. (VE)(VTBP)S M develops ¢ . o : r

1l
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Proof. Use the lemmas.

Theorem 2.22. (V@) (‘v’u)(\v’()): 148 = iu% . p develops 0] ‘

D p e (From u) .

Proof. By inducticn on #p .

Definition 2.23. We say that u (C,d)-strictly

develops to v (and write "u dev v7) iff

38)(3Am: L@ = {uf . ¥ #® . 7 develops & . 7 <(To V),

and we say that u (C,§)-develops to v (and write 'u 9&¥ 7)

iff

Remark 2.24. (Yu,v): u imr v » D . u dev v .
Remark 2.25. (Yu,v): udevv .>D. uredv .
o \

Theorem 2.26. (V&)(Yw): 1 develeps €. 2. (I0)). ()¢
.0 ¢ Finite . W develops () .

Proof. By induction on #7.

Theorem 2.27. (Yu,v): udevv.=. (30)3mM: O=
Finite . (L0) = {ul . 7™ #X . 1M develops L. 7 ¢ (To v) .

Proof. I. Assume DerivCx(C,§) u,v ¢Vx and the

right hand side of the equivalence. Then u dev v follows



trivially. II. Assume DerivCx(C,§) . u,v e Vx . u dev v .
Fix &, so that (1¢&) {u% . T #¥ . 1 develops & .

(To v) . By Theorem 2.26, (IQ). {1 ¢ 2.Q ¢ Finite . W
develops (). Fix (L. Since Nl &, (1“0 ¢ (1“9 = $uf ;
furthermore, since T #Z ¥ , have that () # @ , whence

(1) = {u}

Definition 2.28. We say that <C,%> 1is a locally

Church-Rosser complex (and write ' LocChR(C,$) ' ) iff

(Yu,v,w)s u d_—e_—\iv.u@ w .o, (3z). v dey ; wdev 7,

Theorem 2.29. LocChR(C,§) . > . ChR C .

Proof. Assume LocChR(C,%) . Know ChR C . = :

(VYu,v,w)s u ZBL v , wted yw .=, (3z). vzed z . w red , |

Since u AL .o, y $8Y y | it thus suffices to show that

red red

(Vu,v,w): u dev , , y zed . 2. (3z). v&2 2z . w == z .
So assume u 48V y ., y Ied w ., se induction on #p where

? is a reduction from u to w.

’IJ
;..x
Cﬂ

P = X : then u =w , and it suffices to take



UL
JInduction Step. ,e z~§ + 4, /
L de
Let u' = TY. Then u 48Y% ys o M
. / ’
Since also u 48Y¥'v , have that V< /:L
\
(3ve). ur dev yv , v de¥ yr | Fix dev Ll \\
. & g
v', Then u' 98V vt and ¢ des- \V/ \Qr
' v’ \
cends from u' to w; by induction \\ \
\
i & o l‘ \‘N
hypothesis, (3z). v! red , ,  red é%l /}
2z . Fix z. Then v Z&d yv , o \ /gg
\
red , snd w Zed , s Qe€.d.

Definition 2.30. © (C,9)-completely

"® (C,5)comdevelops B ') iff @

We say that

& (and write

® and
(¥¥)s ¢ e @ .o . (dn). (f/(@p‘i‘zl)

(Terminology from Newman's Paper.)

deveiops

g .

Remark 2.30. (3n). (Y/<¢i>g:l) =@ : =z (37 3Y).

=y . (/) =9 .
Remark 2.31. (Vé)(Vg)S P comdevelops & . = . P
develops ¢ . (§/§) =@ .

Lemma 2.32(a). (V&) (Yp,0): (2vY) ¢ CoinitpFinite .
p comdevelops % . o' comdevelops (Y/E) s D . ((3+0")

comdevelops (& vY) .

T
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. Proof. Assume (&uY) ¢ Coinit,Finite . p develops d .
o develops (¥/p) . (&/p) = ((¥/p)/c") = @ . Then by Theorem
2,20, P develops (8v¥) and ¢' develops (&/p) U,,.(_Y/(é); from
the latter it follows by Theorem 2.14 that o' develops
(EEUY/P) . Hence by Lemma 2.21(a) we have that (p+ ")
develops (&8v¥Y) . Furthermore, (§UY/P+ ) =
E/ptet)v @pter) = ((5/(3)/0") (¥ )/e') = ( /o) v =
guvg =g .

Lemma 2.32(b). (Vi,w')(\fe,o”): (§v¥) ¢ Coinit,Finite .

—

> comdevelops & . (e +¢°') comdevelops (Bv¥) . D. o

comdevelops (Y/(J) "

Proof. Assume (8vV¥) ¢ CoinitqFinite . & . p develops
& . (9+0”) develops (dv¥) . & . @’é/()) = (7'2_012—/9 +ot) =
@ . Then by Lemma 2.21(b), o' develops (8v¥/p) . But
(80¥/p) = (8/p)v (Wp) = @Bu (¥/p) = (We) - So ¢ develops
(‘f/e) . Furthermore, ((Y[(a)/r‘) = (¥/p+c'); but g =
(EUY/P tet) = (B/pre)u(Wpter) = ((&8/p)/at)v
(¥ p+ot) = (&) (Y/Q te') =gov(Wpte') = (Y/(wo«") .
So ' comdevelops (Y/e) "

Theorem 2.32. (¥8,¥)(Vp,0'): (8vY¥) e CoinityFinite .
Pcomdevelops . o5: ¢ comdevelops (If/()) . = ((o+0‘")
comdevelops (2v¥) .

Proof. Use the lemmas.
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Definition 2.33. Consider the following
(C,8)Condition (M) : o
(M) (¢¥®): & <« Finite .>o. (3€)°€ comdevelops & .

Theorem 2.34. (M) .

i

. (¥Z)(¥p): & & Finite . p
develops & . o . (3¢*). ((_>+ ¢') comdevelops & .

Proof. I. Assume (M) and & ¢ Finite . p develops
® . Then (§/9 )& CoinitaFinite , so by (M), (Fe¢'): ¢!
develops (ﬁﬁb) . ((&/p)/ct) =@ . Fix ¢' . By Lemma 2.21(a),
(p + ") develops &. Furthermore, (&/p + o) = ((&8/p)/c")
=@ . II. Assume the right hand side of the equivalence,
and let 3 & Finite . As always, ® develops 2. Hence
(Fe'). o' develops (8/®) . (B/®+0o') =@ . Since (B/K) =8 .

{ W+ ¢') =¢' ; this does it.

Dafinition __2__3_53 Consider the following
(B) : o
(P) (¥8)(Yp,e-): 0,0 comdevelops & . 2.

{C,%)Condition
Ee . G“E e Coterminal

Theorem 2.36. (M) . (P) . © . LocChR(C,§) .

Proof. Assume the antecedent and suppose u Ei_—@_l,l,v .

u 98Y 4 To prove (3z). v dev , , wd&Y ; ., 1In case

u =

i
<

.or u=w, take z =w or z =yv respectively. It
1
remains to consider when wu dev v . u dev w . Then by Theorem

2.27, (3%,¥)@¢,0): &,¥ ¢ Finite . (1“8) = (L“Y) = $u§ . p#
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X £ ¢, e_deyelops ® . o develops ¥ . pe (To v) . ¢ e(To w) .
Fix E’:_,Y, ps T Then (2vVY) ¢ CoinitpFinite . Hence
(8/¢), (E/p) & CoinitnFinite . By (M), (3 9"0"):‘91 develops
(Bo¥/r) . o' develops (2v¥/p) . (Bv¥/o+p') =
(Bv¥/p+a') =@ . (Recall (Y&)(Yp,0): (8/p+e) =
((?5/9)/0‘_)-)_ Fi}c (3', o' .. Then by (P), {(3+ ', ot (3!} 3
Coterminal . In case o' =W or p' =W take z=v or

z = w respectively; otherwise there is a unique z such that.

P',G” €(To z) . Obviously v dev , , w dev ; ., This does it.

Corollary 2.36. (M) . (P) . . ChR C .

Proof. By Theorem 2.29, LocChR(C,é) .>. ChR C .



SECTION 3
NORMAL DERIVATION COMPLEXES

Definition 3.1l. We say that w,c are (C,8)-equivalent

(and write "m(C,§) = o) iff {w,T} £CoinitialsCoterminal .

(¥s). ($/m) = (3/6)

Note 3.1(a). Since (¥5)(¥m: {I,M £ Coinitial . 2.
(S/m) = @, the clause '(¥%): (3/1) = (§/¢)' in this def-
inition could be replaced by '(¥f): {¥,mo3$ ¢ Coinitial . 2.

(/1) = (£/6¢)' without changing the meaning.

Note 3.1(b). This concept of equivalence of reductions

is more or less inherent in the discussion of the Church-
Rosser Paper, and is implicit in Newman's Paper. Its present
sharp form is essentially as given in Curry's Church-Rosser

Paper.

Note 3.1(c). Equivalence of reductions can be relativ-

ized as follows: where %ﬂ,@?\’i & Coinital , write

T = P;mx1§1 whenever W,? € CoinitialpCoterminal : (VY):

Ted .o, (5/M = (8/p) .

Remark 3.1(a). (Ym: T=T.

9 e
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Q+'E,

Proof. I. Let p =X . Then clearly p= X .
II. Conversely, let p #¥ . Then (AY)3w). p = T +q .
Fix $,6 . Then for 2 = 1¥} , we see that (§/9) =g # &,
But (8/®) = & , whence ~(p=X) .

Lemma 3.3. (Wv)(VE)(¥z): = §5(Ls=vi . T
(Fromv) . T#Z¥ . 2: VY: (¥/1T) ¢ (&/T) .

Proof. Assume 2e&¥, If 1§ #v , then (I/T) =6 ¢
(8/%) . If LS =v , then (3/7) = ({33/7) ¢ (8/T) since
{33 ¢ 8 . 1In either case (%/7) < (8/7) . This holds for
all S¢W; hence by Theorem 2.10, (¥/7) < (8/T) .

Theorem 3.3. (M,)‘ Lo¢Fin C « 2% (Ve,c'):' (J# ¥ #Z¢.

fe,o@ ¢ CoinitialyCoterminal . ©. (37T). P+T =0 +T

Proof. Recall that LocFin C . = . Coinit €Finite (by

il

Definition 1.38). By Remark 1.15, (3ju). p,0 ¢ (From u) :
(3v). P 0 e (Tov) . Fix u, vo Let & ={‘§\.L§=v}t.
Then € ¢ Coinit , whence by LocFin C, & £ Finite . By (M),
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(37), T comdevelops € . Fix T.

Case 1. T=X . Then p +T =p. r+T =0, so
{Q +T, 0‘+’E§ € CoinitialnCoterfnihal by hypothesis. (Proof
completed below.)

Case 2. T #® . Since p,0 £ (To v) . T = (From v) ,
+ T #K # ¢+ T . Now we have by Theorem 1.26 that
{p+’t,(a}, §¢+T,03 £ Coinitial . Hence by Theorem 1.21,
{P‘!‘I’, -+ 2’2 ¢ Coinitial . Also, we have by Theorem 1.27
that {p+T,G‘+T§ € Coterminal . So {P+'C,O‘+’Cf £
" Coterminal .

Now in either Case 1 or Case 2, we have, using the
lemma, that (¥§): (¥/p+7T) = ((£/ )/T) < (3/T) =& .
(§/ ¢+7) = (($A)/T) € (@/0) =@ . So (V). (¥/p+7T) =
($/¢+T) . This completes the proof.

Definition 3.4. Consider the following (C,$)Conditions

(N), (N*), (N°*t):
(N) (V&) (Vp,o): € ¢ Finite . p,T comdevelops g, o.

p=0 .

(N?) (VE,IE)(VP,w,P'm): (8v¥) £ CoinitpFinite .
p comdevelops . ¢ comdevelops ¥ . P'
comdevelops (¥/¢*) . ©' comdevelops (Q7P) + S
Pt o = o+ ?' " |

(Nv?) (VﬁgYﬂ(Vf,Gﬁ: (8v¥) & CoinitpFinite . p
comdevelops & . ¢ comdevelops ¥ . o . (??"O")
P' comdevelops (/) . @' comdevelops (QVP) ;

p+e -‘~¢'+P' .



B

Lemma 3.5{(a). (N) . = . (N") .

Proof. I. Assume (N) and (Fv¥) £ CoinitpFinite .
Pcomdevelops $ . ¢ comdevelops ¥ . p' comdevelops (&/¢) .
o' comdevelops (Y/F) . Then by Lemma 2.32(a), (P +q¢')
comdevelops (Ev¥) . (e +p') comdevelops (E£v¥), whence
by (N}, 9+0"‘ = ¢+pt . II. Assume (N*) and & £ Finite .
p.T comdevelop £ . Then X comdevelops (2/¢7) . ¥ comdevelops
(§/e) , whence taking & =Y in (N'), p+ X =0+ ¥,

whence P & T,

Lemma 3.5(b). (N'') . 2. (N) .

Proof. Assume (N'') and let & z CoinitnFinite . p,d

comdevelop €. Then by (N''), (39',0"). p' comdevelops

ile

(€/c) . ¢' comdevelops (Y/P) . ptT T+ ' - FiX()',a-*' :
Then ()’,q" develop @ , whence P' =g =W , whence
p = P+0"’ & cr+F‘f = @,

Theorem 3.5. (M) .2: (N) . =. (N') . =. (NrY)

Proof. I. By Lemma 3.5(a), (M) . (N) .>. (N') .
II. Assume (M) . (N') , and let (Zv¥)eCoinitn
Finite . p comdevelops € . ¢ comdevelops ¥ . Then by (M),
(Ip*,e*): p' comdevelops (8/c) . @' comdevelops (¥/p) . Fix
o's o' . By (N'), p+er = T+p*t . So (M). (N*) .o, (N"Y) .
III. By Lemma 3.5(b), (M) . (N'').o. (N) . (

Thus we have (M) . D2: (N) . D. (N') . D. (N'*) . D

(N) , from which the conclusion follows.
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‘Definition 3.6. We say that <C,§> is a normal complex

(and write "NormCx(C,$)') iff conditions (M) and (N) are both
satisfied:

(M) (VE): & = Finite . 2. (3p). p comdevelops ¥ .

(N) (¥&): & £Finite .2: (¥p,¢): p,¢ comdevelop ¢ .

S. p = 67,

Theorem 3.7. NormCx(C,§) .>. LocChR(C,§) .

Proof. Obviously (N) > (P) . Hence NormCx(C,$) ..
(M) . (P) . Hence LocChR(C,8§) by Theorem 2.36.

Corollary 3.7. NormCx(C,§) .>. ChR C .

Proof. By Theorem 2.29, LocChR(C,%8) .. ChR C .

Definition 3.8. We define the set (C,§)Dev, called

the set of (C,8)-developments, as follows:
Dev = {® | (38). 9 develops &5 .

Remark 3.8. By Theorem 2.26, we have (Vp)zf>e Dev -

i

= . (38).% = Finite . p develops & .

Definition 3.9. We define the set (C,§)ComDev, called

the set of (C,§)-complete developments, as follows:
ComDev = {CP{ (32). P comdevelops §S .
(See Definition 2.30 and Remarks 2.30, 2.3l.)




57

‘Definition 3.10. We define the set (C,9)ComDevFin,

called the set of (C,5)-complete developments of finite sets,

as follows:

ComDevFin = {fP l (18). & = Finite . @ comdevelops 25 .

Remark 3.10. LocFin C .D. ComDev = ComDevFin . (See

Definition 1.38.)

coo+Pn o eipoooanE De\/ oDo (jﬂpa-}lgocogoun)g P+Tréo~i+

soet 07y ﬂ,aigqqnsoh e ComDevFin .

Proof. By induction on n.

Basis. n =0 . Then p =0 +°°f+fo=18i;. ’f;ake,
T=%X and note @ +--+@5 =¥ . Since X~£ComDeyﬁw every-
thing is as it should be.

Induction Step. n =1 . By induction hypothesis,

(37,00, eens@pt)e Po ¥ sne F oy ¥ S AP F een F 0T L
.02 oo, 0’ & ComDevFin . Fix ', @'y ceey Ot (May
have @1 = ® : then e =P2 + e *’?n , whence P'+'W“ =

Tt + 2= + 04" and we are done. However, the general argu-
ment covers this case.) Since P1® Dev , (3@&). P1 develops
. Fix &. Then by Theorem 2.26, (3%p). 85 ¢ 2 . io £
Finite . {3 develops §O & FiXL.icﬁ note éb € CoinitnFinite
For 1 ¢i ¢n, define §i = (By/ p1t+ Tp'te..t ') 5 then
each &, € Coinit,Finite , so (37y). T; comdevelops &; -

Fix Tys sses Lpe Now since each W; ¢ ComDevFin , (A% ').

Yﬁ“z Finite . 0% comdevelops'fi” . Note each "Y}“ £



Coinit Finite . Fix HTQV, oo.gﬂfnv. Define in =

(V; 1/ tiul)° Then each ¥; €CoinitsFinite , so by (M),

(3¢;). 04 comdevelops ¥; . Fix 0%, ..., 05, Have then for
all i, 1¢ién: T;_ ; +03, 03" +T; comdevelop ii-lu EP?L' :
So T, +@; =03 +T; . It follows by induction that
TP + 05 + eoo + 0 5050 + coe 0" + T

Now let lezfl"'fl and let M =17'" + T4 . By con-

struction, (7, 0oye0ey 0y £ ComDevFin ¢ furthermore,

A

P+'T|‘»=(Jl+€2+.e. +€n+(ﬂ'ﬂ +fn)
Cht +Tp 20y + Ty +0p + oor #0, =07 + 0y + ce0 +0G .

€l+0"20+noo+

Lastly, since T* £ ComDevFin , (A0)) . {) 2Finite . W' com-
develops (1. Fix fl. Furthermore, &, = (Eo/ pi+ To'+t-""
+0,0) = (By/ P+ ) = ((Eo/p)/7') - T, comdevelops g s
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hence by Theorem 2.32, T =T' + T, comdevelops I)U(§O/P) "

where  (QLu(E/p)/m) = W/ +Ta) v (Bo/p)/n' +T4) =
(ﬁ/th)‘JGEn/Tn) =@ . This completes the proof.

Theorem 3.1l. NormCx(C,$) . v & NormVx . p ¢ (To v) -

i

Pl + oceoeo <+ en . & & fly,.o,fn £ Dev . D . (3619°°°90h)°
P 2 Q toeee +0, . & Tiseoeslp € ComDevFin .

Proof. Apply the lemma. Since v & NormVx , T = ® .
This does it.

Theorem 3.12. NormCx(C,8) « u,v eVx . u conv Vv . e Y
(jegelgoooDPm-f-lgQ’gq—lyoaogadn.*.l)o P"—:Gl‘*' e 00 +€m+l °G'=
Ty + ce0 +Tn4p o & o P e (From u) . ¢ = (From v) . {9»0@ £

Coterminal o & ° Plgooogfm.}-lgc’lpooogoin_fl &g ComDeVEin °

Proof. Assume the antecedent. Since NormCx(C,8)
have by Corollary 3.7 that ChR C. Hence by Theorem 1.33,
since u conv v , have (Ee“paﬂ)o ?V g (From u) . 0'¢
(Erom v) » fpvgqﬂz ¢ Coterminal . Fix P v, ', Then
(391“9“.,9111“9@‘1”,,.o.,crn“)we“ = fl" + oo +Em”' . ' =
Tyt + eoe + Tn® - elﬂgo.ogemﬂgcl“ooooswh“ ¢ Dev . Now by
Lemma 3.11, (Emel,o.,,,Pm,,rgcrl,,,“,,wn). pr +m =Pyt e
tPp oo & QT FTEQF 00 +0, - Trgglgoo°,(3m,f,o~l,,,5,,avn
¢ ComDevFin . Fix H”Ql-" e.o,?mgr,(}'l cooy 07p o Fix &,
¥ such that & ,¥ e Finite . T comdevelops & . T comdevelops
YV . Let ' = (8/7) ¥ = (¥/m) . Then since NormCx(C, &),

have (N*?), whence (3pp+ys oty e Pm+l comdevelops (¥/T) -
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Wh*l comdevelops (é/f? . ™+ €m+l 5: E4'¢h+l‘“ Fix @ m+ls
Cn+1. 5. Nnote Pm+l’»qh+l £ ComDevFin . {Pm+l’°~n*l§ €.
Coterminal . Now let P =p; * =+ *+0,  *pQ 4y » 07

4+ e 3 2 4
Gi__ “+"®h~+-ch+l . Verify that the desired conditions

are all satisfied.

Definition 3.13. We define the set CMaxCoinit, called

the set of C-maximal coinitial sets (of cells), as follows:
MaxCoinit = f§ |  ccoinit : (¥§): & v {%} ¢ Coinit .
5. Tt ¥

Definition 3.14. We define the set (C,§)IotDev,

called the set of (C 8) total developments, as follows:

TotDev = 9P| (38): T e MaxCoinit . P comdevelops g7 .

Remark 3.14(a). (3v). v ¢ NormVx: = . & = TotDev .
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Remark 3.14(b). (N) .>: (Yp,0): p,o & TotDev .
p# @ # 0. {p,o < Coinitial . 2. P S

Theorem 3.15. NormCx(C, §) . LocFin C . D:

(Vegflg...,en)(\/v): p=p) + cee P fl,....,()nzDev .

p eTo v . v ¢NormVx . D (3wl,...,¢n). p= A

01,000,507 2TotDev .

Proof. Assume NormCx(C,§) . LocFin C. I.e., (M) .
(N) . (&).& £ Finite . In case Q= X, tgke T = cee =
0_“n =% by Remark 3.l14(a), the theorem follows. So assume
#% . 1In this case use induction on n.

Bagis. n =0 . Assumé ‘the antecedént, Then P =
P+ et B and we ars dons s

Induction Step. n = mtl . Assume the antecedent.
Then by Theorem 3.11, G"rl"”“—n)' p = “'J_ ¥ oeee v,
MseeesTy £ ComDevFin . Fix T[l’”."“n . Then (351,...,1“)
(Vi): 1 4i<n . 5. &; ¢ Finite . Tj comdevelops &, . Fix
Blyeeer¥, o Let Q=19 1f.5% ¢ Coinitialf .. Then since
Q# ¥ , (QeCoinit , whence since LocFin C have () eFinite .
Since (J# X , see that (L # @ . Clearly 0 & MaxCoinit .
g <. Let Yo =0 and for l¢i¢n let ¥; = (W_1/m) -
By (M), (3ﬂ2°,¢..,rrn”)(‘di): l1¢ié¢n . D. My' comdevelops
(B,/7_1) » Fix Tplpeeo, o' o By (N), (¥i): 1edien ..
Tli N ti - T:i-l +Tr'1,' » So ‘sz Foree ® TTny‘“-]'tn - rl ¥ TIQV ¥
eee + " 5 since WV ¢ NormVx , it follows that Ty =_£382 :

whence To + ¢ee TTq 2T+ Tyt ... + Tt . Let 0 7

M + Ty . Since M) comdevelops & . T comdevelops Q/m)
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it follows by Lemma 2.32(a) that @} comdevelopsf{)l. Then,
4 e TotDev... Furthermore, the induction hypothesis applies

to Mo!' + +e. +My' , so (F6n,.ee,ap)e Tyt ¥ ooee T 0=

0o + e+ +0 . 0p,...,0 € TotDev . Have now P= T + Ty +

cer AT ETL 4T+ Mot 4 eee $TW P 2@ + 0 + 000 407,

-and we are done

‘Remark 3.15.. It is not excluded that some of the @7;'s
be null; should this occur, it is clear that there will be a

j such that (¥i): i¢3j .D. ¢ AR : j¢itn .2, 03 =¥.

s

Definition 3.16. We say that (C,a) has the local

finite descent property (and write "LocFinDesc(C,§)") iff

the following condition is satisfied:

(V8)(¥®): & ¢ Finite . ¢ develops & .o. #¥ ¢,

Definition 3.17. We define the set (C,5)SysDesc,

called the set of (C, §)-systematic descents, as followss

2




) B

Jysese = {Zﬁl @; | N 200, (Ya): 0¢neN . D
®r+; e Dev : (Yi)s 1£i<N . 2.

9; ¢ IotDew\Redng "

Theorem 3.18. NormCx(C,§) = LocEinDesc(C,S)“,.,__I,ocl:in C
. o (Yu)(YP): u £PrenormVx . ® s From u . @ ¢ SysDesc . D
#@ 400 °

Proof. Assume- NormCx(C,§) . LocFinDesc(C,9) .
LocFin C , and let wu ePrenormVx . Cﬁ ¢ From u .‘Pv e SysDesc &
If u eNormVx , #@P= O and we are done . Othei:wise by
Definition 1.3l and 1.28, we have that (EIv)(Ele ). v e NormVx .
(3% " . pe (From u)n(To v) . Fix Vo o By Theorem 3.15,,'
(307s0ees0p)e P20 + 200 +0q » Tlyeee, 0y eTothev . Fix
Qloeoosly « Let & = e ¢, ‘as in Definition 3.17.

Case l. N ¢, Then use induction on N.

Basis. N = 0. Trivial.

.Induction Step. N = n+l . Then CPl““v‘Pn £ Redn
since  LocFinDesc(C,§) . LocFin C CPN = ‘Pn_}.l ¢ Redn &
Case 2. N =00, Then (Vi); L¢i<¢e, .
¢, £ TotDevnRedn , whence by induction on m (where P =
0y + co» + 0. ), we see that (Vi)s 1l€ifm .. C?i =0y

whence CPm £To v » Hence by induction on i we see that

(Vi)s m<i<¢ &0 ., D, CPi =% , whence #P<¢o, g.e.d.

Corollary 3.18. NormCx(C,§) - LocFinDesc(C,§) o
LocFin C » D : (Wu)(¥¥): u £ PrenormVx . eFromu .

® ¢ TotDev . D. HP <o,



SECTION 4
REGULAR DERIVATION COMPLEXES

Definition 4.1. We say that (C,$%) 1is a reqular

complex (and write TRegCx(C,§)") iff the following
(GQS)Condition (Reg) is satisfied:
(Reg) VYY) (Vﬂ)(\/fﬂs’q): 17 develops ¥ . ffgvlzs
@/m) . TEN oL Ne(fA) =1

(See Notation 4.1 below.)

Notation 4.1l. As in Rosser's Textbook, we write

™ec «' to denote the cardinal number of o« .

Remark 4.1. (Reg) . s (VO YT (YT, %) develops ¥ .
ok e €/m) - TAN 2. Ne($/m) = Nely/5) =

Definition 4.2. We say that J is a relation of relative

separation on <C,$> (and write "(C,$)RelSep J7) iff J is a

relation holding between sets & of cells and ordered pairs of
cells (notations rJ§(§,r])—'; read "& J-separates T fromw ')
satisfying the following (C,¥)Conditions (J1) - (J6):

(J1)V' (Y&)(V¥): & v {58 c Coinit . 2. Jg(%,7)

(J2) (V&) (Y5 ,n): Jé(‘f n) = JzeT)

(J3) CEIICARDE ? “ . 2. & v {¥,§ £ Coinit ,

(Ja)v (V&) (¥S,n): J (f,q) T#n . 2. Ne(T/y) =1,
( (

)

&)
)
)
)
BN (&)Y T,N.0) (VT ) Ji(i,v\) .08, 7' ¢

(£70) - ' 2 (n/0) . . J@/0) (5"
(J6) (&, (VTm): Jg(Sm) « LeF .20 Jplfm) .

-44-
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The conditions (J1), (J4), (J5) are of special importance and
have been marked with a check for emphasis. (See Corollary

4.4 below.)

Note 4.2. In Newman's Paper, Newman introduced a re-

lation J of absolute separation (or "non—interferencéﬁ between
coinitial cells, and proved (ChR C) and other properties for
complexés C satisfying certain conditions involving J. In
Rosser's Review of Curry's Paper a counterexample is given

which shows that such a relation does not exist in systems of

A-conversion. We show in Part II that a‘relation of relative
separation does exist in all the interesting systems of

A-conversion.

Remark 4.2. The additional éondition (J7), (v&,¥)
(¥T): (BvY) e Coinit . Jg(T,m) - JAT,m) + 2. JEoy)(Tim) .

is satisfied in our applications.

Theorem 4.3. (3J). (J1) . (J4) .(J5) 5 = : RegCx(C,5) .

Proof. Assume the antecedent, and let T develop Y. &
. {5n¢ E({/uﬁ . T#w . Since ({/m) # @, it follows that
Y\’{ﬁfi Coinit . Hence Jg(g,g) by (J1) . Hence by (J5)
have by induction on #7 that J(Y/w)(E’W) . Therefore
Nc(f/ﬁ) =1 by (H) . This completes the proof.

Theorem 4.4. RegCx(C,$%) . @ . (3J). RelSep J .

Proof. Assume RegCx(C,§); define J by the following
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equation: - ,
5= {@E5, | anaw (1%): Yo zgzscOmt . T develops
L.Be(w/m) o 8 e @/migo
§¢2,7,7)| & v{f} ¢ Coinit 7. o
(J1), (J3), (J6) follow automatically for this J. (J2) for
this J follows from the fact that (V§,4): {I.m§ = {q % .
(J4) for this J follows from Condition (Reg). Finally we have
for this J that (J5) is implied by the following condition:
(V&,¥) (V% ,v, 1; o)(¥r):. YU‘{A'}i,C»Qinit\. T develops ¥ ..
&.F ¢ (Wm) . {¥m8 € (B/m) . 0B, ¥ (T/0) .y
£ jq/@ : >.¥Yu {5} e Coinit . (m + ©) develops ¥ .

(3/0) = (WT+0) . fe,le(/m+0) .
UEREY

\\ T develops ¥
\

T3 e @/1) e (€/0) L e (/0) . (¥ /v (/)

\

This in tuzn follows from the following twb'conditions,_the‘
latter of which is to be applied as indicated alphabetically
and also with '{{2' for ‘'y':

W¥)¥Vw)(¥e): T develops ¥ . @ e (¥/7) .D. (W + 0)

develops ¥, I , !

VY (Yril¥e): m+e #K . 2. (Wn+e) = (Wmme).
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The first of these is immediate from Definition 2.15; the

second is Theorem 2.13. This completes the proof.

Corollary 4.4. (3J). (J1) .(J4) .(J5) :2: (37J).
RelSep J .

Proof. Immediate using Theorems 4.3 and 4.4.

Definition 4.5. Where RelSep J, we define for each ]

¢ Coinit the set (C,%,J)8Sep, called the set of sets

J-separated by & , as follows:
(c,5,3)8sep ={¥ | (VE,n): Sy 2. Jp(¥)] .

Note 4.5. This concept is central in our further devel-
opment, which usestewman's method of proof. (See Newman's
Paper.) A related concept is an extended relation J¥ defined
as follows: J¥ = {(i,&ﬂf}}|(V§,“): TeW.nel).2. JE(Y,W)}O
This would be central in an abstract development following
Church-Rosser's method of proof. (See Church's Monograph,

p. 23.) These two approaches are so-to-speak "pefpendicular"

to each other.

Notation 4.6. Hereafter 'J', as well as °'C' and

"$'y will be suppressed in the usual manner.
Remark 4.7. RelSep J . > . (¥&). @«&Sep .

| Theorem 4.8. RelSep J .>: (Vi)(V§,q)2 JE(E,“)EO =,
fonbe 2sep .
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| Proof. Assume that RelSep J and that & ¢ Coinit and
¥ £Cell . I. Assume JE(Y,W) . Then by (J3), & v ffgqi £
Coinit ; hence by (J1), Jg(7,T) . Jglym) - Also, by (J2),
J@(st) . With J§({,w) these show that {E’Wéi: $Sep .
IT. Assume {E’W%'i $Sep ; then directly from the definition,

Ji(i,n) . This completes the proof.

Remark 4.8. This theorem enables us to avoid the rJ§1

notation in practice. We illustrate by giving conditions
equivalent to~those which define a relation of relative separ-
ation, as follows: S _ _
(J1) (VE)(¥3): & v TTeCoinit . D. {58 ¢ &Sep
(J3) VE)(VE,n): fTmic ESep .o, BV 5,8 € Coinit ,
(J4) (V8) (Y3,q): fI,m3e BSep . IAn . 2. Ne(TA)
=1 ,
(35) (GBS, )Y ' ): TTn3e Bsep . Te & & .
| e (3/4) one(/E) D {E'»q“{ ¢ (2/F)Sep
(36) (V&) (VE,n): (T,n7e Bsep . Ned.> . {TnTe
QSep .
The condition (J2) is trivial in this formulation; it is of
course essential in the proof of the equivalence of the two

formulations.

Remark 4.9. RelSep J .>: (YV&W¥): Vs $Sep . = .
(V) S e ¥. 2. {T,mfs Esep .

Theorem 4.10. RelSep J . 2 : (¥&)(V¥,7): §"{%§ £
Coinit . 4 ¢ 8, 2. (5/4) ¢ (8/7)Sep .
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v Proof. Assume RelSep.J . §¢{Sf e Coinit . L . By.
(31), 5% & &sep . By (J3), (VI;", %) 5,30 ¢ (1) . 2.
{fl',fz'} £ (&/l]’)Sep . Hence (?/1{) £ (2/F)sep , g.e.d.

Theorem 4.11. RelSep J . o: (Y&¥): Ve 8Sep - D

(Zv¥) & Coinit .

Proof. By (J3). In case ¥ = @ (whence E2v¥=§), the
proof depends essentially on the fact that & is‘restricted so

that ©@ ¢ Coinit.

Remark 4.12. RelSep J . 2 ¢ V& ¥,0): We &Sep . fL€ )
. 2. Q¢ $Sep

Remark 4.13. RelSep J . 2: (Y&¥,0): Vs Psep . L2

., D, Ye0Sep .

Corollary 4.13. RelSep J . D VEQ: Ncd. D.
BSep ¢ QSep . \

Lemma 4.14. RelSep J.>: (VE, W) (VI): We BSep - &
Ted, o. (YY) (2/3)Sep -

Proof. By (J5).

, Theorem 4.14. RelSep J . D (VE,Y)(VT): ¥ ¢ 8Sep - & .
w develops 8 . = . (¥/w) (&/mSep .

Proof. From the lemma, using induction on #r.
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Lemma 4.15. RelSep J . D: V&, ¥)(VE): W v ifle BSep .
Y cFinite . 3¢ 2. = . Ne(¥/T) ¢ Nc ¥ .

Proof. The proof is by two cases as follows:

Case 1.. T ¥ . Then for any ,,v‘l,z“f we have by (J4)
that Nc(q/f) = 1 ; hence there is a many-to-one correspond-
ence from ¥ into (¥/¥) . Hence Nc(¥/%) ¢ Nc ¥ .. |

Case 2. T«¥ . Let Y' =y - $g%. Then by Case 1,
Ne(¥'/€) ¢ Ne Y = -1 + Ne W . Since (¥/f) = (¥/¢) . it
follows that Nc(¥/%) ¢ -1 + Nc ¥ , whence Nc(¥/T) ¢ Nc ¥ .

Remark 4.15. The presence of the clause 'We¢Finite'®
in our statement of Lemma 4.15 is not essential to the truth
of the lemma, but enables us to avoid the axiom of choice in
the proof, thus preserving the effective character of the
theory.

{

Note 4.16. The assumption that (Vf,w\,g): TEN - Do
(f/ﬁ)h@\/{) = @ would enable us to strengthen the inequality
in some of the next several theorems to an equality. This
-assumption is actually satisfied by defivation in the systems

of lambda-conversion which we will consider.

Theorem 4.17. RelSep J . o : (VEW,Q)(Yw): ¥ v = &Sep.
Y « Finite . ¢ & . 7 develops Q. 2 . Ne(¥/m) ¢ Ne ¥.

Proof. From the lemma, using induction on #T.
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Lemma 4.18(a). RelSep J . D (VZ)(¥T): € = Finiten®Sep
Tgd. o. Ncd 21 +Nc(&/?) .

. Proof. Let ¥ =8 - $€9. Then Nc® =1+ Nc¥ 2
1 + Ne(¥/<) by Lemma 4.17. But Nc(¥/3) = Nc(&8/%) since

Nc(€/%) = 0 . This does it.

Lemma 4.18(b). RelSep J . D : (V&)(¥p):& = Finite,%®Sep

P develops € .2 . Nc & > (#e) + NC(§/(>) .

Proof. From Lemma 4.18(a), using induction on #(3 ;

Theorem 4.18. RelSep J . 2 : (V@)(VP): &< Finiten®Sep .
@ develops 8.2 . #P {(Nc & .

 Proof. By Lemma 4.18(b), (V()): p develops & . #p =
Nc . D. (@/9‘)? @ . Hence N(?Je)o p develops & . #p >
Nc € . This does it. -

Remark 4.18. This proof shows that for B ¢ $Sep ,
(Nc ) is a uniform bound for the number of steps in a devel-

opment of & .

Corollary 4.18. RelSep J . D: (V&) (VP):& = Finitep
3Sep . @ develops & . D . #P < 0.

Definition 4.19. Where RelSep(C,§,J) . & £ Colnitnp

Finite , define deg @, the degree of & as follows:
deg-i = min {m\ (3@_]_9@29°°°9@m)° .§=§lu §2U°°°U§m °
§19§29° °°9§m £ ﬁSepz G
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Remark 4.19. Assume. ® = CoinitnFindte ... Let [
{il:'-wfnz,,, ‘Then (Vi): 14ig¢n . D . {‘?13 € &Sep , by (J1).

Hence (3%),...,8,). & = §lU"'U§n . il"""ﬁn ¢ $Sep . So
deg & exists ¢ n .

Lemma 4.20. RelSep J . D : (¥®): & ¢ Finite,$Sep . D .
(3()). () comdevelops & .

Proof. By induction on Nc &, using Lemma 4.18(b).

Theorem 4.20. RelSep J . D. Condition (M)

Proof. Assume the antecedent. Let & =z Finite; to
prove (3()),? comdevelops &.. Use induction on deg & .

_ Basis. Deg =0 . Then @ =@ , whence X comdevelops
. |
d; so takev()_?&,

Induction Step. Deg & = n+l . Fix §-l’°°”§n+l ¢ @Sep
such that & = v...V@ ., . Since & z Finite so is every
®: ©Finite . By the lemma,_(]p_l), P1 com_d_e‘,v.‘elops &, .. By
Theorem 4.14, (&;/p1) = (8/p1)Sep , so where ;.= (§i/(>l)
and where @' = ?él'u "'Uin*’l': we have that @' = ¢U§2°u
cee VB 41! =§2'U "'U§n+l' , giving that deg @' ¢ n . So

the induction hypothesis applies, whence (3‘?')° p' comdevelops
$' . Fix P Clearly (Pl + P') comdevelops @ .

Corollary _4_;Q RegCx(C,§) .>. Condition (M)

Proof. Assume the antecedent. Then (3J). RelSep J .

Use the theorem.



SECTION 5
NORMALITY AND RELATED PROPERTIES IN REGULAR COMPLEXES

Part A. Normal Relations of Relative Separation

Definition 5.1. We say that J is a normal relation of

—.

relative separation on (C,§) (and write "(C,§)NormRelSep J')

iff RelSep J and the following (C,§,J)Condition (JN) holds:
(JIN) (V&,¥) (Yo ,o,p', 0" ): ¥ ¢ CoinitnFinite .
2,V e (2u¥)sep . P comdevelops ¢ . o comdevelops
V. G' comdevelops (2/¢) . o' comdevelops (¥/p) .

S, ptEt = 0t ot

Theorem 5.2. NormCx(C,S) . RelSep J .o . NormRelSep J .

Proof. Consequent follows directly from (N').

Lemma 5.3(a). NormRelSep J .>: (&, ¥): duy ¢
CoinitnFinite . @ ¢ (2 v¥)Sep . p comdevelops ® , ¢ comdevelops
¥ s o, (QQ',Q'L p' comdevelops (&/0*) . ¢' comdevelops (YV@) .
€+-WP = @+ p' .

Proof. Assume NormRelSep J . #v¥eCoinit~Finite . &

e (§o¥)Sep . p comdevelops ® . ¢ comdevelops ¥ . Use induc-
tion on # ¢, as follows:

Basis. ®* =X . Then (&/y) =3 ; also ¥ = @ , whence
(W?%) =@ . Take p' =pQ . 0" = ® . This does it.
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Induction Step. @ = T+ 0, . Then I eY. Since @

¢ (o¥)Sep , have by Remark 4.13 that % ¢ (2 v {5h)Sep ; and
by (J1), 5% & (8 vis)Sep . Clearly also (% v %} € Coinitn
Finite . Now since RelSep J we have Condition (M). So let
p,' comdevelop (8/%) . &' comdevelop (5’/()) . It follows by
(JN) that p+ @' = Y+ pPy' . Furthermore @/3) v (/) ¢
CoinitnFinite , and, since % ¢ (3v¥) , we have that (&/¥)e
(Bv¥/T)Sep = ((8/%) v (¥/7)/€)Sep . Also, p,' comdevelops
(3/%) . ¢ comdevelops (¥/%) . Hence the induction hypothesis
Q¥
/

e

P comdevelops s -
P 0 comdevelops ¥

applies, whence (Jp',0%"). p' comdevelops (@/5)/5) « 0p!
comdevelops ((‘{/Z)/(Jl') . p1' T O =Up P . Fix o',027,
and let @' = @' +0p' . Then P+ = p+0" +0y' =

£ % Gl' + 0yt = ‘§’+Cr2 + ?' = 0‘+Q' s g.e.d.
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Lemma 5.3(b). NormRelSep J .=. Condition (N'?) .

Proof. Assume NormRelSep J . &v¥ :Coinit,Finite .
p. comdevelops E . ¢~ comdevelops Y . Use induction on #P to
prove (39',0"), p ' comdevelops (8/¢") . &' comdevelops (Y/P) .
o t+ot = Y+e o

Basis. p = ¥ . Take e' =9 . ¢" = ¢,

Induction Step. p = 3 +pp . Since {3 2 (({51v¥)Sep ,

the preceding lemma applies with '{f§i' for 'g' . So fix
P1's @1 such that P’ comdevelops (/) . 0°;' comdevelops
(W/%) . p+ oyt 2 C+pt . since (F/9)v(¥/3) = (2u¥/T) e
Coinit . p, comdevelops (§/(al) . 0" comdevelops (Y/el) , the

vy

N
\\G“ comdevelops 4

induction hypothesis applies, whence (]92',5'), ()2'
comdevelops ((8/%)/0¢;') . v' comdevelops ((7{/3’)/92) .
"ot e2t

Then 9+ oF = f+(32 +Qr = T+ O‘l' +§>27 = G’+(_>l' +€2v =

e

P2 + o' , Fix (32', o', and let P' = El' +(32' s

v+ ()' s g.e.d.
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Theorem 5.3. NormRelSep J . D. NormCx(C,§) .

Proof. Assume the antecedent. Then RelSep J, whence
RegCx(C,§), whence Condition (M). Also, by Lemma 5.3(b), we
have Condition (N'')., So NormCx(C,$) by Definition 3.6.

Corollary 5.3(a). (QJ)[NormRelSep J].2. NormCx(C,§) .

Corollary 5.3(b).
RegCx(C,$) . NormCx(C,$)
= : (3J). NormRelSep J : _
= : (3J): RelSep J : (¥J): RelSep J .>. NormRelSep J .

Corollary 5.3(c). RegCx(C,§) . o :.
NormCx(C,$):

(3J). NormRelSep J :
s (VJ)s RelSep J . © . NormRelSep J .

i
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Part B. Normality for Self-Separated Sets

Definition 5.4. Consider the following (C,$,J)Conditions
(R), (s), (8'), (s'*):

(R) (Y&): & = Finiten&Sep .::_(3€)°‘€ comdevelops & o
(s) V) (Vm,t): L eFinite,{Sep . T,T comdevelops L).
5. M =1T,

(s1) (V&%) (Vp, 0o p's0'): (Ev¥) e CoinitnFiniten
(v ¥)Sep . p comdevelops ® . 0 comdevelops ¥ .
P5 comdevelops (€/0°) . o' comdevelops (MVP) « 2o
pH ot = THpt .,

(81X ) (V&,¥)(Vp,0): &u¥ 2 CoinityFinite(&uvY)Sep .
p comdevelops ¢ . ¢ comdevelops ¥ . = :
(3?’,0'): p' comdevelops (8/¢) . ¢ comdevelops
() . pror =0+,

Remark 5.4. By Theorem 4.11, (dv¥)e (2 v¥)Sep .2
(u¥) = Coinit (on the premise RelSep J), so that the occur-

rences of 'Coinit ' in (S'), (S'*) can be omitted.

Note 5.4. Condition (S') is quite similar to Condition

(IJN); however, we there assume only that &,¥ ¢ (£v¥)Sep ,
whereas the corresponding (stronger) assumption in (S') is

that (E8v¥) ¢ (EvV¥)Sep . The difference is crucial.

Lemma 5.5. RelSep J .>. Condition (R) .

Proof. Clearly Condition (M) o (R) , but by Theorem
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4,20, RelSep J .D. (M) »

Theorem 5.5. RelSep J .D2: (S) . = . (S*) . =. (8') .

Proof. I. Assume RelSep J . (S) , and let E°¥ =
Coinit Finiteo(Ev¥)Sep . p comdevelops & . ¢ comdevelops ¥ .
o' comdevelops (2/¢) . ¢' comdevelops (¥/p) . To prove
pro? = +pr . Take (L =2%ov¥, T =+, T = C+p’
and’apply ($)e So (S) .o. (S') . 1II.. Assume RelSep J .
(s*) , and let (&v¥)s CoinitpFiniten(®v¥)Sep . p comdevelops
2. o comdevelops ¥ . Then by Remark 4.12, 3,¥ < (&v¥)Sep ,
whence we have by Theorem 4.14 that (&/*) ¢ (8/c)Sep « (ED%)
£ (Y/P)Sep . So by the lemma, (39',0“): o' comdevelops (&/r) .
¢! comdevelops (YV?) . Fix p', ¢'. Now apply (s*), giving
vQ*~V' = ¢+ ?‘ . So (S') .o. (S*') ., III. Assume
RelSep J . (S'*) , and let {1l € Coinit,Finite,0NSep . T,T
comdevelop . To prove W = T . Take & =¥ =0, p=T,
=T and apply (S'') . Hence (39',@”)2 o ' comdevelops
(/) « ¢' comdevelops (Q/n)‘. T+q@* = 'E+Lp' s FiX P’, a4 »
Then since (Q/t) = (/) = @ , we have that p' = ¢ =¥ .
Hence T = T + ¢** THp' = T. So (S'') «>o. (S) . This

]

He

completes the proof of the theorem.

Definition 5.6. We say that J is a relation of relative

separation on <C,%) normal for self-separated sets (and

write T(C,%)NormRelSelfSep J') iff RelSep J . Condition (S) .

L



.

Theorem 5.7. NormRelSelfSep J . >: (V§L,§R)2

(8 v 8;) z CoinitnFinite (&) v 3g)Sep . p comdevelops (& v &)

.2. (3pLs pr). p=pL *PR - pL comdevelops & . PR
comdevelops (2z/Pr) -

Proof. Assume the antecedent. Since RegCx(C,§) ,
have Condition (M). Hence (EPL). p L comdevelops $; . Fix
Pr- By (M) again, (EQR)' PR comdevelops (§R/PL) . Fix pg.
Now p, pp * pr comdevelop (@ v%) . since (B v)e
(§L\J§R)Sep , it follows by (S) that Q = PL +-PR .
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Part C. Normality for Self-Separated Pairs

Definition 5.8. Consider the following (C,§,J)
Conditions (C), (D), (DY), (Dy'):

(C) (VLY))(?Q'). p ' comdevelops (‘f/v)) .

(D) (Vf,n)(Vp”,w”)z p's¢* comdevelop (f/ﬁ) ¢« Sy

p'= o' .,

(DY) (V?,“)(VP’,w'): {f,ni E{f;q}Sep » p' comdevelops
(f/q) . ' comdevelops (ﬁ/f) :D. M+ P! =
S+

(Dg*) (V"s’,v))z {‘i’n\ﬁ £ ¥miSep . >, (Iprset). p°
comdevelops (f/n) . (' comdevelops Cq/f) .
nN+pr = T,

Remark 5.8.

(a) Condition (M) . >. Condition (C) .
S (b)  NormCx(C,§) .>. Condition (C) ;
(c) RegCx(C,§) . 3. Condition (C) "
whence {d) RelSep J .>. Condition (C) .
Also, (e) NormCx(C,$) .>. Condition (D)
and (f) NormCx(C,§) . RelSep J . >.

(
and (g) NormCx(C,§) . RelSep J . o. (D}") .
Theorem 5.9(a). RelSep J . D3 (D}) . (D:T") ;
Proof. Assume RelSep J and alSo (D}). Then by
Remark 5.8(d), (C) < (Dy); i.e., (V?,n)(gev). p' comdevelops
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($/n) 3 (V’i’.\q (Vp'se)s {f,vﬁ 3 {E,»\ESep . p' comdevelops
(f/»\) . 0 comdevelops n/f «D. ntopt = T+ 0" . Let
{‘f,»ﬁ £ {i,yﬁSep . To prove (39",0-'). p' comdevelops (f/q)
o' comdevelops (Yl/‘f) - Nt pr = T+, By (C), (3ptya?).
p' comdevelops (f/q) . 0" comdevelops (y'/f) . Fix e', o' .
By (DY), n+p' 2 T+on

Theorem 5.9(b). RelSep J .o (D&') B (D}) .

Proof. Assume RelSep J and also (D:T’); Boliny (V’f,v]):
{f,v\i £ {f,\iSep 0o Do (39“,&'). p' comdevelops (f/“) . !
comdevelops (vq/f) . Nt Q“ = T+ 0, Let {Y,Yﬁ g {‘?,\ESep "
@,' comdevelop (f/v]) » 04 ' comdevelop (Y)/E’) . To prove
n+ ®y" = T+ ;" . Since {f,\\% - {f,'\i Sep , it follows by
(34) that @w,g'). (/) = . (§4) =198 . Fix n',
€' . Hence (\7‘9'): p' develops (f/w\) 2D Pt =T (Yor)e
** devalops (q/‘i) o2, 0" ={W'> . But by our hypothesis
(39”,0'”), p' comdevelops (f/r\) . ' comdevelops ,(7)/5)

Nt e = T+ T . Fix p', . Then p' =<S1) , g¢ =
<‘v\"> ; but for the same reason Py =T o« @yt = s e
s0 =p' . 0" =0, whence ¥ le 2 %+ ', g.e.d.

Corollary 5.9. RelSep J .>2: (D&) = (D}“) .

Definition 5.10. We say that J is a pairwise normal

relation of relative separation on <C,$> (and write

"(C,$)2NormRelSep J) iff RelSep J . Condition (DB) .
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Remark 5.10. By Corollary 5.9,

2NormRelSep J . = . RelSep J . Condition (D}') .

Theorem 5.11. 2NormRelSep J . >. NormRelSelfSep J .

Proof. Assume 2NormRelSep J . I.e., RelSep J . (DY),
where (D}). is as follows: _
(st‘r\)(‘v'@“gq“")s fTons ¢ fTmi{Sep . p* comdevelops
($/) . ¢ comdevelops (n/€) .=. m +pr = T+,
To prove NormRelSelfSep J . I.e., RelSep J . (S) , where
(S) is as follows:
(YQ)(¥m,T): L < Finiten(Sep . 7,T comdevelop {l.>.
T=T.
Use induction on Nc {L. Assume f) £ Finite,(Sep . T,T
comdevelop L. To prove T =T,
Basis. Nc{L =0 . Then {l =@ , whence =T =¥,
Induction Step. Nc {L = n+l . Then fL # @ , whence
MAXAT. Let M =3+Tr , T
and since {l€Finitey{lSep it follows by Lemma 4.18(a) that
Nec(Q/€) «£n . Nc(ﬂ/v\) ¢n ; also, (/%) ¢eFinite,(Ql/3)Sep .
(1/v) ¢ Finiten(Ql/)Sep by Lemma 4.14; also, T' comdevelops
Q/s) . cemdevélops (Q./V)) .
In case ¥ =‘v] o it follows by the induction hypothesis

il

il

N+ Tt . Then f,v)iﬂ,

that ' = ¢' , whence T = T + T :':V)+'L"' = T and we are
done.

So assume § # n - Then since Q:0Sep it follows by
(J4) that  (Fw,%7). (/9) = {n'§ . (TA) = {$% . Fix w7,
g, Also since [(lz(lSep , it follows by Remarks 4.12, 4,13



s B

that {ﬁ,qf £ {f,\iSep . So by (DB) we have that X+ n' =
nt ' . Hence in particular (Q/T+n') = (/+T') . Now
by Condition (M) (which holds by Theorem 4.20), it follows

that (39). P comdevelops ((L/% +w\') . Fix p- Then w' + P

comdevelops (0./%) . §! +9 comdevelops LQ/W) . So T' =
\' to, T = X! +Q by the induction hypothesis. So T =
S+ = ‘§’+»\' +p =+ T tp = M+T' =T, q.e.d.

Corollary 5.11(a). 2NormRelSep J .>. Condition (D) .

Proof. Theorem 5.1l asserts that 2NormRelSep J .>D.
RelSep J . (S) . But clearly RelSep J . (S) .>. (D),
since (¥3,v). (S/q)s Finite,(¥/y)Sep by (J1) and (J5).

Corollary 5.11(b). 2NormRelSep J . = . RelSep J . (C) .
1]
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o

art D. Pairwise Normality

Definition 5.12. Consider the following (C,5,J)
Conditions (C), (D), (D'), (D**):

(c) (Vf,“)( '), 9"»comdevelops ($74) -

(D) (Vfgn (VP o0 ) 9",¢“ comdevelop (S/ﬁ) .

Q' ¢! .
(D) (¥$.:m)(¥pt,q'): p' comdevelops (T/n) . o
comdevelops Y\/f eDe Nt P = T+ 0o,
(Dr1) (V?,q)(}e »¢*)s p' comdevelops (f/\) o oF
comdevelops (\q/f) e NFPTE T+or .,
(These conditions are meaningful in an arbitrary derivation
complex; nothing in Part D depends on regularity or relative

separation.)

Remark 5.12.

(a) NormCx(C,§) . >. Condition (D) .

(b) NormCx(C,5) . >. Condition (D'%) .,

(c) Condition (D') . >. Condition (D}) .
(d) Conditdion (D'') .>. Condition (D&’) o

See also Remark 5.8.

Theorem 5.13(a). (C) . (D*') .>. (D'*) .,

Proof. Assume (C) . (D') and consider ¥ s o Then,
by (C), (39“,&”). o' comdevelops (f/“) . @' comdevelops Cq/f)
. Eay qu ¢'. By (D"),, “1-?? = X + T,
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Theorem 5.13(b). (D) . (D'*) ., >, (D'} .

Proocf. Assume (D) . (D'') and let Plu comdevelop
(f/y\) . ¥;' comdevelop (y\/f) . To prove Nty = ¥+ .
By (D**), (3 ?',cr")o QV comdevelops (E’/V\) . @' comdevelops
(W/f} R "y\+ P? = ¥+ o' . Fix 9', ' By (D), e" = \)l’_ s
o' = ' . Hence m + h? = ntoe! = T+ o f“"O“l'. ge.e.d.

Corollary 5.13. (C) . (D) .=>: (D*) . = ..(D"?) .

Definition 5.14. We say that <C,$> is a pairwise

normal complex (and write ™2NormCx(C,$)7) iff all of

Conditions (C), (D), (D') hold. (See Definition 5.12,)

Remark 5.14.
(a) NormCx(C,$) . >. 2NormCx(C,§) .

(b) 2NormCx(C,§) . . (C) . (D) . (D7)
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Part E. Reqular Pairwise Normal Complexes

- Definition 5.15. We say that {C,§> is a regular

pairwise normal complex (and write MReg2NormCx(C,s)7) iff
RegCx(C,8) . (D'') . (See Definition 5.12,)

Theorem 5.16. Reg2NormCx(C,5) . RelSep J . o.
2NormRelSep J .

Proof. Assume Reg2NormCx(C,5 ) . RelSep J . Then since
(D*'), we have (D}") by Remark 5.12(d), whence by. Remark

5.10, we have 2NormRelSep J .

Corollary 5.16(a). Reg2NormCx(C,5) . RelSep J . o.
NormRelSelfSep J .

Proof. Immediate by Theorem 5.11,

Corollary 5.16(b). Reg2NormCx(C,§) . RelSep J .o,
(V& ,2R)s (§L~’§R) iCoinitnFiniteQ(§1LJ§R)Sep . P comdevelops

(B v%g) .o, (BPLQER), =Pt PR - P comdevelops éi .
PR comdevelops (Zg/p;) .

Proof. Immediate by Theorem 5.7.



oy T

Theorem 5.17. Reg2NormCx(C,5) . = . RegCx(C,§) . & .

2NormCx(C,5) .

Proof. I. Assume Reg2NormCx(C,$) . 2NormCx(C,S) .
(See Definition 5.14.) Then by Remark 5.14(b), have (D'') .
So Reg2NormCx(C, %) . II. Assume Reg2NormCx(C,$). Then
RegCx(C,§) immediately. By Remark 5.8(c), we have Condition
(C). Since RegCx(C,%), (3J). RelSep J . Fix J. Hence by
Theorem 5.16, we have 2NormRelSep J . Hence Condition (D),
by Corollary 5.l1ll(a). Thus by Remark 5.14(b), we have
2NormCx(C,5). This completes the proof.



SECTION 6
(ORDINARY) CHURCH COMPLEXES

Definition 6.l. Consider the following (C,s)Conditions
(AL), (A2): | o
(r1) (¥¥om,T): TAL .o (€M )nlfAH) =8 .
(A2) (VEom): I3 =1n.T#y .o, (?/ﬁ) D .

Definitibn,g,gﬁ, We say that <C,$) is an ordinary
restricted Church complex (and write TORCh(C,$)7) iff

Reg2NormCx(C,$) . Condition (Al) . Condition (A2) .

Theorem 6.3. Condition (\2) . o: (Vf,q)z % = M e
%= K

then automatically ~[% =w] . So assume 1T = lY)o Then by
(A2), it follows that (/M) #8 . Since (5/F) =@ , we see
that (3;), ({/f? # ({/n)_y‘wbence NEféﬁq] o II. Assume
T=%. Then ¥ i“] automatically.

Proof. Assume (Z2). I. Let T #An . If IS # 1w

Remark 6.3. No special properties of (C,$> are as-
sumed in Theorem 6.3 other than that DerivCx(C,%) .

Definition 6.4. Where A,K are any sets such that

2 = ANuK , consider the following (CQS?AQK)Conditioqg

-68-
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(cL) = (C5)s .

(c1) (¥5,7,m): T, e A T#AZ .20 (IM)nGEAH)
= ¢

(c2) (¥Toy)s Tom ¢ Ao LE=Lln o T#n o0 (T4)
70

(c3) (Y¥.,m): Tone Ao (€A) e A

(ca) (vz,,y\)g ne K.=. Nc(‘f/y\) < 1.

(c5)  (¥§.m): T eK .o ($A) K.

Definition 6.5, We define the set of ordinary covering

pairs for <C,$)» (for which we write F(C,$)0rdCovPr) as
followss 4
(C,%)0rdCovPr = {(I\,,K)l S=AvK . (Cl) . (C2) . (C3) . |
| (ca) . (c5) .

Definition 6.6. We say that <(C,§> 1is an ordinary

unrestricted Church complex (and write TOUCh(C,§)7) iff

Reg2NormCx(C,$) - (IA,K). <(A,K) £ OrdCovPr .

Remark 6.6. ORCh(C,$%) «>.<2,8> £ OrdCovPr .

Corollary 6.6. ORCh(C,§) .>. OUCh(C,%)

Theorem 6.7. <A,K> g£ OrdCovPr . >3 (VEw): vy ¢

Coinit . 3v¥ ¢\, ¢ develops ¥ - 2. (B/¢) ¢ N &

Proof. By (C3), using induction on # &
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Theorem 6.8. (A,K) ¢ OrdCovPr .oz (V&,¥,Q)(¥x):
§u¥un e Coinit . EuvWoll € A. T develops L, 0¥ = ¢ , o,
(&/m)a(¥/m) =4 .

Proof. By (Cl) and (C3), using induction on #7 .

Corollary 6.8. ORCh(C,§) .>: (V&,¥,Q)(Ym): ¥ ¢
Coinit . T develops Q1. $n¥ =¢g .D. (&/7),(¥/7) =0 .

Proof. Use Remark 6.6,

Lemma 6.9. (A,K) £ OrdCovPr . >: (V&) (vn): iui»,? €
CoinitgFinite . SvizfeA.n £ &.5. Nc(8A4) 2 Nc & .

Proof. Assume the antecedent. Then since ‘r\ ZE& , we
have by (C2) for %<2 that (f/-»\) # @ s and in addition we
have by (Cl) for X,,S, €8.75, #%, that (3,/4),(Ty/4)
=@ . It follows that Nc(2/4) 2 Nc & , completing the proof.

Note 6.9. The proof of Lemma 6.9 shows that there is

a function from (i/w) onto & 3 the assumption §0§_y\§ ¢ Finite
enables us to avoid the axiom of choice in concluding from
this that NC(E/V\) 2 Nc @ , thus preserving the effective

character of the theory.

Theorem 6.9. (A,K) £ OrdCovPr .>: (V&%) (Vo): 0¥ ¢
CoinitnFinite . 2v¥W e A, &nW =@ , ¢ develops ¥ . . Nec(&/o)
2 Nc &, r
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Proof. By Lemma 6.9 and Theorem 6.7 wusing induction

on He .

Corollary 6.9(a). <A,K) £ OrdCovPr .o>: (YW)(VT)(VT):
{S5u¥ e Coinit . {8V Y < A. 7 develops Y. (¥H) =2 . =.
T ¥,

Proof. Assume the antecedent. Then by Theorem 2.26,
3n). N ¥ .Q ¢ Finite . 11 develops 2. Fix Q, and let
&= 4{XX . Then TuQl ¢ CoinitnFinite . vl ¢ A. T develops
Q. Hence by Theorem 6.7, 8,(2 = @ .>. Nc(&8/1) >Nc & ; equi-
valently, since & = $%%, we have T £0.>. Nc(f/v\)zNC § 3¢
= 1, whence ¥ g Q.. o, (T/y]) #@ , whence ($/7) =0 .o.
Tell. So Tel ;s but Qc¥. SoTeV¥ , geoe.d.

Corollary 6.9(b). ORCh(C,$) .>o: (Y&, ¥)(Ve)s ¥ ¢
CoinitnFinite . Ea¥ =@ . ¢ develops ¥ . >. Nc(&/o-) 2Nc & .

Proof. Use Remark 6.6.

Theorem 6.10. <(A,K> £ OrdCovPr .o: (Y3, ¥)(Ve): gv¥
¢ Coinit . € ¢ K . ® develops Y.o. (E/r) €K .

Proof. By (C%), using induction on #¢ .

Theorem 6.1l. ¢A,K) ¢ OrdCovPr .oz (V&,¥)(VYo): 2 vY
¢ Coinit . ¥ ¢ K . ¢ develops ¥ .. Nc(&/¢r)<Nc & .,

L

Proof. By (C4) and (C5), using induction on #Ho &
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Note 6.11. In the proof of Theorem 6.11 it is shown
that there is a one-to-one correspondence from (£/¢-) into %
unlike the situation with respect to Lemma 6.9, no cardinality
assumptions and no axiom of choice are used to conclude from

this that Nc(&/4 ) ¢ Nc € .

Theorem 6.12. <(A,K) £ OrdCovPr .o: (V§)(VP): $ <K,
e develops ¢.>. (30). L ¢ &, (L =Finite . p comdevelops (L .

Proof. Assumé ¢A\,K> & OrdCovPr. Use induction on #€°
Basis, 1If #p=1, (3%). p =<%». Fix T. Since
0 develops @, it follows that T ¢ & , whence ¥ € K ; note
that (i/@) =(5/%) =@ . Take Q0 = {¥. Then NeZ.Q

¢ Finite . P comdevelops (1.

n

]

Induction Step. If #p = kil , (Fe) (33 ). P
il Fix ¢, §' . Then ¢ develops 2 . #¥=k . So by
induction hypothesis, (30*). ()' ¢ T . (' eFinite . o
comdevelops ' . Fix [)' . Since P develops & , it follows
that (3¥). €< & . $' ¢ (S/C) . Fix . By Thecrem 6.11,
Nc($/a) € Ne §¥f=1. So (/M) = $£X'¢ , whence (f?b) =
($/¢') = @ , whence LQf‘J{fz/p) = (Qﬁ/%) U(f/@D =gvg = Q .
Take L =Q* v $%{. Then Nl e ¥. Q < Finite . Pcomdevelops

{L. This completes the proof.

Definition 6.13. We write H(C,%,J,A,K) for

Reg2NormCx(C,%) . RelSep J . (A ,K» £ OrdCovPr .,
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Theorem 6.13. H(C,5,J,A,K) .2z (M) . (S) . (D*) .
(See Definitions 2.33, 5.4, 5.12.)

Proof. Assume H(C,$,J,A,K). Then Reg2NormCx(C,§) ,
whence by Definition 5.15 we have RegCx(C,§) » (D'') . From
RegCx(C,%) we get (M) by Corollary 4.20. By Corollary 5.16(a)
we have NormRelSelfSep J., which by Definition 5.6 gives (S);
To get (D'), use Theorem 5.17 to deduce that 2NormCx(C, §s),

and apply Remark 5.14(b).

Corollary 6.13. H(C,s,J,A,K) .=. (C) . (D) .

(See Definition 5.8 or 5.12.) -

Proof. (M)>(C) , while RelSep J . (S) .>. (D) .

Definition 6.14. We wrote 'K (§,E}e,¢,e”,¢“)1 for
C,S,J

$u¥ e CoinitnFinite . 8,¥ ¢ (8v¥)sep . p comdevelops

¢ . ¢ comdevelops ¥ . P' comdevelops (£/¢) . o

comdevelops (QVe) "

Remark 6.14. (JN) . = .

(VE,Y)(VF,G‘,, p’»a")% K(E,¥, 0,0, P",q-') eD. p et =04 P -
(See Definition 5.1.)



We now initiate a sequence Qf.theorems which leads to
Theorem 6.18, stating that H(C,$,J,A,K) .>o. (JN) . This
is the fundamental result of this Part; from it follow our
significant results about the logistic systems Jf lambda-

conversion.

Theorem 6.15. H(C,$,J,A,K) .2: (V&,¥)(Yp,q p') o' ):
K(§9Y9€s‘ry qua‘") . 2VY < Ao, P-‘i— Fr = ¢+ eq .

Proof. Assume H(C,§,J,A,K) . K(E,Q}Q,W,P',o‘) . BVY
¢ N. By Theorem 6.13 we have Conditions (M), (S), (D').

Case.l. &=0 .v.¥ =¢g . Without loss of generality,
assume ¢ = @ . Then e =¥ and, since (&/¢) =@ , so does
p' =X . So p*o'=0'. G+p'= 0. By hypothesis, ¢
comdevelops ¥ . ¢! comdevelops (¥/p) . Since (¥p) = (&/H)
= ¥, it follows that ¢,¢' comdevelop ¥, whence by Defin-
ition 5.4, ®=¢' . So P tot =0 =0 =+ ?? .

Case 2. 2 #0 . ¥Y#3 . 8 ¥=¢g . Use strong induction
on m = Nc(¥/p) + Ne(&/e) . |

Basis. m = 0,1 . By Theorem 6.9, Nc & + Nc¥ £
Nc(&/a) + NC(EVP) =m € 1, whence T =¢ .v.¥ =@, con=-
tradicting the hypothesis. So the basis is vacuously satis-
fied.

Induction Step. m » 2 .

Subcase A. Nc & = Nc ¥ =1 ., Then #9 = #06= 1 , and
the conclusion follows by Condition (D*). (Subcase A,:.using
the hypothesis that & # @ # ¥ and the argument used in the

Basis, covers the case where m = 2 ‘)
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v Subcase B. Nc ¥ >1 .v. Nc¥ >1 . Without loss of
generality take Nc & >1 . Then (Ev])(ii*). 2 =% v {7]2
T £ D . M g 3* ., Fix N, 2*; note % ¢ A. By Condition
(M), we get that (39*). p* comdevelops &% , Fix p*; note
(M’/P*) ¢ A. Since p* develops 2. < 3Sep , (37-1*). (n/p*)
=fn*¢ . Fix n*; clearly y*e A, and by Condition (S), p
& p* +M* . By (M), (3@*,(}*'). ¢* comdevelops (I/P*) - P!
comdevelops (E*/4*) . Fix @*, p¥'. Since Nc(’:!’/e*) £
Nc(¥/p* +m¥) = Ne(¥/p) and Nc(2%/¢) ¢ Ne(&%/¢) + Ncln/o)
= Nc(2/6*) (using Theorem 6.8), the induction hypothesis
applies to ¥, v, P*’ T, e*', o*, whence 9* +oe*x = ¢+ p*' .

Again by (M), (37). T comdevelops/ (v]*/(r*) . Fix T ; note that

(J/ /,_// h
‘ % N\

/ P/ 2 \G"
/Y\* \/ \\.
*

\\ \o- e |
NPTy
G"\ \d/
Z ”
T /F

by (S), o' = p¥' + T . Since 0 = p* +\}* , have that ¢°
comdevelops (Y/P* +Y‘(*) . Since &% # @ . Nc(@*/v) » Nc T* .
P*' comdevelops (&%/¢) , it follows that #((3*') >0 . Since
& ¢(Ev¥)Sep , have (&/¢) ¢ (£/w)Sep . By Lemma 4.18(b),
Nc(8/e) » #(P*') + Nc(3/ 0+ Q*') , whence Nc(&/¢ + (3*',) <
Nc(2/¢°) . On the other hand, NC(Y/P* + q*) = Nc(¥/p) since
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p £ ?* + W¥ . So the induction hypothesis applies to fn*@ ;
(¥/p*), W, %, T, ¢', whence n* +¢' =0¢¥% + T. Thus

p+ o ée*+v]*+0" -_'-(:* +@* + T = T + p¥! + T = r+er,
g.e.d Case 2.

Case 3. ¢n¥ #@ . Let (L =23,¥. By (M), (Ig). 7
comdevelops L. Let % = (8/1) (8 -N/1) - v* = (¥/1) =
(Y-Q/m) . Since (T -Q)(¥-0Q) =g, it follows by
Theorem 6.8 that &*,¥* =@ . Furthermore, E*u¥* ¢

]

CoinitnFinite . E*vy* < N. &%, yx ¢ (E¥uv¥*)Sep . By (M),
(3?*,¢*). P* comdevelops $% , ¢* comdevelops ¥* . Fix p¥,

T*. Since by (S), 2 W+ ¥, =T+ C*, we see that
p P

p' comdevelops (E*/*) . @' comdevelops (%*/Q*) . By Case 2,
P*+Gu =‘Qa*+?v . Hence P.;.Ou é»'[r-{-(_)-)(- + g = T\’+G‘*+'o'
:_:O‘+Pl.

The reader should verify that Cases 1 - 3 are exhaust-

ive; this completes the proof.

Note 6.15. The proof of this theorem is essentially the
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same as the proof of Newman's Lemma 5.1 in Newman's Paper: the
intricate proof of Case 2 is attributed by Newman to J. H. C.

Whitehead.

Corollary 6.15(a). ORCh(C,5) . RelSep J .o.
NormRel1Sep J .

Corollary 6.15(k). ORCh(C,$) .>. NormCx(C,s) .

Proof. Assume ORCh(C,§). Then Reg2NormCx(C,§).
Hence RegCx(C,5), whence (3J). RelSep J . Fix J. Then by
Corollary 6.15(a), NormRelSep J. Hence NormCx(C,§) by
Theorem 5.3. . |

Corollary 6.15(¢c). ORCh(C,§) .>. ChR C .

Proof. Use Corollary 3.7.

Lemma 6.16(a). H(C,%,J,A,K) . D: (Vi{w)(ve»«,g',w')ﬁ

-

K@{%ng@,w) .NCY=:0.3.E>+¢'5 ¢+t

Procf. Assume H(C,8,J,A,K) . Nc¥ =0 . Then ¥ =¢ ,
whence o =¥ . (EY@) =@ , whence ¢ =% . ¢' =& . (&/¢) =
® . Since ¢

il

2vo¥, have that ¥ ¢ Finite.dSep ; and clearly
n

(,Q“ comdevelop € . So by (S) we have €+'¢' = (35 P“ =

qg t Q’ s Qe.€.d.

Lemma 6.16(b). H(C,$,J,A,K) . > (V§9Y7(Vf,¢99{,¢“):
€ K

. Ne¥ =1 .2, P+ o = c'+(ﬂ 5



s Tl

Proof. By induction on #G " (
Basis. #9 = 0 . Then p = ¥ . Hence % =@ , whence
Nc € = 0 and Lemma 6.16(a) appliés.

Induction Step. #? 5 0 .
Then (35)(3Q*). p= 3‘+9* . kK \{|

Fix %, (:*; note ¥ €K . Since

~
Ne ¥ =1, it follows that (EW). Qf/ ;&\ ,ﬁ; ,
¥ = {V{i - Fix w; then & = <Y1> . e \\,/ /I
N .
/
By (M) , (3m,0*%). T comdevelops :;)\ Ve
(E/v\) . % comdevelops (w\/’g) " \\7.,/"/

Fix T, ¢*. By (D'), ¥ +ao* =

W+t W. By (Ca), Nc(¥/%) ¢ 1 . Now we consider two cases.
Nc(¥/%) =0 . Then o¢* =% . o' =% . So
§= 3+e* 2 +T . Since p*

comdevelops (/%) and (&/%) = ¢ |

(§/Y\+'ﬁ) , it follows that p*

comdevelops (§/v\+'n) . So 59/'§\\\§\\§\§ 4;\
T+ ?* comdevelops (§/ﬁ) . Also, // ' // ;
(8/n) e(é/n)Sep . Hence by (S), _ / /
. /P* /(,'
T+ p* =p' . We have p+ ¢' = S

P+§g{=e:§+e*-_‘:y\+'ﬂ+9*é

Case

1>

Nt R =t g.e.d. Case A.
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Case B. Nc(¥Y/¥) = 1 . By (M). (Fp*1). p*! comdevelops
@/n+7) . Fix. p*'. .Since (§/ﬁ)

¢ (8/v)Sep , it follows by (S) that
T+p*' =p' ., Since . T +0aox* =

N+ T, it follows that (&/F+0%)

= (/% +7) , whence p*!' comdevelops
(/5 + o*) . So by the induction

hypothesis, p¥ + of = 0¥ + F*'

Now we have that ptoe =T+ E* Lol
= TH O 4 pxt 2 N4 T+ %t 2 M4 ot gle.d. Case . B.
Since Y eK, it follows that Nc(¥/F) ¢ Ne¥ =1 ,

whence Cases A, B are exhaustive. This completes the proof.

Theorem 6.16. H(C,5,J,A,K) . =:: (V&,¥)(Vp,0, p',0!)::
W§E¢¢nﬁ,w):§sK.v,EsK.::.P+w'éw+Pv

Proof. Without loss of generality, assume that % ¢ K .
Use induction on #o¢ .

Basis. #0 =0 . Then Nc¥ =0 and Lemma 6.16(a)
applies.

Induction Step. #® > 0 . Then (BY])(}g-*)° ¥ = Nt e,

Fix w, o*. By (M), (3%, 7). p* \
comdevelops (8/4) . T comdevelops //‘\\Q\\»

/ g
. i *, T,
(n/@) Fix p¥*, T By Lemma ;/ // \\:ES\\\>
6.16(b), + T = + pP*x ., B /
P Y\. P Y .\ (jt/ \\.
(M), (Ja*xr). g*! comdevelops RN / /
N T /
(Y/‘)'Ft) . Fix ¢*'. Now ¢, \ S /,
o \ LEZON /P
L+¢*' comdevelop (W/p) ; since \ >/
P a.u ~N \0 ’

(}D%) £ (ED@)Sep , it follows that

' = T+ ¢*' ., Now (E/ﬁ) ¢ K by (C5). Hence the induction
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hypothesis applies, whence (% + g¥! = g% + (J' . Now we have

ile

(\)+(r'¢5(;>+f+q‘*9£¥]+()*+q‘*' 7]+q~*+9v=0*+Pf,

Theorem 6.17. H(C,5,J,A,K) =2 (Y2 ) (Vo 05 pt s 0" )8
K(§,Y,(Jgtr, (:',cr') c FOY)KEAG Tk AP F Y.L o+ oo
= (}“+ev .

Proof. Assume H(C,$,J,A,K) and the antecedent. Let
§,\ =&, A . IE;\= Y. A §K =% - A ,YK =¥ - A. Then iKUYK
c K, and EAQ§K = YAnW{( =g . §AU§K =%, YA_UYK__,?Y
Since E/\U§K 3 Coinitnfiniten(sii/\‘u §K)Sep . p comdevelops
(8, v &) , it follows by Corollary 5.16(b) that (3p,.p,).

p. & er + Qg - Po comdevelops §A + Py comdevelops (§K/PA) "
Fix Prs Pk Similarly, fix ()‘;\ » Oy such_that‘ v = d','\ 0 -

¢, comdevelops 7}3;\ . Ty comdevelops (YK/GR) . By (M),
(3 pa s 011 pp' comdevelops
Y g
(§A/07\) . (r;\' comdevelops -7 \\o*,\\\\\
L2 . Fi ', ©'. B “n/ . o\
( A/Q,\) X eA T Y f’// }\ / \“\k \
Theorem 6.15, ea * GX' = / /o\\\ /é’ \\“
. R / A |
6}1 + ?}\Y % By, (M) 9 (3 el\ﬂ ! 9GJKY )° : 5/ AN o/\ "
28 S + 5 » P I
pp' ' comdevelops (B/ 0 + &) . & R %f\\;'/ N
| + v’ /
k' comdevelops (?E'K/(lx PA ) . ;-/\\ o /o
Since Il’k ¢ K, have (YK/Q;\) c . //K/

K , whence by Theorem 6.16,
Pat T T F Gt oeat - By (M), (3pt). p ' comdevelops
+ 4 ' i ! i
(By/pp + 0" * 0') . Fix pt. Since & e K, have, (£/p)

€K , whence by Theorem 6.16, (JK + 0 = \S‘;\' + G‘K' + (JK" .
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Lastly, since & ¢ (&v¥)Sep . ¢-develops (Bv¥) , it

follows by Theorem 4.14 that (/)¢ (£/0)Sep ; but certainly
also (%/¢) £Coinit,Finite , and we have that F?9 ?A°°_+ fo
comdevelop (8/¢~) . So by (S), 99 = PA“R tpg' . Now we

have that p+ @' 2 py +pp + 01 = o+ G0+ O+t 3

9 0 =
Qrea T TRt e

s

¢+ o', gee.d.

Theorem 6.18. H(C,§,J,A,K) .>. (JIN)
(See Definition 5.1.)

Proof. (See Remark 6.14.) Assume H(C,§,J,A,K) . &
K(@;Y,QQW,Q°9¢") . To prove P + 0 = P+ P" .

Case 1. &o¥ e A. Conclusion follows by Theorem 6.15,

Case 2. &8<sK .v., ¥ eK . Conclusion follows by
Theorem 6.16.

Case 3. (Bv¥)K#D .2 N#3 # ¥A\N. Conclusion
follows by Theorem 6.17.

Since Cases 1,2,3 exhaust all possibilities, this com-

pletes the proof.

Corollary 6.18(a). OUCh(C,§) . RelSep J ..
NormRelSep J .

Proof. Assume the antecedent. Then by Definition 6.6,
Reg2NormCx(C,§) . RelSep J . (3A,K). ¢A,K>eOrdCovPr . Fix
A, K. Then by Definition 6.13, H(C,§,J,A,K). Hence by
Theorem 6.18, (JN)} holds, whence NormRelSep J by Definition
>
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Corollary 6.18(b). OUCh(C,§) .>. NormCx(C,§)

Proof. Assume OUCh(C,§). Then by Definition 6.6,
Reg2NormCx(C, §), whence by Definition 5.15, RegCx(C,$8); but
by Corollary 6.18(a), (VJ): RelSep J .>. NormRelSep J . So
by Corollary 5.3(c), it follows that NormCx(C,§), g.e.d.

Corollary 6.18(c). OUCh(C,§) .=. ChR C .

Proof. Use Corollary 3.7.

Definition 6.19. We say that C is a choice complex

(and write MChoice C7) iff the following coddition holds:
(3f):. feFunct : Arg f = {8 |Z eFinite . § # @} :
(V&): @2 Arg f .>. (f2)e 3.

Note 6.19. We have ignored stratification in formu-

lating this definition. For use in a typewise restricted
set theory, replace '(f&)e®' by 'Val fcUSCV . (f&)ec &

See Rosser's Textbook.

Theorem 6.20. OUCh(C,$) . Choice C . >. LocFinDesc(C,§).

(See Definition 3.16.)

@Eg

Proof. Assume OUCh(C,$) . Choice C . Then
Reg2NormCx(C, §) . (IA,K). ¢A,K> €0OrdCovPr . Fix A, K.
Since RegCx(C,§), we have that (3J). RelSep J . Fix J.
Since Choice C, we have that (3f):. f & Funct : Arg f =
{8|% ¢ Finite . 2 A @S5 : (V&8): Bz Arg f .>. fE < &.
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Fix f. Let & = Coinit,Finite . ¢ develop & . To prove # ¢ <
™. Usé_induction on deg & (see Definition 4.19).

Basis. deg ¥ =1 . Then & £ Finite,8Sep , and Corol-
lary 4.18 applies. (This covers the case.when”‘§f= @ .)

Induction Step. For convenience of construction, as-

o)

(E.Q;yl:°°°91£ko)o § =»_D_U¥LU ¢ o U%E-ko . Q,Y ,okoe,-]{koxi §Sep o

Fix Q, ¥),..., ¥ .« Let \E=__Ylu...,uyko., Let @ =

sume #CP?OO . degd = kg + 1, where kg >1 . Then

(¥, +'T2,+ e ) . Define by induction 1) =0, 0 41 =
Q%) = (/5 + oo +T ) . Let T = [£0, + £(Q,/£0,) +
£(Qu/f0, + £(Q/f0,)) + ... 1. Then T develops Q_ ; since
Lo :.DmSep it follows that #T <& by Corollary 4.18. So

(Qm/rm) = @ , whence T, comdevelops Slm . Similarly, define

T, so that To comdevelops (fm/fm) . Let V¥ = (Wl +To + I
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Since OUCh(C,$§), we have Condition (N), whence (¥i): 1¢1i .

.. T; + T, =F; + Ty 5 from this it follows by induction

i

that V¥ develops (¥/71) .. Since also deg(¥/T;) = deg ¥ ¢

kg.s. the inductionﬂhypothesis”applies. Hence # W<w. Let,

s = min {n [ (¥m): m>n .o, Ty, = X&. Then (Ym): s<¢m .>.

(So/Tm) =98, | | |

o Case ic‘”(E/Yl ¥ wuw + Ys—l) ¢ A. By Corollary

6.9(a), we have that (VQ)(VS)(¥7): {¥5vll € Coinit . {%fvll

¢ N. qrdevelops QL. (5/m) =@ .>. ¢ . Hence (¥m):

s¢m .2, § 20 . Thus (Y. + LN ) develops fg‘;

since (g e D.Sep . #(Tg +f§s+i + ... )& @, whence #¢ <

oo, [As a corollary tb Case 1, it follows that & <A . degg

= kotl .2, #9P<oo. We use this result in Case 3 below,] \
Case 2. (8/%) + ... +3,_ ;) ¢ K. Then

Ne(E/%) + o0 +F 1) > Nc(B/S) + oo0 +F ) +€.) )

Nc(@/S) + .o. $y * fs+l) > oo § so0 eventually

(B/5] + o0 +§'S+p) =@ , whence #%P oo, |
Case 3. @/%) + .. +¥_ )nhFABF @/ + .00 +T,))

nK. Use proof by contradiction from the assumption that #¢

= o, First, we effectively define by induction an infinite
sequence Wg,, W), Wy, ... of descents satisfying the follow-

ing four conditions (in which we use the notation that W =

[e; + 05" + ... 1. where each Qih £ Z)s

(1) #Hu, = o .
(2) w, develops (/%] + «oo0 * ¥goy) -
n n _ n-1 n=1
(3) 17 + .o 40 0, =0 T+ ... +t0 ]
(4) gln + o 00 + 92 develOpS (§/El + o0 0 +fsgl)ﬁA°
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Rasis . (for the definition). n =0 . Take Wy =

£§5“+'§5+l +.0.) o (1), (2)  are obvious, whils (3) holds

since ¥ =X , and (4) holds since (¥3). X develops & .

Induction Step.(for the definition). n = m+li . By

the corollary to Caée 1 (in square brackets), we have (using
(C5)) that (3i). ;" Z A . Let i =min{i|o ™ £ A3 . By
induction hypotheses' (3), (4), we have that m(i. By Case 2
and the assumption that #4¢ = o, we see that (33). 3>1
;™ £ K . Hence by (C5), (33)(3q). 3>i .M A .02

{Tl,’/@l o+ LI + gj"’ Let

1)

.
i

min {31351 . @) qeh. 95" (n/0 ™. v0,m )Y,

\

- f {y“qc/\, @jm a(q/@lmhn.@jg)g .

=
fi

. m moy o (Fk)
1|z e@/t+ 48, v 0 M 40,M)) L (3K,

P,
il

X? = (X/Y]) 9

i

T er + f('xe//.fxa> o f(}xs/‘fxv ER f('xei/f/xv 1; + ...

(We suppress the superscript 'M' in the diagram below. }
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Since ‘K'Q,CoinitnFinite . X'eK , it follows that Nc X'
Ne(X'/£X') > Ne(X'/fx* + £(X'/£fX')) > ... , so that #TW <=,

whence T ¢Redn . Take

\

. m m m m
m+l"'@l +92 +uwu @ +Y\+’W+@J+l+93+2+oon

w

We now prove that w + T = Qim + oo * @jmv, First,

comdevelops ' , whence (\ + 1) comdevelops XV {\3. Sec-
ond, consider any % ¢X. Clearly by definition of X ,

(6. + ... + 0 ml) develops X.. Since also (3k). i¢k <

i

j-1 . " {/@lm+a,,+9kml) , we have (fixing k) that
(since X e K) Nc(ﬁ/@i touot0) l) ¢ 1 whence {@kmf =
(

m m my =
1/0; +,..+9k ™) . So (7/6,M+...40, 7, +6,") =4,

=@ . So (o6.,M+

m m

1)
X - Since similarly i@jmi = (“/91m+°..+9jfl) , it follows

m m
that (gi +ooo+@j_

oot l) comdevelops

I Qjm) comdevelops XLJ{NE.
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We have shown first that {n + ) comdevelops Xvu {n%s

M) comdevelops Avwind . So

and second that,,(@imh,.%@1

nt T = o9+ L.+ 0,m , by (N), which holds since OUCh{C,5}.

Hence by the definition of w4, each of (1) - (4) (for wg)

implies its corresponding torm for Wo4+;+ This completes

the inductive definition of %he sequence Wy s Wis Wop ees o

It follows that (@ll + @22‘+ - +9i‘l + ... ) develops

(;ﬁ/fl + vua +\gs=l)(\/\' Since deg@/%) +...+ T _ ) N ¢
deg® = k. + 1 (induction number of the proof), Case 1

0
applies, giving the desired contradiction (for Case 3), com-

pleting the induction step of the proof.

Definition 6.21. We say fhat, {C,$) has the jinitelw=

many development property (and write "FinDev(C,$)7) iff the
following condition is satisfied:

(Y&): $ & Coinit,Finite .>. {®}® develops &% & Finite .

Iheorem 6.22. Choice C . LocFinDesc(C,$).>. FinDeviC,§) .

Proof. Assume Choice C , LocFinDesc({C,§) . Use
reductio ad absurdﬁmg s0 assume also that @ £ Finite .
{9 ¢ develops 8§ & Finite . Fix £ such that £ < Funct @
Arg £ = {&|%cFinite . 8 # g§: (VYE): EecArg f .o, &= &,
Since & <Finite . {®| @ develops &f £ Finite , it follows
that {ini. le"E .,fii_+ % ‘3bdgvelop8 (§/?i}§ ﬁ Finite .
Let §ir_be,theﬂset of all such cells Y,; let My = fil .

..L
Similarly define 2, and let M2 = f& . Continuing in this



fashion, we see {by induction) that ({y; *+M, * ... ) develops

3 v

& . Himy ot ) = , contrary to the hypotheszis that
C

Corollary 6.22. OUCh{(C,$) . Choice C .>: {(¥&): &

3

¢ Finite .o¢ (3In)(VP): @ develops & .. #9 ¢ n ¢ é;\v’(a,,m‘!:

P, comdevelop g .o, {@,f} e Coterminal.

Proof. Assume OUCh(C,§) . Choice C . For & € Finite

(o]

i

let n = max {#%PI<Pdevelops $¢. This n is as desired.

Note 6.22. Corollary 6.22 1is an abstract form of

Church-Rosser's Lemma 1, principal lemma in their treatment.

{See Church's Monograph.)

Definition 6.23., We write ‘'WeakAxCh' for

fi: f ¢ Funct . (HN)[Arg f=14n|ln ¢NY . val f ¢
@3) .>: (Ag): g ¢ Funct ¢ Arg g = Arg f :
n's n e (Arg glylArg £f) .=. (gn) e{fn} .

This states that simultaneous choices can be made from the

tarms of an arbitrary countable enumeration of finite sets.

Remark 6.23. We have ignored stratification in form-
ulating this definition. For use in a typewise restricted
set theory, replace '(¥n): n ¢(Arg glnlArg £f) .2. (gn)

(fn)' by 'Val g € USCV : (¥n)s n e{Arg g)alAzg f) ..

L}

{
(gn) € (fn)" . See Rosser's Textboock.

9
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6.24{z). (¥C,s)[LocFinDesci{C,58} .o,

FinDeviC,8)] . D. WeakAxCh

Proof. Assume the antecedent. By logical manipulations
we then have (WC,$):. DerivCxiC,§) . (38).& £ CoinitsFinite .
§@ | @ develops 3§ € Finite : . (3&)(39). € £ CoinitpFinite .
@ develops 8 . #d = o . Define N by the condition that
{n| n < N} If N<o , the theorem follows by in-
duction. So let fe Funct . Arg f = Nn . Val f ¢ {Finite -
{#%) . To prove (3g). geFunct . Arg g = Nn . ¥Yn). {(gn)e

n) . Let V = {h\ h eFunct ¢ (An)s nelNn ¢ Arg h =

,h,,
=k

fnlmeNn . m<nt ¢ (¥m): meNn . m<n .>. hm ¢ fm§. [In
the notation and terminology of Part II Section 1, V =

fthlh e Expr ¢ (¥Vmjs m <Length h .>. hm e fﬂi}e] The

empty function @ ¢V . Let Z = f;h,x>‘ h eV .xe

fil + max{Arg h U{eli))} E@siﬁLength h), in the notation
and terminology of Ilcl] s for <Lh,x>e L define L1{h,x) =
h . &, T(h,x) = h Uikl + maxi{Arg h Uﬂ=l§),x>} E=h U %Py,
a la II.1]. Where 1T # 1y, define (I4) =@ ; define
{€/2) =@ : and where LY ﬂ?lq . f,#*] , define {ffq} =

16 llﬁ z'Tni . With Sffﬂ}}ﬂﬁifxw} we have DerivCx{C.$) .

This complex has a greatest vertax @ with finitelv-many cells

LS

{one for each element of £0 descending therefrom; the end-
point of each cell has finitely=-many cells {(one for each al-
ement of f1 ) descending *herefrom, etc. (And by the defin-
ition of derivate, every descent iz a development.) Let =

{€|1l% =g!. Then €& Coinit Finite . Also, (Yh): h eV .
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iJo
b

h# g .o. (}9}. e £ (From @)a{To h) . Since V £ Finite ,
it follows that Z()l P develops £§ £ Finite , whence

fo| @ develops B¢ € Bigite ., Hence (AV)(AVY)s We Coinitp
Finite . ¥ develops W . #¥ =@, Fix ¥,¥. Let {h} =
LY. Then (3p). p e (From B)n(To h) . Let w = p+ ¥,
use the notation Ww = YQ + EJ_ + ... . Then 1¥ =g . T’s'l £
£1 . TE £ £2, etc. Take g to be the function with

Arg g = Nn such that (¥n). gn = Tfn .

Note 6.24. The germ of the proof was communicated in

conversatiocn by Paul J. Cohen.

Theorem 6.24(b). WeakAxCh .>. (VC,8) [LocFinDesziC,$§) .,

> . FinDev(C,§) 1 .

Proof. Obviously, WeakAxCh .>: (¥C). Choice C .

25}

Definition 6.25. We define the set of

'S 1

which we write nfMax.‘E)ae:{:W as followss

=3mw| (3z). MeTo z . zeNormV § .
1.3

K
30. ) ’



Definition 6.26. We say that C is a unique normai

I A

vertex complex (and write rUniqueNgrmVxGx C') iff the follow-

ing conditon is satisfieds ‘
(¥w,t): fW,T} & Coinitial , W,T & CMaxDesc .D. o, T§

£t Coterminal .

ChR C .>. UnigueNermVxCx C .

Definition 6.27. We say that C 1is a random descent

]

5 Ny g
complex (and write "RanDesc C') iff

UniqueNormVxCx C

i

and the following condition

P.So
.
[3¢]
iy}
ﬁ.
i
li53
E'-’-t
b
(3]
Q.
oo

(Wv){(YP s v ePrenormVx . PeFromv 2. #9 < 00,

oy
v{ -
-

crem 6.28. ORCh(C,8§} . Choice C .D. RanDesc C .

et

roof. Assume ORCh{C,§) . Choice C . Then ChR C by

ry 6.15(s) , whence UniqueNormVxCx C . Let v ¢

S s < 2 &
PrepocrmVx . ¥ e From v . {(To prove #¥ <o,

it follows that (3f): f eFunct : Arg

[ 57
k¥

#0%: (VE): £ e Arg f .>. & = 8. Fix f. Since v s

PrenormVx , it follows that {3zj{dv). zeNormVx . T ¢

-y kY

B £ oo
\From v}a\To 2) & m

Fix z,T. Let W= T + ... +' 7,
= s *NA + eee ) o Use induction on m = #T7.
¥ N L Y]& J Use induction on HTT

Basis. m =0 . Then M=¥ , whence v = zeNorpVx ,

¥ =¥ . Then #¥=0 < .,

=
pee
2]
o
@
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~ Induction Step. m >l . Assume H¥ =0, Let §i+i =
(€M + ... +Y]i) ; note g, = ifﬁ . Let 01 =“f§i +-
£(%;/18;) + £(B;/£8; + £(&;/f%;)) + ... ; note Plz{flz :
Since LocPinDesc(C,S),; #ei< w , _whencev Ci comdevelops Ei .

= £0; + £(Q;/05) + ...

Let Q5 = (43/p;) . and take T;

Then #Z'i ¢ oo, whence T comdevelops Qi . By induction

hypothesis, #(T, +To * «.. ) < 00. Hence (3n)(Vp): p>n .

D.Tp-—-Bi. Fix n. Then (¥p): p>n .D. (']p+1/€p)=¢'
Since ORCh(C,§), it follows by Corollary 6.9(a) that (Yp):
DYEA ¢ e Y\p+l 3 §p . It follows by induction on (p-n) that

Mp+; *Np4p + -+ ) develops ¢, whence #¥ < ®,



LATE INSERTION

Explanati The condition
(JQ o). 97 comdevelops {f?ﬁ) , ¢! comdevelops éqff) .
T+oo =2M+p ,

{although a local condition) involves several defined concepts,
and is inconvenient for use in the verifications at the end of
Part II. For this reason we present in Theorem A belcw a con-
dition — easily seen to be equivalent to this condition —

in which most of the defined concepts are eliminated (and 1n
which the notion of a descent does not explicitly occur). The
additional fact expressed in Lemma A below is helpful, and

its explicit statement should have appeared earlier,

Lemma A. (Vfgq}(VPV,m“}s e“ develops nyﬁ} . ot
develo (v‘ §) . Y+t 2 N+ LD P’ comdevelops (f/q) .
¢' comdevelops (q/f) ;

Proof. Assume the antecedent. Then {(fﬁq)/P"} =

(&/m+p') = (I/T+¢1) =@, and similarly (tn/3)/67) = ? .

-5
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Theorem A, DerivCx(C,

'En

@39 , Q" )[ ! comdevelops ffq o

1% = lq s

(am’n)(galsooogzmsgls-o-9 (35—0900-9 Y,-..,Tﬂ;)
§O = ('f/q):(‘v‘i)[()éi<m.:.‘<i+lg‘ﬂ'i ) Tr:éﬂ = {T. /{ ]
]

¥y = (y/3): )s(¥i)[o¢i¢n.o. 0, PR R U G VTR
TZn = T6, |
VKW Xgs oo e Xpoldoo e e bfly)e K 20 L = LT,

= (/1) . )0 ¢iem oo Ky = K50 ] -

Q= A) o (Y)logica .. ) = (Q /6, 0] .
S Ky =L, -

The phrase ¢ K; $ ' is included since ° ﬁ ' is not one of

+the variables restricted to be cells.

Proof. Given P‘, ¢' . let m = #P“ . n = §Fof

%l"“’ va @l""’ @n such that p“ = Zl S +jzm .

Oy + ... Q and for relevant 1 take TTi == (f/rl+;§i +

+ %11 . Y\/ f+ @i + LRI + @ . Tné}ﬂ Si{lce {ng{yﬂ)} s
Coinit al Coterminal have 13 = lq s T{m m.T@m , and since

p* develops (f/q) . ¢' develops QQ/f) have for relevant 1
that Zyppe Moo My = (MaZipg) « 6, X« Ajyy =
g'xig@i+l} . Given also K, Xb,.-~, Xﬂa-ﬂos---afln it

(¥

follows since T +06' 2 N+ p' that K = K/F+o) =



~95-

Conversely, given m, fi; Zyseees Zm,‘@lgﬁ.., @n,.ébg...g

;jlémv YOD...SYQ take Pv L= {l_ + * % » + z!n 3 0‘2 = @_}__ + v v @ T!' @n.
Then clearly G“ develops (f?h) . ¢ develops (0/g) ; since
LT::lJ]. sz ='T@n have fe",wffs CoinitialnCoterminal ;

and given any keI either _LK # 13 . (l{/f“" pt) =@ =
(fm+ o) or Lg = LS. (/S+p1) = Xy = Q= G/n+ e,

n

i

Hence by Lemma A, P”, ** are as desired.



