
R. A.I.R.O. Informatique thkorique/Theoretical Informatics
(vol. 16, no 4, 1982, p. 331 B 347)

SOME PROPERTIES OF DECOMPOSITION ORDERING,
A SIMPLIFICATION ORDERING TO PROVE TERMINATION

OF REWRITING SYSTEMS (*)

by Pierre LE~CANNE (I)

Communicated by M. S I N T ~ F F

Abstract. - Recursive path ordering is an ordering on terms inttodueed by Dershowitz to prove
the termination of rewriting systems. A new ordering, called decomposition ordming, is dejined. It
is proved to be equivalent to the path ordering and, as corollary, a simple proof of the well-
foundedness of recursive path ordering is given.

Rkumk. - L'ordre ricursif sur les chemins a ktk introduit par Dershowitz pour prouver la
terminaison des syst2mes de rbicriture. On propose ici un nouvel ordre appeU ordre de &composition
et Pon montre qu'il est iquivaknt d Pordre ricursifsur les chemins et comme corollaire on donne m e
preuve simple de la bonne fondation de ce dernier.

1. INTRODUCTION

This paper introduces a new definition of recursive path ordering when a
total ordering is given on the set of symbols. Decomposition ordering is based
on a preliminary and comprehensive analysis of terms. This preparation called
decomposition arranges relevant information in such an way that ordering
looks like a lexicographical ordering. The recursive path ordering or the
equivalent decomposition ordering is a good tool to prove the termination of
rewriting systems [6], and therefore to prove inductive properties by the Knuth
and Bendix method [4,5,8,13]. %

The second section of this paper is devoted to the definition of the recursive
path ordering on terms on a partially ordered set of symbols, we explain why
it is possible to focus our study only on totally ordered set of symbols if we
want to prove the well-foundedness. Thus, we define properties related to such
a set of symbols, namely left-weighted terms and recursive lexicographic

(*) Received September 1981.
(I) Centre de Recherche en Informatique de Nancy and Laboratory for Computer Science,

Massachusetts Institute of Technology. Present address: Centre de Recherche en Informatique de
Nancy Campus Scientifique, B.P. 239. 54506 Vandoeuvre-lb-Nancy, France.

R.A.I.R.O. Informatique th6orique/TheoreticaI Informatics, 0399-0540/1982/331/$ 5.00
Q AFCET-Bordas-Dunod

332 P. LESCANNE

ordering. In the third section, we give the proofs of 'the niain theorems in a
particular case where F is a set of symbols.of monadic funetions. This is an
introduction to the fourth section where the decomposition~'dering is defined
and the main theorems are proved, namely equivalence of both ordering and
their well-foundedness. In the conclusion, we sketch a comparative study of
two algorithms which can be deduced from each definition.

2. THE RECURSIVE PATH ORDERING

2.1. Multiset ordering

A multiset on 9 is a mapping S : 9 + N. The set of multisets on 9 is
denoted by A (9) . For example, (1, 3, 3, 5, 5, 5) = S is a multiset on N, where
S(l) = 1, S (3)=2, S (5)=3 and S (x)=O for all other X E N. Let < 9 be an
ordering on 9 , and < be the canonical ordering on N.

DEFINITION 1: The multiset ordering deduced from < 9 is defined as follow:

S < if and only if

s # T a n d (- V x ~ g) (T (x) < ~ S (x) * [(3 ~ € 9) ~ < ~ y a n d (S ~ < ~ T ~)]) ,

i. e., if an element x occurs more frequently in T, there exists another element
y greater than x that occurs more frequently in S.

Example 1: If 9={1, 2, 3, ...} u {a, b, c, ...} and 1 < 2 < 3 < ... and
a < b < c < ... we have:

LEMMA 1 [la]: If < contains < in the relation sense, then < < contains
< <. In other words:

LEMMA 2: If < is total, then < < is the left to right lexicographic ordering on
the decreasing sorted list of the elements. 4

2.2. Recursive path ordering

The set T(F) of terms on F terms without arity restrictions will be
*

considered here. Let us consider the congruence s= t recursively defined as
follows:

R.A.I.R.O. Informatique thkorique/Theoretical Informatics

SOME PROPERTIES OF DECOMPOSITION ORDERING 333

*
DEFINITION 2: f (sl, ..., sm) = g (ti, ..., t,,,) iff f =g and there exists a

*
permutation o E Sn such that q = t, (i).

Let < be an ordering on the set F of the symbols.

DEFINITION 3: The recursive path ordering [I] over T(F) is recursively defined
as follows:

*
s=f (~1, .. ., s,,,) <g(tl, . . ., t,,)=t iff

*
or (3.2) f < g and for all si, si < t,

* *
or (3.3) if 5 g and for some th s < t, or s =t,,

this definition can be "less deterministic", changing (3.3) to:
* *

(3.3') for some ti, s < tj or s = ti.
Example 2: If F is the set D of example 1, the following figure gives two

terms which are compared:

This inequality can be proved as follows:
* * *

t < s @(by rule 3.1) S={b(a , a), 1(c)) < <(2(a, c), b(a, a))=T, because+
the top operators are the same;
iff (by Definition 1 giving the multiset ordering, here D is T(F))

P Y E T (~ ~ I ~ (c) ; Y and S01)<~T(v);
i;ff (choosing y = 2 (a, c) and because S (2 (a, c)) = 0 and T(2 (a, c)) = 1) :

$(by rule 3.2, because 1 < 2) c 2 2(a, c);
iff (by rule 3.3' with j=2) c=c;
iff true.

334 P. LESCANNE

2.3. Total ordering on F is enough for proving well-foundedness

In this section we give some lemmas showing that it is possible to suppose
the ordering on F to be total when we want only to prove the well-foundedness.

LEMMA 3: Let < be an ordering containing <, in the relation sense: i. e., * * * *
f <g-f <g, then <contains<.Znotherwords,s<t-s<t.

*
Proo$ Suppose s < t. The reasoning is by induction on the structure of

*
terms. If the first or second condition is applied to prove s < t, then trivially

* * *
s < t. Otherwise, the condition (3.3') is used and (s < ti or s = ti) implies

* * *
(s< t jo r s= t j) thuss<t. W

* *
LEMMA 4: If < contains < and if < is well-founded, then < is well-founded.

* * * * *
Prooj By Lemma 3, if tl > t2 > . . . > t,, > . . . is an infinite <-decreasing

*
sequence on T(F), it is an infinite <-decreasing sequence. W

*
By Lemma 3, < is well-founded if < can be embedded in an ordering <

*
on F such that < on T(F) is well-founded. It will be proved constructively,
that a necessary condition is that < is total and well-founded (i. e., well-

*
ordered). In other words, a result of this paper can be: < is well-founded if
< can be embedded in a well-ordering.

LEMMA 5: Every well-founded ordering can be embedded in a well-ordering.

Proo$ The proof follows from Zorn's Lemma.
*

The Lemma 5 allows us to translate, the previous statement into: < is
well-founded if < is well-founded (2). Henceforth, < will be a well-orderg,
therefore a total ordering.

2.4. Left-weighted term

The following result is easily provable.

(') It will be noted that Zermelo's Theorem is a particular case of Lemma 5 when the well-
founded relation is the empty relation. Therefore, Lemma5 is equivalent to the axiom of choice.
In most cases, F is finite, so < is well-founded and can be embedded'constructively in a well-
ordering, by topological sort.

R.A.I.R.O. Informatique thtorique/Theoretical Informatics

SOME PROPERTIES OF DECOMPOSITION ORDERING 335

LEMMA 6: If F is totally ordered, if s and t are given, one and only one of the
following assertions is always true:

DEFINITION 4: A term f (sl, . . . , s,) is called recursively path left-weighted or
* *

more simply <-left-weighted i f f for all i, si is <-left-weighted and for all i and
* * * *

j, i < j implies sd S s, (where s $ t means s < t or s = t).
* *

LEMMA 7: (i) Two < -left-weighted terms are = congruent if and only i f they
are equal.

*
(ii) In each class there exists a unique <-left-weighted term.

*
(iii) Because < is a total ordering, the restriction of the ordering < to the

*
<-left-weighted terms is a total ordering.

* *
The <-left-weighted terms are the canonical forms of =-classes.

*
Consequently, to compare two terms, it is only needed to compare their <-
left-weighted terms canonically associated.

2.5. Recursive lexicographic ordering

We give a simpler ordering which is based on the lexicographic ordering and
*

which coincides with the recursive path ordering on the <-left-weighted terms.

DEFINITION 5: The recursive lexicographic ordering is given as follows:

a
o r f < g a n d s r < t ,

a

o r f > g a n d s < t l o r s = t l ,
a a

where -2 ,,, is the lexicographic ordering deduced from < .
1

LEMMA 8: If < is total on F, the recursive lexicographic ordering and the
*

recursive path ordering coincide on the <-left-weighted terms, therefore the
* a
< -left-weighted terms are also the < -left-weighted terms.

vol. 16, no 4, 1982

Boo$ By induction on the structure of terms. The case f=g comes from
a *

Lemma 2. For f < g, we have sl < t if and only if by induction si < t; but for
* * a

all i, si 5 s l , because the terms sf are <-left-weighted, so s1 < t is equivalent

to sf 2 t, for all i. Since F is totally ordered, - ~ f 6 g means f > g and the
a *

result follows, by induction, from the equivalence between s S t l and s $ t i
*

and so there exists a j (j= 1) with s t,. H

3. THE RECURSIVE PATH ORDERING AND THE DECOMPOSITION ORDERING ON
MONADIC TERMS

F is a well-founded set and F* is the set of words on F which can be seen
as terms on a set F of symbols of monadic functions. A decomposition
ordering can be defined on F*. It introduces the decomposition ordering on
terms.

DEFINITION 6: The recursive path ordering on words M61 is niven by:

*
p < v iff

p = E and v # E (where E is the empty word),
or p = a u and v=bfl and,

*
a=b and u < p,

*
or a c b and u < v,

*
o r ~ a 5 b a n d p < f l o r p = f l .
This definition is valid even if F is partially ordered, but the recursive path

ordering on words is total if F is totally ordered; that will be supposed in the
b

sequel of this paper. Supposing a < b < c, we have (3):

abbb abacaaa f abacab f bbcab.

In the case of words or linear terms it would be of no interest to distinguish
between lexicographic and recursive path ordering.

(.), For example, ubbb abucab if bbb 2 bacab i. e., if bb 2 a d i. e., if bb 3 cab i. e.,

if b 6 cab i. e., if 6 4 cab.

R.A.I.R.O. Informatique theorique/Theoretical Informatics

SOME PROPERTIES OF DECOMPOSITION ORDERING 337

DEFINITION 7: [a; a'; a'l E F x F* x F* is called a decomposition of a E F+ if
u=dtaa ' ,b > a*b&a(i.e. aisamaximalelementofu)andb~a"~i b 2 a.

If < is total we will say "the" decomposition of a. Then a is the first
occurrence of the greatest symbol in a.

6
DEPINITION 8: The decomposition ordering c is defined by:

a=& and p # E,

or a # E and the decomposition of u (resp. B) is [a; a'; a'l (resp. [b; B'; fi"l)
and,

a < b,
6

or a=b and a' c p,
6

or a=b and a'=v and d'< $.

The decompositions of the terms of the above example are respectively
[b; bb; a], [c; aaa; aba], [c; ab, aba], [c; ab, bb] and the sorting of these words
is easy; it is the same one as above.

6
THEOREM 1: < is a well-founded ordering, if < is well-founded on F.

Prooj Let us define a > bas: a > p iff max(a) > max(f3) or
max (a) = max (p) =a and occ (a, a) > occ (a, p), where occ (x, a) is the number
of occurrences of x in a.

CLAIM 1: > is well-founded on F* if > is well-founded on F, therefore a
noetherian induction on > is possible. b

CLAIM 2: If [a, a', a"] is the decomposition of a then a > d and a > a".
6

The induction hypothesis ZH (p) is: "There exists no <-decreasing sequence
starting at b." Suppose now that:

(A) (V B < a) ZH (PI;
6 8

(B) i IH (a) i. e. , there exists a <-decreasing sequence ole > a1

6 6 6
> . . . > a,, >, .. ., where a=%.

vol. 16, no 4, 1982

Three cases have to be considered:
1. There exists Q such that rnax (ao) # max (af), then max (ao) > max (af),

8
then > ai and af is the beginning of a <-decreasing sequence which
contradicts (A).

2. For all n, max(a,,l =max(a) = a and there exists an infinite sequence . ., . .
8 8 8 8 8

il, . . ., ij, . . . , such that a;, > a;, > . . . > g', > a;,, , > . . . where il=O and
[a, a;,, or;;] is the decomposition of ail. ~ e c a u k a;, ;-a, this contradicts (A).

3. For all n, max(a,,) =max (a) = a and there exists k such that
8

i 2 k 3 a; = &, then there exists an infinite < -decreasing sequence
8 8 8

ui' > a;+ > a;(+z > . . . and because a; does not contain any occurrence of
a then a;< a, this also contradicts (A). .

8 8
LEMMA 9 . (~onotonic i t~ Lemma): If $ < y then a fl< a y.

Prooj Let p= a $ with decomposition [m; p'; p'g and v=a y with
decomposition [n; v'; v"]. The decomposition of p is related to the one of $ and
two cases are possible:

(1) a < b, where the decomposition of $ by [b; B'; $1, then m = b, p' = $'
and p" = a $;

(2) a 5 b then m=a, p f=$ and pH=&.
The same properties hold between v and y, where the decomposition of y is

[c; Y', ~ ' 7 .
By hypothesis b S c, then three cases have to be considered.

8
(1) a < b $ c if b=c and $'= y' then $ < y" (by hypothesis), therefore

8 8
m=n and pr=v' and p" < v" (by induction); if b < c or b=c and $' < y', it
is straightforward. b

8 8
(3) b $ c $ a then p < v is equivalent to $ < y. .

8
LEMMA 10 (Subterm Lemma): $ < a $.

Prooj This proof is similar to that of the Monotonicity Lemma and will be
omitted. .

THEOREM 2: Decomposition ordering and recursive path ordering me equivalent
on monadic terms.

R.A.I.R.O. Informatique thkoriqueITheoretical Informatics

SOME PROPERTIES OF DECOMPOSITION ORDERING 339

*
Proof.- Let be p < v with decomposition as in the Monotonicity Lemma If

* 8
p = ~ then v # E andp < visequivalenttop < v . If p = d p and v=cy, let us
suppose by induction that if 5 is a word extracted from p and q a word

* 8
extracted from v then 5 < q is equivalent to 5 < q and on the other

* 8 * 8
hand < v is equivalent to p < v and p < y is equivalent to p < y. Three cases
have to be considered.

(1) d =e. It is straightforward from the Monotonicity Lemma
* * *

(2) d < e. Then p < v is equivalent (by Definition 6.2) to p < v and p < v
8

is equivalent (by the induction hypothesis) to < v. Let the decomposition of
p = [b; B'; B'q:

8 8
- if b 5 d then m=d and m < e $ n thus j3 < v is equivalent to p < v;
- if d < b then m=b and p'=V and p" '=dr;

8 *
if b = n and f3' = vf and fl" < v" which is < v", by induction, we have

* 8
E # v"=e y" and, since d < e, p"< v" i. e., p" < v" by induction hypothesis,

8 6
therefore p < v is equivalent to p < v;

6
if b = m < n or m = n and pf = f3' < vf the result is obvious.

* *
(3) e < d. Then p < v is equivalent, by Definition 6.3, to p < y, which is

8
equivalent, by the induction hypothesis, to p < y, which is equivalent, by the

8
Subterm Lemma and by transitivity, to p < v. W

b

4 THE DECOMPOSFIION ORDERING ON POLYADIC TERMS AND THE MAIN
THEOREMS

In this section, we give a definition of the recursive path ordering, on left-
weighted terms similar to the decomposition ordering on the words. Here, the
decomposition of a left-weighted term s is the unique triple [f,; s'; s"(U)]
where f, is the first occurrence of the maximal operator in s on its most left
branch, sf = (s;, . . . , s6) is a sequence of terms and s" (0) is a term with a
unique constant subterm denoted by the symbol 0; the set of such terms will
be written by T(F; 0). s = s" (L (sj, . . . , sk)) where s" (t) is the terms given by

vol. 16, no 4, 1982

340 P. LESCANNE

substituting t in place of 0. The following term:

has the decomposition [b; (b, a) ; a (0 , b (a))], described by the following
figure.

This decomposition looks like the decomposition of a word, the one difference
is that the second component is replaced by a sequence. It will be supposed
that the term q is less than any other term. Then it must be noted that

*
s" (0) is not c -left-weighted. Except the first immediate subterm, the term

*
is <-left-weighted and so on recursively for each first subterm of this term.

Such terms will be called almost :-left-weighted.

DEPINITION 9: A term s of T(F; 0) is almost < -1ef-weighted iff s= or
~ = f (sI, . . ., s ~) : b

*
s is c-left-weighted for all i 2 2,

*
and s is almost < -1eft-weighted,

*
and for all i, j, I < i c j I m implies si S tl.

Note that a term is almost ;-leftweighted if it is 2-left-weighted: the
definition of the lexicographic ordering can be easily extended to the almost

:-left-weighted terms on T(F; 0) . The decomposition ordering will be given

for almost 2-left-weighted terms of T(F, 0) too.

R.A.I.R.O. Informatique thtorique/TheoreticaI Informatics

SOME PROPERTIES OF DECOMPOSITION ORDERING 341

*
DEFINITION 10: The decomposition ordering on almost- < -left-weighted terms

is given by:

S
s < t iff

s=O and.t# 0,
orfs <fh

6
orf,=.L and (si, ..., s ;) <~,,(t;, ..., t;),

6
orfJ=fi and (s i , ..., s;)=(t; , ..., t i) and S " (0) < tU(O).

6
THEOREM 3: Decomposition ordering < is a well-founded ordering on T(F; O) ,

if < is a well-ordering on F.

Prooj As for Theorem 1, where occ(f, s) counts the number of occurrence
off on the leftmost branch of s.

Before we prove the decomposition ordering is actually the recursive path
ordering, we will prove some lemmas showing that the decomposition ordering
works well on the structure of terms.

8
LEMMA 11 (Monotonicity Lemma): If (s l , . . ., s,) <l,(tl, . . ., t,,) then

6
f (~ 1 , . . ., sm) < f (ti , - - - 9 tn).

Prooj Similar to that of Lemma 9. Let us note u=sl and v= ti, whose
decompositions are [f& u'; u" (O)] and [f& v'; v" (U)]. As in the case of words
the decompositions of s= f (s,, . . . , s,) and u are related:
- iff <f, thenf,=f, sr=u' and s"(O)=f (u'(O), s2, ..., s,,);
- iffU 5 f thenf,=f, s'=(sl, ..., s,,) and s U (O) = 0 .

Here four cases have to be considered:
(1) u=v then

6
(~ 2 , sm) <lex (t~ , ..-, tn)

and
6

(u r ' (0) , S2, ..., sm) < (v"(O) , t2, tn)

and by induction

vol. 16, no 4, 1982

342 P. LESCANNE

8
On the other hand f, =f, =f, =f, and u' =sf = tf = v', and therefore s < t.

8 8
(2) u < v and f <f, 4 f, if f,=f, and uf=v' then ~ " (0) < ~ " (0) thus

8
f, =J, s'= t' and f (u" (0) , sz, . . . , s,,,) < f (v" (O), tz, . . . , t,) (by induction)

8 8
and s < t; iff, < f, or f,= fv and u' < E,vf it is obvious.

8 6
(3) u < v and& 6 f < f, then f=f, <f,=fu and s < t.

8 8
(4) u < v and f u 4 f v $ f then f, = f = f, and s < le, t is equivalent

X

LEMMA 12 (Subterm Lemma):
0

- (Weak form)sl < f (sly . . ., sd;
8

- (Strong form) for all i, 0 $ i 4 m st < f (si, - . ., SI, . . ., 3,).
Prooj (Weak form) Easy by induction. (Strong form) Consequence of the

a
Subterm Lemma for < and Theorem 4 (it will not be used to prove
Theorem 4). .

THEOREM 4: Decomposition ordering and recursive lexicographic ordering
coincide on T(F; 0) .

a 8
Prooj If s=O, obviously s < t is equivalent to s c t. If

s = f (sly . . . , s,) = f (s) and t =g (ti, . . . , t,) = f (t), then as in the Monotonicity
a

Lemma, let u = sl and v = tl. By induction, assume s < t is equivalent to
8 a 8 a 8

s < ,,, t, u < t is equivalent to u < t and s < v is equivalent to s < v. Three
cases have to be considered.

(1) f=g. Straightforward from the Monotonicity Lemma.
a a b

(2) f < g. Then, by Definition 5, s < t is equivalent to u < t and by
8

induction b ; t is equivalent to u < t;
6 8

- i f f ,S f thenf,=fand f < g S f , thenu<tisequivalent t o s < t ;
- if f<f , thenf,=f, and s'=uf and s"(O)=f(uW(O), SZ, ..., s,);

8 a
if f, =f, and u'= t' and u" (0) < t" (0) then , u" (0) < t" (O), by

a
induction, therefore, by Definition 5, s" (0) < t" (0) then, by induction,

8 6
s" (0) < t"(O) .therefore s < t. The converse comes from the weak form of
the Subterm Lemma;

R.A.I.R.O. Informatique thborique/Theoretical Informatics

SOME PROPERTIES OF DECOMPOSITION ORDERING 343

6
iff, < f, or f, =f, and u' <,,, t', the result is obvious.

a a

(3) g < 1: Then s < t is equivalent to s 4 v which is equivalent, by induction,
8 6

to s 4 v, itself equivalent to s < t by the weak form of the Subterm Lemma
and transitivity.

a 6
The proof of the induction hypothesis for <I,, and <I,, presents no

difficulty and will be omitted. W

THEOREM 5: If < is well-founded on F the recursive path ordering is well-
founded on T(F).

8 a * a
Proo$ From Lemma 8 < is < on <-left-weighted terms, i. e., <-left-

* a *
weighted terms. Therefore, by Theorem 4, < is < on <-left-weighted terms,

*
but by Lemmas 6 and 7 and Theorem 3, this means < is well-founded on
T(F).

It is interesting to compare the simple arguments used in this proof with
those used by Dershowitz [I, 21 which are inspired from Nash-William's proof
of Kruskal's theorem [9, 141.

5. CONCLUSION

Decomposition ordering allows us to compare two terms by efficient
algorithms. In this way, it would be interesting to look at the examples of
Section 3 again. The words we have to compare are abbb, abacaaa, abacab,
bbcab. The decompositions [b; bb; a] and [c; aaa; aba] allow us to answer which
of abbb and abacaa is the greater word in one comparison. To compare abacab
and bbcab, it is necessary to refine this decomposition in what we call
generalized decomposition by replacing each word in the decomposition by itsc
generalized decomposition. The generalized decomposition of a word will be
more easily represented by a tournament i. e., a labeled binary tree where the
labels are ordered. The tournament associated with the word a where a has
the decomposition [a; a'; a'7, has a root labeled by the maximal letter a, its left
subtree is the generalized decomposition of the part a' and its right subtree is
the generalized decomposition of the part a". In [3], Franwn, Viennot and
Vuillemin give a way to associate a binary tournament to a permutation
represented by a word. Here, the method is quite similar. But it will be noted
that the ordering between the labels is as follows: the label of each node is
greater than or equal to that of its left son, the label of each node is strictly

vol. 16, no 4, 1982

greater than that of its right son. So the generalized decompositions are:

generalized decomposition of abbb:

generalized decomposition of abacaaa:

generalized decomposition of abacab:

generalized decomposition of bbcab:

R.A.I.R.O. Informatique th~orique/TheoreticaI Informatics

SOME PROPERTIES OF DECOMF'OSITION ORDERING 345

To compare two words it is jufficient to traverse the two trees in parallel
in prefix order until we find the first difference. The number of comparisons
of letters will be less than 2 min x (length (a), length (P)) + 1, and often much
smaller, as given by the following array:

abbb 9
abacaaa 1 15
abacab 1 2 13
bbcab 1 2 8 11

abbb abacaaa abacab bbcab

L
The following array gives the number of comparisons of letters to perform

the comparison of the same words using the recursive path ordering. This
number is greater than min (len~th&u$, length (PI) + 1.

I ' ,#.,\~!l

-
abbb 5

abacaa 6 7
abacab 6 7 7
abbb 5 8 8 6

abbb abacaaa abacab bbcab

.ecImm

Some other results on these two algoktb&i Ean be found in [lo]. [I 11 suggests
an implementation for polyadic terms based on the same ideas. . - , b

(rH another hand, Fernand Peinig proposed a generalization of
decomposition ordering to terms with variables on a partially ordered set of
functional symbols; that gives an ordering more general than the recursive \ path ordering [17, 191.

A first version of the decomposition ordering took shape during
conversations with Jean-Luc Remy and Fernand Reinig [l2]. Then Nachum
Dershowitz suggested a good improvement which gave a nicer definition. I \ hank t h I am grateful also to Jean-Pierre Jouannaud, Marc Shapiro and
Jeannette Wing for their help at several steps of this work.

vol. 16, no 4, 1982 '

346 P. LESCANNE

REFERENCES

1. N. D ~ ~ s ~ o w r r z , Ordering for Term Rewriting Systems, Proc. 20th Symposium on
Foundations o f Computer Science, 1979, pp. 123-131, also in Theoritical Computer
Science, Vol. 17, 1982, pp. 279-301.

2 . N. DERSHOWITZ, A note on Simplifiatwn Orderings, Inform. Proc. Ltrs., Vol. 9,
1979, pp. 212-215.

3. J. FRANCON, G. VIENNOT and J. VUILLEMIN, Description and Analysis of an Efficient
Priority Queues Representation, Roc. 19th Symposium o f Foundations of
Computer Science, 1978, pp. 1-7.

4. G. Hum, A Complete Proof of Correctness of the Knuth-Bendix Completion
Algorithm, Rapport INRIA 25, 1980.

5. G. HUET and J. HULLOT, Proof by Induction in Equational Theories with
Constructors, Proc. 21th Symposium on Foundations o f Computer Science, 1980.

6 . G. HUET and D. C. @PEN, Equations and Rewrite Rules: a Survey, in Formal
Languages perspectives and Open Problems, R. BOOK, Ed., Academic Press, 1980.

7 . D. E. KNUTH, The Art of Computer Programming. Vol. 1: Fundamental Algorithms,
Addison Wesley, Reading, Mass., 1968.

8. D. E. KNUTH and P. BEND% Simple Word Problems in Universal Algebra, in
Computational Problems in Abstract Algebra, J. LEECH, Ed., Pergamon Press, 1970,
pp. 263-297.

9. J. B. KRUSKAL, Well-Quasi-Orking, the Tree Theorem, and Vazsonyi's Conjecture,
Trans. Amer. Math. Soc., Vol. 95, 1960, pp. 210-225.

10. P. LESCANNE, TWO Implementations of the Recursive Path Ordering on Monadic
Terms, 19th Annual Allerton Conf. on Communication, Control, m d Computing,
Allerton House, Monticello, Illinois, 1981.

11. P. LEANNE, Decomposition Ordering as a Tool to prove the Termination of
Rewriting Systems, 7th IJCAI, Vancouver, Canada, 1981, pp. 548-550.

12. P. LESCANNE and F. REINIG, A Well-Founded Recursively Defined Ordering on First
Order Terms, Centre de Recherche en Informatique de Nancy, France,
CRIN 80-R-005.

13. D. L. MUSSER, On Proving Inductive Properties of Abstract Data Types, Proc. Jth
ACM Symposium on Principles o f Programming Languages, 1980. 1

14. C. St. J. A. NASH-WILLIAM, On Well-Quasi-Ordering on Finite Trees, Roc.
Cambridge Philos. Soc., Vol. 60, 1964, pp. 833-835.

15. D. F'LAISTED, Well-Founded Orderings for Proving Terminatwn of Systems of
Rewrite Rules, Dept o f Computer Science Report78-932, U . o f Illinois at
Urbana-Champaign, July 1978.

16. D. P L A I ~ D , .A Recursively Defined Ordering for Proving Termination of Term
Rewriting Systems, Dept o f Computer Science Report 78-943, U. o f Illinois at
Urbana-Champaign, Sept. 1978.

17. F. REIMG, Les ordres de dkcomposition: un outil incrhental pow prouver la
terminaison finie de sys thes de rkhiture de termes, T h h , Universitk de
Nancy, 1981.

R.A.I.R.O. Informatique thtorique/Theoretid Informatics

SOME PROPERTIES OF DECOMPOSITION ORDERING 347

18. J.-P. JOUANNAUD and P. LEANNE, On Multiset Orderings, in Inform. Proc. Ltrs.,
Vol. 15, 1982, pp. 57-63.

19. J.-P. JOUANNAUD, P. LEANNE and F. REINIG, Recursive Decomposition Ordering,
IFIP Cod. on Formal Description of Programming Concepts, Garmisch-
Partenkirchen, Germany, 1982.

vol. 16, no 4, 1982

