
Algebraic and Relational Approach to Abstract

Data Types and their Representations

Pierre Lescanne

1979

Foreword for the translation

This document is the translation of parts of my thèse d’État (currently the first
two chapters) which has been defended at the Institut National Polytechnique
de Lorraine in Nancy on the 11th September 1979. Except in the thesis docu-
ment, those chapters have never been published and are interesting because they
prefigure the theory of Evolving Algebra (later called Abstract State Machines
or ASM). Despite it could be inconvenient for an English reader, I decided to
keep in French most of the original key words, except TRUE (VRAI), FALSE
(FAUX) and if ... then ... else... (si ... alors ... sinon ...). Moreover I staid
closed to the French original, which might lead to awkward constructions. At
some places, the text may look naive when we read it in 2019, but I decided not
to change it and to keep the 1979 wording.

The footnotes I wrote during the translation have the prefix Note at the
translation, the others are footnotes of the original document.

In forty years, much have changed.

• From the theoretical point of view: in 1979, the only advanced language
with recursive types known in France was Algol 68 (with no implementa-
tion by the way). Obviously object oriented programming did not exist.
When I implemented algorithms (especially in Chapter V and Chapter
VI) I did it in Pascal.

• From the technical point of view: in 1979, scientific texts were first hand-
written and then typewritten by a secretary (in this case Martine Tesolin,
whom I thank again for her beautiful work). Afterwards specific signs (like
A, B, C) were handwritten on the typed document by the author, such
that further corrections were not possible. Thus in the French text, there
are still many remaining mistakes and typos. Trivial errors were corrected
at translation, others still remain, for faithfulness.

I would like to thank Claude Pair for everything and especially for giving
me access to his personal archives on information systems, Laurent Rollet or
organising a workshop on the History and the Memory of Academic Computer
Science in Nancy and Yuri Gurevich for interesting discussions.

December 2018
Pierre Lescanne

1

Introduction

1 The problem of programming

The programming activity can be decomposed into two major steps:

1. The first step goes from a problem statement to an algorithm.

2. The second step goes from an algorithm on abstract objects to a program
on data in order to produce an execution on a machine.

In this thesis we speak only of the second step. In the sense given here an algo-
rithm is a description of the operations on the inputs of a program to produce
the outputs or the results.

The algorithm deals with abstract objects expressed in a mathematical lan-
guage. If good tools are available the algorithm and the description of the
abstract objects do not make reference to an execution or to a computer run.
For this reason we can call this description static.

For instance, to express algorithms, we can use applicative languages describ-
ing recursive functions or single assignment languages defining sequences [AW76,
Bel78]. For abstract objects a similar description is possible. For instance, an
algebraic specification allows u to describe abstract data types only by relations
on operations.

On the opposite, a program is a description of pieces of computations, that
can be run on a computer. Therefore the data that the program handles shall
be run by the computer. The actions which are components of the computation
are modifications of the memory state.

If several methods have been proposed for going for an algorithm to a pro-
gram [Ars78, BD77, Pai79, BW79], going from an abstract data type to a data
structure was less solved by now. There are three categories of problems:

• the problem of the representations,

• the problem of the assignment,

• the problem of data sharing.

The problem of representation can be pictured as follows: an object of an
abstract data type is a black box with buttons: in order to get an external value,

2

we push the adequate button. Some operations combines boxes. The user does
not want to known what is inside boxes, but only to know how boxes react
to external requests.1 To represent an abstract data type is to give a possible
description of the internal structure of the boxes. We may imagine that building
this representation is done more or less automatically.

The problem of assignment occurs as soon as we want to run a sequence of
computations and make values to vary. The use of a an abstract data type in
a algorithm requires all the objects of the types are available at each time, at
leas potentially. This is possible in particular cases. For instance in a computer,
natural numbers can be simply denoted and are accessible at each time. However
in built-in types like stacks, this is different. At a given time, only a small
number of objects are available via identifiers and therefore are present in the
store. This identifiers can also share objects. For instance, an identifier can be
associated with a sequence of push’s and pop’s. In a program, at a given time,
it refers to the last stack. Therefore it is needless to access all the stacks. Then
we raise the following question: how to represent stacks such that push is as
simple as possible? Since only the last stack is of interest, it can be obtained
as a modification of the last stack. Another question is: how to minimise these
modifications? The answer to this question leads to an in situ modification of
the objects. In other words, a minimum number of modifications are performed
on the object without moving it. In short, we must minimise time duplications
of objects.

The problem of data sharing occurs whenever we want to use at the best
the memory space, doing so that different objects might access commons sub-
objects, which do not need to be duplicated. In short, we must minimise space
duplications of objects.

Addressing these tree problems assumes that we know well the representa-
tion of the objects and that we own a good mathematical modelling. Thus,
reasoning will be rigorous and a mechanisation can be addressed. It seems that
much comes from a good approach of the concept of representation. Therefore,
I will address essentially representation, hopping that I will be able to draw
consequences for the two other problems.

In this thesis, two approaches are proposed:

• an algebraic approach formalises the concept of a set with operations,

• an relational approach axiomatises the relations with the aim of describing
the objects.

A third possible approach is based on the first order predicate calculus. You
can find it in Remy’s PhD [Ré74] or in the papers of Pair [Pai74] or of Fi-
nance [Fin77].

1Note at translation: This looks like object oriented programming, but this was stated
before that paradigm existed.

3

2 Programming vs representing objects

Representing abstract data types by objects available in a programming lan-
guage requires an intermediate step, namely a representation in terms of math-
ematical objects. Those objects are later described by computer tools. Eventu-
ally, these three entities are the three edges of the triangle drawn on Figure 1.

Abstract Data Types

a

uu

c

**
Math objects

b
// Computer objects

Figure 1: The steps toward the representation

When the function described by the dotted arrow c has been found, the problem
of the representation has been solved. Since, we assume that we know b, the
central problem is a.

The mathematical objects, called “representations”, can be seen another
way: they are the first objects which the programmer takes in consideration
and which he (she) addresses. Once using these objects, he (she) draws relations
among operations, he (she) deduces the abstract data types with which he (she)
is going to describe the algorithm. Possibly he (she) adds new operations to
the abstract data type. Possibly as well, in the use of the abstract data type in
algorithms, he (she) notices that a specific operation occurs more than the others
and requires to be implemented more efficiently. This leads the programmer to
look carefully at the mathematical objects on which he (she) reasons. This may
involve another family of representations, which improves the implementations.
See for instance [FVV78].

3 The aims of this thesis

The results of this thesis are essentially the representations of abstract data
types by algebraic models. Indeed, we build a model of an abstract data type,
aka type algebra (the mother algebra) whose objects are also algebras, called
daughters and whose operations are operations on those daughter algebras. After
describing a family of daughter algebras representing the abstract data type
“binary tree”, the theorem of the algebraic representation of binary trees claims
that these daughter algebras are actually a model of the type “binary tree”.
The theorem of the canonical representation claims that if the abstract data
type is “correctly specified”, such a model exists always. The proof is an explicit
construction of this model. In general, the models are not isomorphic. Actually,
several representations are proposed for sets and for graphs.The proposition of
complete discrimination characterises the abstract data types whose models are
isomorphic.

4

On another hand, in this thesis, the problem of the non determinism is
addressed at two levels:

• At the level of the operations of the abstract data type, the theorems of
C-stability and of P-stability give conditions on equations in order to make
the abstract data type consistent when non deterministic operations are
accepted.

• At the level of the representations, the theorem of the relational represen-
tation of lists is symmetric to the theorem of the algebraic representation
of binary trees, when one admits operations of daughter algebras to be
relations.

Eventually, addressed for relational algebras, the problem of formal proofs
in algebraic systems is considered and experimental results are proposed.

4 Plan of the thesis

This thesis has two parts:

• the algebras, chapters I, II,, III, IV and

• the relations, chapters V and VI.

5

Chapter I

An algebraic framework for
studying abstract data
types

1 Introduction

The aim of this work is double:

• to set nicely, around the concept of algebra, several approaches of data
structures,

• to propose an algebraic framework for theories of the representation of
Abstract Data Type in a programming language with assignments, hence
with a semantics involving state changes.

We can set the formalism for data structures into two large families [Gut78].

• In a first kind of approach, an object of some structure can possibly evolve
in time and be modified; but in order to stay in the structure, it must
satisfy along time, either an invariant predicate (this is the approach of
Hoare [Hoa72], Wulf [WLS76]), or a family of axioms and its consequences
(this is the approach of Pair [Pai74], Remy [Ré74] and Finance [Fin77] see
also [GP77]).

A construction of an object from other objects is described by a program
in Hoare’s approach and by adding modifications to axioms in the Nancy
approach. For reasons of harmony and for more mathematical simplicity,
which we will justify later on, we propose here to describe an object as
an algebra; we speak on “daughter algebras” in opposition to “mother
algebras” or type algebras which are the mathematical foundation of the
description with an abstract data type. The invariance or the membership

6

to the structure is then translated by the requirement for the daughter al-
gebras to stay in a class of algebras. This class of algebras is characterised
by properties of first or second order. In particular, this class is not an
equational class aka a variety. We build a new daughter algebra by ex-
pressing its operations from those of one algebra or of many other algebras.
If we do not wish to build a new algebra, but to provide a fixed element of
an algebra, we speak of a selection. The operation in a daughter algebra
which is used to “retrieve” an element in the algebra from other elements
is called an access. Speaking in term of algebras allows us to characterise
them nicely.

In Chapter 5, another approach which we still keep in the same family,
is proposed. It is based on Tarski theory of relational algebras and uses
ideas proposed by de Bakker, Hitchcock, Park and de Roever ([dBdR72],
[dBdR72], [dR74], see also [Liv78]). It recalls Finance, Pair and Remy
approach and takes advantage of the algebraic tool to promote a strict
rigour, hoping a possible mechanisation (Chapter 6).

• In a second family of approaches, an algebraic description is used and is
based on specific operations ruled by axioms on those operations, thus
characterising an abstract data type, which is the set of objects we are
interested in and the set of transformations that are assigned to them
[Gut77, GTWW75, LZ77]. This approach is more abstract, since in one
sight we look at all the objects and all their constructions.

2 Binary trees

2.1 Algebras “Binary Trees labelled by Alph”

We sees immediately that two sorts of objects appear, the trees and the values.
Let us denote the first Arb and the second Val. Here Val = Alph ∪ INDEF where
INDEF /∈ Alph. Further, we define operations which allow us to extract sub-trees
and to construct new trees. Each operation has a signature, that is a description
of its operands and of its result. Thus CONS which builds a binary tree, from
two trees and from a value, has signature:

(Arb, Val, Arb) → Arb

which means that its first operand is a tree, that its second operand is a value,
that its third operand is a a tree and that its result is a tree. We keep this
notation in what follows.

Similarly, the operations GAU, DRO1 have signature

(Arb) → Arb

1Note at translation: Arb stands for arbre which means tree, GAU stands for gauche which
means left, DRO stands stands for droite which means right, TET stands for tête which means
head, VID stands for vide which means empty.

7

and associate, with a tree x, another tree called the left-hand side or the right-
hand side of the tree x. TET has signature:

(Arb) → Val

and associates, with a tree, a value, namely the label at the head of the tree.
Thus, we build an algebraic structure which we call a heterogeneous algebra or
a many sorted algebra. Such an algebra is characterised by a family of sets,
namely the sorts2 and a family of operators of a given signature.

The operations CONS, GAU, DRO and TET satisfy identities which charac-
terise the binary trees and are well known by programmers:

GAU(CONS(x, v, y)) = x (I.1)

DRO(CONS(x, v, y)) = y (I.2)

TET(CONS(x, v, y)) = v (I.3)

These three identities give the properties of the operations on binary trees
but do not tell what a binary tree is. Here is a possible answer: a binary tree is
an object which can be described by a constant expression. But to speak of a
constant expression, we need at least one constant. The simplest one is the one
which describes the empty tree, written VID. Moreover it allows by composition
with CONS to describe all the binary trees. With no parameter and with a
result tree, this is a 0-ary operation. We write its signature:

() → Arb
Similarly we introduce ν + 1 operations (where ν is the cardinal of Alph) of
signature:

() → Arb
which correspond to the elements of Alph or to an undefined element written
INDEF. We get the equation

TET(VID) = INDEF (I.4)

Every tree can be represented using the operations CONS, GAU, DRO, TET, VID
and using the elements of the family Alph ∪ {INDEF}. It is interesting to study
the algebras that contain only those elements, in other words the algebras that
satisfy the equations I.2, I.3, I.3 and I.4 and that contain only the elements built
using CONS, GAU, DRO, TET, VID and using the elements of the family Alph
∪ {INDEF} . Such an algebra is called a primary algebra3. Notice that such an
algebra may contain infinitely many elements of the form GAU(VID), DRO(VID),
GAU(GAU(VID)), GAU(DRO(VID)) etc. In computer science, this makes no sense
to consider those elements as different. Two solutions are possible, to create a
tree ERR: () → Arb, which represents an errored tree, resulting from an error in
applying GAU or DRO. Then, we state

2Some authors especially the logicians, speak, in this case, of types; this word has several
meanings for the computer scientists, rarely this of sets of objects [Mor73], this is why we
prefer the word “sort”.

3This naming comes from the fact that Z/pZ is a unitary ring without proper sub-ring, if
and only if p is a prime number.

8

GAU(VID) = GAU(ERR) = GAU(ERR) = DRO(VID) = DRO(ERR) = ERR
together with the axioms which state that the result of an operation on a tuple
containing on ERR is ERR. Another solution which avoids introducing ERR, but
does not distinguish trees, yielded by errored operations, is to state:

GAU(VID) = VID = DRO(VID). (I.5)

For simplicity, we adopt the second solution.

Notations If A is an algebra, then ArbA and ValA denote the sets of sort Arb
and Val in the algebra A.

Then we notice that:

Proposition 1. Let A be a primary algebra,

x ∈ ArbA ∧ x 6= VID⇒ (∃y ∈ ArbA)(∃z ∈ ArbA)(∃v ∈ ValA) x = CONS(y, v, z)

Proof. By induction on the possible representations of x, since all the elements
of ArbA admit a representation on basic elements.

First case. x = GAU(x′), if x′ = VID then x = VID and the result is straight-
forward, else, by induction, x = CONS(y′, v′, z′), since clearly x admits a sim-
pler representation on basic elements, hence x = GAU(CONS(y, v′, z′)) = y′

where y′ has a simpler representation than x, hence still by induction, y′ =
CONS(y′′, v′′, z′′) = x.

Second case. x = DRO(x′) works like the previous case.

Third case. x = CONS(y, v, z) involves no proof.

Proposition 2. x 6= VID⇒ x = CONS(GAU(x),TET(x),DRO(x)).

Proof. From the previous result, x = CONS(y, v, z). Hence

CONS(GAU(x),TET(x),DRO(x)) = CONS(y,TET(x),DRO(x))

= CONS(y, v,DRO(x))

= CONS(y, v, z)

= x

by applying the equations I.2, I.3 and I.3.

We would show easily that all the algebras which satisfy I.2, I.3, I.3, I.4 and
I.54 are isomorphic, in other words each of them defines the binary trees. One
of them is the class of terms without variables modulo the equations.

4Note at translation: They have to be primary and to satisfy no identity which is not a
consequence!

9

�&
� // a

< // a � // c

	 // b

a

a c

b

CONS(CONS(CONS(VID, b,VID), a,VID), a,CONS(VID, a,VID))

Figure I.1:

2.2 Algebras “One binary tree”

If we looks at a tree, we notice that there are nodes and that, from each of
these nodes, we can reach another node, either on the left, or on the right or
we can get a value. Therefore we can consider a binary tree as a finite algebra
with a set Noe of nodes, a set Val of values (which we suppose equal to Noe ∪
{INDEF}) and operations G, D : (Noe) → Noe, VA: (Noe) → Val and T: → Noe.
We are not so much interested by a specific algebra, but a family of algebras
satisfying properties.

In these algebras, G and D are not defined everywhere. We call them partial
algebras. Those algebras are the daughter algebras of the abstract data type,
called the binary trees.

Thus the binary tree of Figure I.1 can be represented by a finite algebra
where Noe = {�,<,�,	}, Val = {a, b, c} and the operations are defined by

G D VA
� < � a
< 	 a
	 b
� c

T = �

Here are the properties that this algebra has to satisfy.

a) A node is on the left of at most another node and on right of at most
another node. To claim this property we need another set Bool and another
total operation EG : (Noe,Noe)→ Bool together with

TRUE, FALSE : () → Bool.

10

We also claim the following inequations:

EG(x, y) v EG(y, x)
EG(G(x),G(y)) v EG(x, y)
EG(D(x),D(y)) v EG(x, y)
EG(G(x),D(y)) v FALSE

EG(G(x),T) v FALSE
EG(D(x),T) v FALSE

EG(T,T) v TRUE

(I.6)

Here we use the sign v to tell that the left-hand side is less defined than
the right-hand side, or, said otherwise, that if the left-hand side is defined
then the right-side is defined and both side are equal. Thus the algebra
(Figure I.2) such that Noe = {∗,4,�} and such that G, D and VA are
defined by

G D VA
∗ 4 � a
4 � b

c

T = ∗

is not candidate to represent a tree. Indeed EG does not satisfy the relation

�$

a

∗

��

>>

b c

4 //

@@

�

WW

@@

a

��
b // c

XX

Figure I.2: This is not a tree

EG(D(x),D(y)) v EG(x, y)

since if x = ∗ and y = 4 then D(x) = D(y) = �.

b) Each node of the algebra is reached. This is expressed by saying that all
the operations of signature ()→Noe, which are defined, represent all the
nodes. In term of algebra this means that the algebra is generated by ∅
(see [Pie68] p. 105) or what is equivalent that the algebra does not contain
proper sub-algebras, like previously. We will call such algebras, primary
algebras. For instance, the algebra such that Noe = {⊕,⊗,	,�,�},

11

G D VA
⊕ ⊗ a
⊗ b
	 � � a
� � b
� � c

T = ⊕

EG ⊕ ⊗ 	 � �
⊕ TRUE FALSE FALSE FALSE FALSE
⊗ FALSE TRUE FALSE FALSE FALSE
	 FALSE FALSE TRUE TRUE TRUE
� FALSE FALSE TRUE TRUE TRUE
� FALSE FALSE TRUE TRUE TRUE

satisfies the equations and the inequations of a) despite this is not a tree
(see Figure I.3).

�$

a

⊕
G

��

// a 	
G

��

D

��

>>

⊗ // b b �
D

//oo �

D
nn

// c

Figure I.3: This is still not a tree

c) The operations VA and EG which provide external values are total.

d) For each algebra A the sets ValA and BoolA are the same.

We write AA[Alph,Bool] the class of algebras that satisfies a), b), c) and d).

Let us consider on AA[Alph,Bool] several operations.

Cons: Cons : AA[Alph,Bool]×Alph×AA[Alph,Bool]→ AA[Alph,Bool] is defined
as follows.

Given two daughter algebras (i.e., two binary trees) A and B and v ∈ V,
Cons(A, v,B) is the algebra C such that

• C = ∗ ∪ g×A ∪ d×B where A = NoeA, B = NoeB and C = NoeC
5

• T = ∗
• GC(∗) = (g,TA)

• DC(∗) = (d,TB)

• GC((g, x)) = (g,GA(x)) DC((g, x)) = (g,DA(x))

• GC((d, x)) = (d,GA(x)) DC((d, x)) = (d,DA(x))

and such that
5Note at translation: ∗, g and d are three fresh values.

12

• EGC(∗, ∗) = TRUE

• EGC((g, x), (g, y)) = EGA(x, y)

• EGC((d, x), (d, y)) = EGB(x, y)

• EGC(∗, (f, x)) = EGC((f, x), ∗) = FALSE where f = g or f = d

• EGC((g, x), (d, y)) = EGC((d, x′), (g, y′)) = FALSE

and such that

• VC(∗) = v

• VC((g, x)) = VA(x)

• VC((d, x)) = VB(x).

We have to prove:

Lemma 1. Cons(A, v,B) is an algebra of AA[Alph,Bool].

Elements of a proof

a) We check by case that EGC satisfies the inequalities of I.6. For instance,

EGC(GC(x),GC(y)) v EGC(x, y)

in the case x = ∗ and y = (g, y′)

EGC(GC(∗),GC((g, y′)) = EGC((g,TA), (g,GA(y′)))

= EGA(TA,GA(y′))

= FALSE

= EGC(∗, (g, y′))

b) C is a primary algebra. Indeed each element of A is represented by a
composed operation of signature pA(TA) : () → Noe. Therefore each
element of the form (g, x) is reached by a composed operation

(g, pA(TA)) = pC(g,TA) = pC(GC(TC))

where pC corresponds to pA in C. We do likewise for elements of the form
(d, pA(TA)). For ∗, there is nothing to prove since it is represented by TC.

c) The operations VAC and EGC are trivially total.

d) Val and Bool are preserved. �

Gau: Gau : AA[Alph,Bool] → AA[Alph,Bool] is defined as follows: let A be a
binary tree, let B be the algebra such that:

13

NoeB = NoeA TB = GA(TA)

GB = GA DB = DA

VAB = VAA EGB = EGA

B = Gau(A) is the smallest sub-algebra (with operations TB, GB, DB,
VAB, EQB), namely the algebra generated by ∅.

Lemma 2. Gau(A) is an algebra of AA[Alph,Bool].

Proof. b), c), d) are obvious. For a), we have just to prove the equations dealing
with TB, namely

EGB(DB(x),TB) = EGA(DA(x),GA(TA)) = FALSE

EGB(GB(x),TB) = EGA(GA(x),GA(TA)) = EGA(x,TA)

Since x ∈ B and B is a primary algebra, x is of the form x = pB where pB is a
variable free expression of B. Therefore there exists y ∈ A such that x = GB(y)
or x = DB(y). Hence

EGB(x,TB) = EGB(GB(y),TB) = FALSE

or
EGB(x,TB) = EGB(DB(y),TB) = FALSE

Finally

EGB(TB,TB) = EGA(GA(TA),GA(TA)) = EGA(TA,TA) = TRUE.

Dro: AA[Alph,Bool] → AA[Alph,Bool] is defined like Gau with the difference
that TB = DA(TA).

Let us consider now a selection.

T et: AA[Alph,Bool]→ Alph defined as T et(A) = VAA(TA).

Morphisms In AA[Alph,Bool] the morphims h are maps NoeA → NoeB which
satisfy:

• TB is defined when it TA is and

TB = h(TA)

• if GA is defined than h(GB) is defined and

GA = h(GB)

14

• if DA is defined than h(DB) is defined and

DA = h(DB)

• Moreover,

VAB = h(VAA)

EGA(x, y) = EGB(h(x), h(y))

If h is bijective, we say that h is an isomorphism. Since algebras are partial
algebras, there exists a unique algebra, i.e., a binary tree, with an empty
carrier Noe. Let us call it Vid. In Vid, TVid is not defined. It is obviously
primary. Naturally it represents the empty tree. Notice that if A is an
algebra of AA[Alph,Bool] which is not Vid, TA is defined, otherwise, A
would have a sub-algebra isomorphic to Vid.

Let us focus on the class of algebras in AA[Alph,Bool], in which NoeA is
finite and which a subset of a finite enumerable set D. If we want Cons,
Gau and Dro to be stable in this class we must have ∗ ∈ D and if A ⊆ D
then {g} × D ⊆ D and {d} × D ⊆ D. Henceforth, we choose for D the
smallest set such that

D ⊇ {g, d} ×D
The isomorphism ' is a equivalence relation on the algebras of carrier D.
We show easily that Cons, Dro, Gau preserve isomorphism. That the value
of T et does not change if we take an isomorphic algebra and that Vid does
not admit isomorphic algebras besides itself. Let us call AAF[Alph,Bool]
the equivalence class of algebras modulo isomorphism with nodes inD. Let
us call Cons′, Gau′, Dro′, T et′ and Vid′ the operations on AAF[Alph,Bool]
deduced from Cons, Gau, Dro, T et and Vid. We get the following theorem.

Theorem 1 (Algebraic representation of binary algebras). The algebra of ARB[Alph]
where Arb = AAF[Alph,Bool] and which has the operations Cons′, Gau′, Dro′,
T et′ and Vid′ is an algebra of ARB[Alph]. Moreover this is the initial algebra of
ARB[Alph].

Proof. Show first that C = Gau(Cons(A, v,B)) ' A.
Consider the bijection h : A → {g} × A, such that h(a) = g × a. This is a

morphism from A to C. Indeed let us state D = Cons(A, v,B).

• h(TA) = TC because TC = GD(TD) = g × TA = h(TA).

• h(GA(x)) = GC(h(x)) because

GC(h(x)) = GC((g, x)) = GD((g, x)) = (g,GA(x)) = h(GA(x))

The proof of the equality h(DA(x)) = DC(h(x)) is the same as are the
proofs of VAA(x) = VAC(h(x)) and EGA(x, y) = EGC(h(x), h(y)). We also
show that Dro(Cons(A, v,B)) ' B. Moreover we have

T et(Cons(A, v,B)) = v.

15

Indeed
T et(Cons(A, v,B)) = VAD(TD) = VAD(∗) = v

To prove that Gau(Vid) = Vid, we have just to look at the definition
Gau(Vid). Let us consider the algebra B such that NoeA = NoeVid = ∅.
TB = GVid(TVid) is indeed not defined. This is the same for GB = GVid,
DB = DVid, VAB = VAVid, EQB = EQVid. Thus Gau(Vid) which is the
smallest sub-algebra of B is Vid itself. Therefore Gau(Vid) = Vid. We
prove as well than Dro(Vid) = Vid. To prove that this is an initial algebra,
we need a lemma.

Lemma 3. If t is a variable-free term built using the operations of the variety
Arb[Alph], then there exists a variable-free term t′, built using only Cons and
Vid such that t = t′.

Proof of the lemma. By induction on the number of Gau’s and Dro’s in t.
Assume that there exist occurrences of Gau or Dro in t. Hence there exists at
least one occurrence, written f , occurring in f(Vid) or in f(Cons(g, v, d)).

If this is of the first form, the term t′′ in which we substitute Vid to f(Vid)
contains less occurrences of Gau or Dro and satisfies t′′ = t.

If this is of the second form, the term t′′ in which, we substitute, in t, g to
f(CONS(g, v, h)), if f = GAU and h to f(CONS(g, v, h)), if f = DRO, contains
less occurrences of GAU and DRO and satisfies t = t′′. �

Proof of the theorem (next)
Each daughter algebra of AA[Alph,Bool] has only finitely many elements in

Noe. Moreover, if A is not Vid, Gau(A) and Dro(A) are algebras with less
elements in Noe, fulfilling the property:

A = Cons(Gau(A), v,Dro(A))

Thus we can show that A can be decomposed uniquely, up to an isomorphism.
This result and the lemma show that the algebra is initial. Proposition 3, of
Section 2 of Chapter II will yield a simpler proof of the initially of AA[Alph,Bool].

2.3 Links with programming

The theorem we have just proved can be formulated as follows: “The alge-
bra AA[Alph,Bool] is a representation of the type ’binary tree’ by objects and
operations of a lower level of abstraction”. Those objects are more concrete,
because, among other concepts, they are built using pointers. This modelling
is a step toward programming, because daughter algebras, i.e., the algebras of
AA[Alph,Bool] are a good approach for objects represented in the computer, by
a programming language. The properties a), b), c) d) are invariants of con-
structions. For instance, the statement: “the algebra is primary” is for the
programmer the natural statement: “at any time, a tree contains only nodes
that can be reached from the head”.

16

Translation in a programming language

In ALGOL 68

As an illustration, we show how the objects of AA[Alph,Bool] can be translated

into ALGOL 68. Sorts are modes6. We assume that the mode Alph is known.
mode Alph ...
The mode Noe should provide a mean to yield a value by VA and to access

two nodes by G and D. It is naturally translated by:
mode Noe struct(rep Noe G,Alph VA, rep Noe D)
As we saw, a tree gives a node, a value and two access functions G and D

yielding a node from another node, through a pointer. VA is available at each
node. Therefore T is the only node that we must provide when we give a tree.
Thus a tree is given by the only natural access T

mode Arb = struct(rep Noe T) (I.7)

This definition may look sophisticated to an expert programmer (we discuss
further a definition of a tree by mode Arb rep Noe and the removal of all the
expressions “T of”. At first , we keep Definition I.7 to show the reader how this
fits with the algebras we described.)

Constructions and selections are described by procedures.

• Thus GAU is described by

proc gau = (Arb a) Arb : (G of T of a)

• CONS is described by

proc cons = (Arb a,Alph v,Arb b) Arb :
begin heap Noe∗ := (T of a, v,T of b)

In a language a la Pascal

We give a translation of the same objects and the same procedures in a Pascal-
like language with the difference that procedures are allowed to return results
of all the types described in the language:

6Note at translation: modes are what languages like ML or Haskell call a types.

17

If now in the Algol 68 program we replace the declaration mode Arb =
rep struct(rep Noe T) by mode Arb = (rep Noe) and if we remove expression
T of we get:

mode Alph = ...; mode Noe = struct (rep Noe G, Alph VA, rep Noe D);
mode Arb = rep Noe;
proc gau = (Arb a) Arb : G of a;
proc dro = (Arb a) Arb : D of a;
proc tet = (Arb a) Arb : nil;
proc vid = (Arb a) Arb : G of a;
proc cons = (Arb a; Alph v; Arb b) Arb : heap Arb := (a, v, b) .

Examining the mode declarations of Noe and Alph, we notice than we can
change them without changing the program by the unique declaration:

mode Arb = rep struct (Arb G, Alph VA, Arb D).

The only change will be on cons:

proc cons = (Arb a, Alph v, Arb b) Arb :
heap struct (Arb G; Alph VA; Arb D) Arb := (a, v, b) .

Discussion To state mode Arb = rep struct (Arb G, Alph VA, Arb D), is
to define the domain Arb as a fixed point:

Arb = {V ID}+ (Arb×Alph×Arb)

This is an extensional definition à la Scott (cf [LS77]) where the algebraic
aspect disappeared. An approach aiming at narrowing the extensional and the
algebraic aspects would be probably extremely fruitfully. However the definition
of the type Arb by

mode Arb = rep struct (Arb G, Alph VA, Arb D).

has two risks (see in particular the article of J. H. Morris “Types are not
sets” [Mor73]).

• The best known is surely the use of operations not foreseen when describ-
ing the type, with risks when running the program, which has much chance
to bug. Assignments like

G of z := z.

generate monsters which are not trees at least not finite trees. Indeed the
object α represented by z satisfies

G of α = α.

Notice that programming languages like CLU, ALPHARD, ATM7 protect
the programmer against such risks ([LZ74, WLS76, CCD+79])

7Note at translation: ATM is a confidential programming language developed in Nancy.

18

• The second danger is the confusion of two different concepts, this of node
and this of tree. Figure I.4 aims at illustrating the difference between
those two concepts. A node is an internal object that must be hidden
to the user of trees. This principle of hiding information is the warranty
of reliable software, because it avoids the modification of values that the
user should not access to. This protection could be enforced if we can
forbid the user to know about Noe. This could be done by putting the
declaration of Noe in a part of the program, not accessible to the user, for
instance, in the prologue. Thus the distinction between Noe and Arb and
the consecutive distinctions between GAU and G, DRO and D and TET and
T do not allow, for instance, the assignment G of z := z, already noticed,
since we can only access the nodes through the procedures gau, dro and
tet. Let us notice that only one value is attached to a node whereas a

5

�� ��

4

ww ''
5

�� ��

8

��
6 3 1

Figure I.4: A node and a tree

family of values is attached to a tree. Among them, one value is put in
evidence, namely the head (called tet)

Advantage of an algebraic approach. Let us notice that when program-
ming an abstract data type in a programming language, we have to prove that
the procedures represent the operations. Going through daughter algebras is a
convenient way to proceed.

Finally let us say that the example of binary trees has been chosen to illus-
trate type algebras and daughter algebras, because it is simple and because it
contains dyadic operations. But this example is less convincing when we go to a
representation in ALGOL 68, because this language contains structures closed
to those found in trees. Examples of Section 6 and Chapter 4 will provide more
convincing examples.

2.4 Binary trees and sharing

In the binary trees that we encountered, no sharing was possible. In the following
a restricted form of sharing is allowed. A same node can be both left and right
son of another node. In other words, we replace

EG(D(x),G(x)) v FALSE

by
(EG(D(x),G(y))⇒ EG(x, y)) v TRUE

19

where ⇒ is a well known Boolean operator.

}}!!

~~

}}!! ~~

Figure I.5: A tree with sharing

On those trees, the operations Gau, Dro, T et and Vid are not modified. If A
and B are two non isomorphic algebras, we define Cons(A, a,B) like previously,
but if the algebras are isomorphic, we define C = Cons(A, a,B) as follows.

• C = {∗} ∪A8

• TC = ∗

• GC(∗) = DC(∗) = TA

• if x 6= ∗ then GC(x) = GA(x) and DC(x) = DA(x).

• EGC(∗, ∗) = TRUE

• if x 6= ∗ then EGC(x, ∗) = EGC(∗, x) = FALSE

• if x 6= ∗ and y 6= ∗ then EGC(x, y)) = EGC(y, x) = TRUE

• VA(∗) = a

• if x 6= ∗ then VAC(x) = VAA(x)

It is easy to prove that the algebras built that way fulfil the axioms of Figure I.6.
Let ArbS be the class of algebras that satisfy the axioms of Figure I.6. On

ArbS and Alph, we define the operations Cons′′, Gau′′, Dro′′, T et′′, Vid′′, by
quotienting the operations Cons, Gau, Dro, T et, Vid. Thus we define an algebra
of ARB[Alph] which is an initial algebra in this class.

3 Recall on homogeneous algebras

This section and the two following ones can be dropped in a first reading9.

Not translated
8Note at translation: Assuming that ∗ /∈ A.
9Note at translation: For this reason, it is not translated.

20

EG(x, y) v EG(y, x)

EG(G(x),G(y)) v EG(x, y)

EG(D(x),D(y)) v EG(x, y)

EG(G(x),D(y))⇒ EG(x, y) v TRUE

EG(G(x),T) v FALSE

EG(D(x),T) v FALSE

EG(T,T) v TRUE

Figure I.6: The axioms of binary trees with sharing

3.1 Heterogeneous algebras

3.2 Construction of algebras

3.3 Free algebras and initial algebras

3.4 Generated algebras and primary algebras

3.5 Polynomial functions

3.6 Identities on algebras

4 Heterogeneous paramaterised algebras

Not translated

21

4.1 Heterogeneous algebras and partial heterogeneous al-
gebras

4.2 Free heterogeneous algebras and initial free heteroge-
neous algebras

4.3 Generated heterogeneous algebras and primary het-
erogeneous algebras

4.4 Final algebras

4.5 Polynomial functions

4.6 Identities on heterogeneous algebras

5 Paramaterised heterogeneous algebras

6 Three examples: File, Set and Circular Lists

The two three10 following abstract data types, which we are going to study, will
contribute with the abstract data type Binary Tree to illustrate the next chapter.

6.1 The Files

We will consider the files, denoted File, on an alphabet Alph. The operators are
the following:

FILEVIDE : () → File,

AJ : (File, Alph) → File,

OT : (File) → File,

FR : (File) → Alph ∪ (INDEF),

CONCAT : (File, File) → File ;

They satisfy the identities:

(OT1) OT(FILEVIDE) = FILEVIDE.
(OT2) OT(AJ(FILEVIDE, a))) FILEVIDE,
(OT3) OT(AJ(AJ(f,), a), b)) AJ(OT(AJ(f,a)),b),
(FR1) FR(FILEVIDE) = INDEF,
(FR2) FR(AJ(FILEVIDE, a)) = a,
(FR3) FR(AJ(AJ(f, a), b)) = FR(AJ(f,a))
(CONCAT1) CONCAT(f, FILEVIDE) = f
(CONCAT2) CONCAT(f,AJ(f’,a)) = AJ(CONCAT(f,f’),a).

10Note at translation: The example of Circular Lists is Section 4.4 of Chapter II in the
original document.

22

This abstract data type has deep differences with the abstract data type,
’binary trees’, which we studied in Section 2. In binary trees GAU and DRO
plaid antagonistic roles w.r.t. CONS. Here OT is not antagonistic w.r.t. AJ: we
do not “remove” the last element which we “added”; the specification of OT
is recursive, thus the left-hand side of the third equation contains OT; we find
similar properties with the specification of FR. CONCAT allows us to build a file
from two other files, but each file can be expressed uniquely from AJ, so that in
CONCAT(f,f’), the operator CONCAT can disappear completely. This is what
we call a secondary operator. Such an operator does not exist in binary trees.

The class of models FILE[Alph] proposed here is made of primary partial
finite algebras with the following operations:

SU : (Place) → Place,

PREM : () → Place,

VA : (Place) → Alph,

EG : (Place, Place) → Bool.

It satisfies the following inequations:

EG(PREM, PREM) v TRUE

EG(PREM, S ∪ {x}) v FALSE

EG(S ∪ {x}, PREM)v FALSE

EG(S ∪ {x}, S ∪ (y)) v EG(x, y)

On the class FILE[Alph] we define the following operators:

Filevide is the algebra such that Place = ∅.

Fr(A) = VAA(PREMA)

The operators Ot, Aj, Concat are given of Figure I.7.

Figure I.7: Definition of the constructions Ot, Aj, Concat

Notations In what follows, we use sometimes the following conventions in
order to ease the understanding of formulas:

• FILEVIDE will be written ∧

• AJ(f,a) will be written f � a

23

• CONCAT(f,f’) will be written f ∗ f ′

• INDEF will be written ?

Thus
CONCAT(AJ(f, FR(FILEVIDE,a), OT(AJ(AJ(FILEVIDE,a), b))))

will be written
[f � FR(∧ � a)] = OT(∧ � a� b)

6.2 The sets

For the set11 we propose here the following description:

VIDE : () → Ens,

AJ : (Ens, Alph) → Ens,

PR : (Ens, Alph) → Bool.

They satisfy the following identities:

PR(AJ(e, a), b) = if EG(A, b) then TRUE else PR(a, b)

PR(VIDE, a) = FALSE

Three families of models will be presented.12

The first family is made of algebras with essentially an operator ∈: (Alph→
Bool. We notice that in these models, no sort, in other words, no part of the
object, is hidden from outside. No category of objects has been added and
nothings holds for the sort Noe in trees or of the sort Place in files. We define
easily an operator.

• Vide is defined as ∈V ide≡ FALSE

• Aj(A, A) is defined as follows: A ∈Aj(A,A)= TRUE and when B 6= A,
B ∈Aj(A,A)= B ∈A.

• Pr(A, A) = A ∈A

The second family is made of the same objects as files, but

• Vide is the algebra such that Place = ∅,

• Aj(A, a) is the algebra B such that PlaceB = PlaceA ∪ {PlaceA}. Let us
write α the new element:

PREMA = α.

11Note at translation: “ensemble” means “set” and “vide” means “empty”. Pr stands for
“present” an alternative to “is in” in order to avoid confusion.

12Note at translation: Actually four families are presented.

24

if x ∈ PlaceA then S ∪ {x} ∧ VAB(x) = VAA(x)

else S ∪ {x} = PREMA ∧ VAA(x) = a

if x, y ∈ PlaceA then EQB(x, y) = EQA(x, y)

if x ∈ PlaceA then EQB(x, α) = FALSE = EQB(α, x)

eventually EQB(α, α) = TRUE

• Pr(A, a) = (∃x ∈ PlaceA)(VAA(x) = a)

The third family is less orthodox, it assumes that Alph contents one specific
element which we write O. If Alph would be the set of the non negative numbers,
it would be zero for instance. In those models, we define a sort Place. There
are three operators of the previous model and one operator OE: ()→ Bool which
tells whether O belongs to the set or not:

• Vide is the algebra such Place = ∅ and OE = FALSE.

• In order to define Aj(A, a) two cases are to be considered

– if a 6= O then Aj(A, a) is defined as in the previous representation
and OEAj(A,a) = OEA.

– Aj(A,O) is the algebra B such that PlaceB = PlaceA. All the opera-
tions are the same on A and on B, except possibly OEB which takes
the value TRUE.

– If a 6= O, Pr(A, a) = (∃x ∈ PlaceA)VAA = a.
If a = O, Pr(A,O) = OEA.

A fourth family represents sets by “lists without repetitions”. Here again,
we get a representation as lists with operators:

• SU : (Place) → Place,

• PREM : () → Place,

• VA : (Place) → Alph,

• EG : (Place, Place) → Bool

It satisfies the same equations as the files.

• Vide is still the algebra such that Place = ∅.

• Aj(A, A) depends on the existence of a place x, such that VAA(x) = a.

– if (∃x ∈ Place)VAA(x) = a) then Aj(A, a) = A

– else Aj(A, a) is defined as in the second model.

• Pr(A, a) = (∃x ∈ Place)VAA(x) = a

Along the third representation, we could build other representations, in par-
ticular, not only one element in Alph, but two, three,, n etc. In another hand,
we could develop other representations based on search binary trees [AHU74].
We will not address them here.

25

Notation In what follows we will adopt the following conventions:

VIDE will be written ∅.

AJ(e, a) will be written a+ e.

6.3 The circular lists

Consider the abstract data type listcirculaire

Figure I.8 represents representations13 obtained by applying Rot on the
Listcirculaire (the circular list) AJ(AJ(AJ(LV IDE, c), b), a). We notice that
we need four states for a representation which we can imagine to be much
simpler, by using primary algebras. For a simple representation, we define two
0-ary operations.

T, Q : ()→ Noe

and one unary operation
S : (Noe)→ Noe.

S is defined everywhere and satisfies

S(Q) = R.

It is easy to build Rot(A) = B as follows (Figure I.9):

RB = SA(RA)

SB = SA

QB = SA(QA) which is therefore RB.

13Note at translation: This refers to a construction described in Chapter II, which consists
in making each term a daughter algebra, in a rather straightforward way.

26

AJ

AJ A

AJ B

LV IDE C

Original list AJ

AJ B

Rot C

AJ

LV IDE A

3rd state

Rot

AJ

AJ A

AJ B

LV IDE C

1st state

AJ

AJ B

AJ C

LV IDE A

4th state

AJ

Rot B

AJ

AJ A

LV IDE C

2nd state

Figure I.8: Canonical representation of Rot

It seems that the second “representation” is the most natural one and it is
amazing that the abstract data type suggests the first one. This comes the fact
that the algebraic specification, in other words the rewriting mechanism, induces
a representation by trees instead of any other representation. This refers to a
most general problem well known in data bases. It is difficult to specify simply
and efficiently a circular structure and reciprocally to implement efficiently and
without error the specification of such a structure.

27

A

R

��
C Q

00

dd B

Original list

A

Q

��
C

00

Rbb B

Final list

Figure I.9: A more natural representation of circular lists

28

Chapter II

Algebraic study of the
representation of an
Abstract Data Type

This chapter has essentially two parts. In the first part, we present several
algebraic aspects of abstract data types and their representations: rewriting
type algebras, representations by algebras. In the second part we present a
canonical representation of an abstract data type.

Convention In this chapter, we take the convention to write Ti the sort
associated with the abstract data type which we define, also called the type
of interest and Ext1, ..., Extm the types which are parts of the definition, also
called parameter types.

1 Abstract data types and rewriting

1.1 Rewriting systems [Hue77, RV80]

We can consider abstract data types as rewriting systems, where each identity
is oriented, in other words, each identity is a couple (not a pair) g → d and is
called a rewrite rule.

We present here relativity informally the concepts of rewriting. In particular,
the concept of occurrence of a sub-term is presented intuitively. Huet [Hue77]
gives a more complete treatment.

A substitution is a family σ = {x1 := t1, ..., xn = tn} of couples variable-
term. The application of the substitution σ to the term t is the term σt obtained
by substituting each occurrence of xi by ti.

A term t rewrites in a term t′ if

• there exists a sub-term s of t,

29

• there exists a substitution σ

• there exists a rule g → d

such that σg = s and t′ is the term obtained by replacing in t, s by σd.
We write then t→ t′. The transitive and reflexive closure is written ∗−→.

A terms is irreducible if t ∗−→ t′ implies tt′, in other words t can no more be

reduced. A system is confluent or has the Church Rosser property if t ∗−→ t1 and

t ∗−→ t2 imply that there exists t′ such that t1
∗−→ t′ and t2

∗−→ t′ (Figure II.1). If

t

∗

��

∗

��
t1 t2

⇒

t

∗

��

∗

��
t1

∗
��

t2
∗

��
t′

Figure II.1: Confluence or Church-Rosser property

the rewrite system is confluent, each term rewrites in at most one irreducible
term µ[t] which is called its normal form. The function µ is, in general a partial
function.

A rewrite system is noetherian or has the finite termination if for each term t,
there exists no infinite sequence such that t0 → t1 → · · · ti → ti+1 → · · ·

A rewrite system is complete, if it is confluent and noetherian. In case of con-
fusion with another concepts of completeness we will say confluent-noetherian.
Musser [Mus78] proposes the term convergent.

If a system is complete, we can associate one normal form with each term.
Hence the function µ is total.

1.2 Confluence in the case of Abstract Data Types

The Knuth-Bendix algorithm [KB70, Hue77] tests the confluence of a rewrite
system. It proceeds as follows: g and g′ are supposed to have distinct variables,
a term g is superposable to g′ if there exists a sub-term s of g′ (no reduced to
variable) and a substitution σ of g such that σg = σs. The term σg′ is called
the result of the superposition.

A rewrite system is locally confluent if t → t1 and t → t2 imply that there
exist t′ such that t1

∗−→ t′ and t2
∗−→ t′.

Knuth and Bendix show that it is enough in order to test the confluence of a
noetherian system to test the local confluence on the left hand sides σg′ of rules
which result of a superposition, more precisely in the case the substitution σ is
“the most general”, called unifier (cf Chapter VI).

From experience, we noticed the following phenomenon:

30

t

�� ��
t1 t2

⇒

t

�� ��
t1

∗
��

t2
∗

��
t′

Figure II.2: Local confluence property

In an abstract data type, the left-hand side of rewrite rules are generally
not superposable.

Here is the explanation of this phenomenon. The operators of signature
...→ Ti can be partitioned into two families.

– the generators, i.e., those which appear in normal forms.

– the secondary operators, i.e., those which do not appear in normal
forms. We call them destructors. More precisely a destructor has a
signature (Ti,Exti1 , ..., Extin)→ Ti.

and
|µ(f(x, y1, ..., yn))| < |µ(x)| for every expression x.

| | is the length.
A selector is an operator of signature ...→ Exti.
Most of the rules of an abstract data type have the form H(t1, ..., tn) → t

where t1, ..., tn are secondary operators. Thus if there is a superposition of a
left-hand side H ′(t′1, ..., t

′
n) on H(t1, ..., tn), it cannot appear in a strict sub-term

since these sub-terms do not contain secondary operators.
Thus H ′ = H and there exists a substitution σ such that

σt1 = σt′1, ..., σtn = σt′n.

Therefore, the term H(σt1, ..., σtn) rewrites into two ways σt and σt′. This
ambiguity is often embarrassing in a specification: this is why we avoid it as
most as possible. This leads to avoid all cases of superposition. We could even
imagine an automatic system which detects the superpositions, let the specifier
know about them and possibly tells him whether there is local confluence1.

Example 1. Take again the example of File of Section 5.1.2 Assume the
specifier writes the rules:

(CONCAT1) CONCAT1(f, FILEVIDE) = f

1Note at translation: Four years later, I created such a system called Reve [Les83].
2Note at translation: There is a mistake in the original, because this is actually Example 6.1

of Chapter I.

31

then

(CONCAT2’) CONCAT (f, AJ(f’, a)) = CONCAT(AJ(f,FR(AJ(f’,a))),OT(AJ(f,f’)))

then finds out another rule:

(CONCAT2) CONCAT(f, AJ(f’,a)) = AJ(CONCAT(f,f’), a)

The second and the third rules superpose trivially, the rule (CONCAT2’)
which is a little too complicated can be removed. A reason will occur in Ex-
ample ??.

Notice that those two rules do no reduce so obviously one to the other, since
the proof of their equivalence is not by rewriting, but requires induction.

1.3 Termination in the case of Abstract Data Types

The finite termination, which is subtle to proof in the most general algebraic
systems, is often easy to test in “well built” abstract data types. For that, we
use a criterion proposed by Musser [Mus78].

Definition 1. Let F and H be two operators, a rule H(t1, ..., tn) → t reduces
F if it exists i ∈ {1...n} and terms s1, ..., sn such that ti ∈ F (s1, ..., sp) and all
occurrences of H in t have the form H(si, ...sn) where si is one of the sj’s for
j ∈ [1..p] (Figure II.3).

Figure II.3: Reduction scheme of F

Translation under work.

32

Bibliography

[AHU74] A. Aho, J. Hopcroft, and J. Ullman. The Design and Analysis of
Computer Algorithms. Addison-Wesley Publishing Company, 1974.

[Ars78] Jacques Arsac. La construction des programmes structurés. Dunod,
Paris, 1978.

[AW76] E. A. Ashcroft and W. W. Wadge. Lucid - a formal system for
writing and proving programs. SIAM Journal of Computing, 5(3),
1976.

[BD77] R. M. Burstall and J. Darlington. A transformation system for
developing recursive programs. Journal of the ACM, 24(1):44–67,
1977.

[Bel78] Bellegarde et al. MEDEE a type of language for constructing pro-
grams. In Wokshop on reliable software, Bonn (Germany), 1978.

[BW79] F. H. Bauer and H. Wössner. Algorithmic language and program
development. Prentice Hall, Inc., London, 1979.

[CCD+79] J. Chabrier, J. J. Chabrier, J. C. Derniame, P Henry, R. Minot,
and C. Proch. Le langage ATM: manuel d’utilisation. CRIN (à
parâıtre), 1979.

[dBdR72] J. W. de Bakker and Willem P. de Roever. A calculus for recursive
program schemes. In ICALP, pages 167–196, 1972.

[dR74] W. P. de Roever. Operation, mathematical and axiomatized se-
mantics for recursive procedures and data structures. Technical
report, Mathematical Center, Amsterdam, 1974.

[Fin77] Jean-Pierre Finance. Data structures as a framework to formalize
the semantics of a programming language. In B. Robinet, editor,
Comptes-Rendus du 2e Colloque sur la Programmation, pages 75–
88, Paris, 1977. Dunod.

[FVV78] Jean Françon, Gérard Viennot, and Jean Vuillemin. Description
and analysis of an efficient priority queue representation. In 19th

33

Annual Symposium on Foundations of Computer Science, Ann Ar-
bor, Michigan, USA, 16-18 October 1978, pages 1–7. IEEE Com-
puter Society, 1978.

[GP77] Marie-Claude Gaudel and Claude Pair. Les structures de deonnées
et leur représentation en mémoire. Technical report, IRIA, 1977.

[GTWW75] J. A. Goguen, J. W. Thatcher, E. G. Wagner, and J. B Wright.
Abstract data type as initial algebras and correctness of data rep-
resentations. In Proceeding of Conference on Computer Grapics,
Pattern Recognition and Data Structures, May 1975.

[Gut77] John V. Guttag. Abstract data type and the development of data
structures. Commun. ACM, 20(6):396–404, 1977.

[Gut78] John V. Guttag. Notes on type abstraction. In Friedrich L. Bauer
and Manfred Broy, editors, Program Construction, International
Summer School, July 26 - August 6, 1978, Marktoberdorf, Ger-
many, volume 69 of Lecture Notes in Computer Science, pages
593–616. Springer, 1978.

[Hoa72] C. A. R. Hoare. Proof of correctness of data representations. Acta
Inf., 1:271–281, 1972.

[Hue77] Gérard P. Huet. Confluent reductions: Abstract properties and
applications to term rewriting systems. In 18th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island,
USA, 31 October - 1 November 1977 [IEE77], pages 30–45.

[IEE77] IEEE Computer Society. 18th Annual Symposium on Foundations
of Computer Science, Providence, Rhode Island, USA, 31 October
- 1 November 1977, 1977.

[KB70] Donald E. Knuth and P. B. Bendix. Simple word problems in
universal algebras. In J. Leech, editor, Computational Problems in
Abstract Algebra, pages 263–297. Pergamon Press, Oxford, 1970.

[Les83] P. Lescanne. Computer experiments with the REVE term rewriting
systems generator. In Proceedings of 10th ACM Symposium on
Principles of Programming Languages, pages 99–108. ACM, 1983.

[Liv78] C. Livercy. Théorie des programmes. Dunod, Paris, 1978. Livercy
stands for Jean-Pierre Finance and Monique Grandbastien and
Pierre Lescanne and Pierre Marchand and Roger Mohr and Alain
Quéré and Jean-Luc Rémy. Available at http://perso.ens-lyon.
fr/pierre.lescanne/publications.html.

[LS77] Daniel J. Lehmann and Michael B. Smyth. Data types (extended
abstract). In 18th Annual Symposium on Foundations of Computer
Science, Providence, Rhode Island, USA, 31 October - 1 November
1977 [IEE77], pages 7–12.

34

[LZ74] Barbara Liskov and Stephen N. Zilles. Programming with abstract
data types. SIGPLAN Notices, 9(4):50–59, 1974.

[LZ77] B. Liskov and S. Zilles. Current trends in Programming Methodol-
ogy, chapter An Introduction to formal specification of Data Ab-
straction, pages 1–32. Prentice Hall, 1977. R. Yeh ed.

[Mor73] James H. Morris. Types are not sets. In Patrick C. Fischer and Jef-
frey D. Ullman, editors, Conference Record of the ACM Symposium
on Principles of Programming Languages, Boston, Massachusetts,
USA, October 1973, pages 120–124. ACM Press, 1973.

[Mus78] D. Musser. Convergent sets of rewrite rules for abstract data types.
Technical report, USC Information Sciences Institute, 1978.

[Pai74] Claude Pair. Formalization of the notions of data, information
and information structure. In J. W. Klimbie and K. L. Koffeman,
editors, Data Base Management, Proceeding of the IFIP Work-
ing Conference Data Base Management, Cargèse, Corsica, France,
April 1-5, 1974., pages 149–168. North-Holland, 1974.

[Pai79] Claude Pair. La construction des programmes. Reveu dAutoma-
tique, d’Informatique et de Recherche Opérationnelle, 2:113–137,
1979.

[Pie68] R. S. Pierce. Introduction to the theory of Abstract Algebras. Holt,
Rinehart and Holt, 1968.

[RV80] J.-C. Raoult and J. Vuillemin. Operational and semantic equiva-
lence between recursive programs. Journal of the ACM, 27(4):772–
796, 1980.

[Ré74] Jean-Luc Rémy. Structure d’information et notion d’accès et de
modification d’une donnée. PhD thesis, Université de Nancy I,
1974.

[WLS76] William A. Wulf, Ralph L. London, and Mary Shaw. An intro-
duction to the construction and verification of alphard programs.
IEEE Trans. Software Eng., 2(4):253–265, 1976.

35

