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Introduction

1 The problem of programming

The programming activity can be decomposed into two major steps:
1. The first step goes from a problem statement to an algorithm.

2. The second step goes from an algorithm on abstract objects to a program
on data in order to produce an execution on a machine.

In this thesis we speak only of the second step. In the sense given here an algo-
rithm is a description of the operations on the inputs of a program to produce
the outputs or the results.

The algorithm deals with abstract objects expressed in a mathematical lan-
guage. If good tools are available the algorithm and the description of the
abstract objects do not make reference to an execution or to a computer run.
For this reason we can call this description static.

For instance, to express algorithms, we can use applicative languages describ-
ing recursive functions or single assignment languages defining sequences [AWT76,
Bel78]. For abstract objects a similar description is possible. For instance, an
algebraic specification allows u to describe abstract data types only by relations
on operations.

On the opposite, a program is a description of pieces of computations, that
can be run on a computer. Therefore the data that the program handles shall
be run by the computer. The actions which are components of the computation
are modifications of the memory state.

If several methods have been proposed for going for an algorithm to a pro-
gram [Ars78, BD77, Pai79, BWT79], going from an abstract data type to a data
structure was less solved by now. There are three categories of problems:

e the problem of the representations,
e the problem of the assignment,
e the problem of data sharing.

The problem of representation can be pictured as follows: an object of an
abstract data type is a black box with buttons: in order to get an external value,



we push the adequate button. Some operations combines boxes. The user does
not want to known what is inside boxes, but only to know how boxes react
to external requests.! To represent an abstract data type is to give a possible
description of the internal structure of the boxes. We may imagine that building
this representation is done more or less automatically.

The problem of assignment occurs as soon as we want to run a sequence of
computations and make values to vary. The use of a an abstract data type in
a algorithm requires all the objects of the types are available at each time, at
leas potentially. This is possible in particular cases. For instance in a computer,
natural numbers can be simply denoted and are accessible at each time. However
in built-in types like stacks, this is different. At a given time, only a small
number of objects are available via identifiers and therefore are present in the
store. This identifiers can also share objects. For instance, an identifier can be
associated with a sequence of push’s and pop’s. In a program, at a given time,
it refers to the last stack. Therefore it is needless to access all the stacks. Then
we raise the following question: how to represent stacks such that push is as
simple as possible? Since only the last stack is of interest, it can be obtained
as a modification of the last stack. Another question is: how to minimise these
modifications? The answer to this question leads to an in situ modification of
the objects. In other words, a minimum number of modifications are performed
on the object without moving it. In short, we must minimise time duplications
of objects.

The problem of data sharing occurs whenever we want to use at the best
the memory space, doing so that different objects might access commons sub-
objects, which do not need to be duplicated. In short, we must minimise space
duplications of objects.

Addressing these tree problems assumes that we know well the representa-
tion of the objects and that we own a good mathematical modelling. Thus,
reasoning will be rigorous and a mechanisation can be addressed. It seems that
much comes from a good approach of the concept of representation. Therefore,
I will address essentially representation, hopping that I will be able to draw
consequences for the two other problems.

In this thesis, two approaches are proposed:

e an algebraic approach formalises the concept of a set with operations,

e an relational approach axiomatises the relations with the aim of describing
the objects.

A third possible approach is based on the first order predicate calculus. You
can find it in Remy’s PhD [Ré74] or in the papers of Pair [Pai74] or of Fi-
nance [Fin77].

L Note at translation: This looks like object oriented programming, but this was stated
before that paradigm existed.



2 Programming vs representing objects

Representing abstract data types by objects available in a programming lan-
guage requires an intermediate step, namely a representation in terms of math-
ematical objects. Those objects are later described by computer tools. Eventu-
ally, these three entities are the three edges of the triangle drawn on Figure 1.

Abstract Data Types

o
Math objects Computer objects

Figure 1: The steps toward the representation

When the function described by the dotted arrow ¢ has been found, the problem
of the representation has been solved. Since, we assume that we know b, the
central problem is a.

The mathematical objects, called “representations”, can be seen another
way: they are the first objects which the programmer takes in consideration
and which he (she) addresses. Once using these objects, he (she) draws relations
among operations, he (she) deduces the abstract data types with which he (she)
is going to describe the algorithm. Possibly he (she) adds new operations to
the abstract data type. Possibly as well, in the use of the abstract data type in
algorithms, he (she) notices that a specific operation occurs more than the others
and requires to be implemented more efficiently. This leads the programmer to
look carefully at the mathematical objects on which he (she) reasons. This may
involve another family of representations, which improves the implementations.
See for instance [FVVT8].

3 The aims of this thesis

The results of this thesis are essentially the representations of abstract data
types by algebraic models. Indeed, we build a model of an abstract data type,
aka type algebra (the mother algebra) whose objects are also algebras, called
daughters and whose operations are operations on those daughter algebras. After
describing a family of daughter algebras representing the abstract data type
“binary tree”, the theorem of the algebraic representation of binary trees claims
that these daughter algebras are actually a model of the type “binary tree”.
The theorem of the canonical representation claims that if the abstract data
type is “correctly specified”, such a model exists always. The proof is an explicit
construction of this model. In general, the models are not isomorphic. Actually,
several representations are proposed for sets and for graphs.The proposition of
complete discrimination characterises the abstract data types whose models are
isomorphic.



On another hand, in this thesis, the problem of the non determinism is
addressed at two levels:

o At the level of the operations of the abstract data type, the theorems of
C-stability and of P-stability give conditions on equations in order to make
the abstract data type consistent when non deterministic operations are
accepted.

o At the level of the representations, the theorem of the relational represen-
tation of lists is symmetric to the theorem of the algebraic representation
of binary trees, when one admits operations of daughter algebras to be
relations.

Eventually, addressed for relational algebras, the problem of formal proofs
in algebraic systems is considered and experimental results are proposed.

4 Plan of the thesis

This thesis has two parts:
e the algebras, chapters I, IL,, III, IV and

e the relations, chapters V and VI.



Chapter 1

An algebraic framework for
studying abstract data

types

1 Introduction

The aim of this work is double:

e to set nicely, around the concept of algebra, several approaches of data
structures,

e to propose an algebraic framework for theories of the representation of
Abstract Data Type in a programming language with assignments, hence
with a semantics involving state changes.

We can set the formalism for data structures into two large families [Gut78].

e In a first kind of approach, an object of some structure can possibly evolve
in time and be modified; but in order to stay in the structure, it must
satisfy along time, either an invariant predicate (this is the approach of
Hoare [Hoa72], Wulf [WLST76]), or a family of axioms and its consequences
(this is the approach of Pair [Pai74], Remy [Ré74] and Finance [Fin77] see
also [GP77]).

A construction of an object from other objects is described by a program
in Hoare’s approach and by adding modifications to axioms in the Nancy
approach. For reasons of harmony and for more mathematical simplicity,
which we will justify later on, we propose here to describe an object as
an algebra; we speak on “daughter algebras” in opposition to “mother
algebras” or type algebras which are the mathematical foundation of the
description with an abstract data type. The invariance or the membership



to the structure is then translated by the requirement for the daughter al-
gebras to stay in a class of algebras. This class of algebras is characterised
by properties of first or second order. In particular, this class is not an
equational class aka a variety. We build a new daughter algebra by ex-
pressing its operations from those of one algebra or of many other algebras.
If we do not wish to build a new algebra, but to provide a fixed element of
an algebra, we speak of a selection. The operation in a daughter algebra
which is used to “retrieve” an element in the algebra from other elements
is called an access. Speaking in term of algebras allows us to characterise
them nicely.

In Chapter 5, another approach which we still keep in the same family,
is proposed. It is based on Tarski theory of relational algebras and uses
ideas proposed by de Bakker, Hitchcock, Park and de Roever ([dBdR72],
[dBdR72], [dR74], see also [Liv78]). It recalls Finance, Pair and Remy
approach and takes advantage of the algebraic tool to promote a strict
rigour, hoping a possible mechanisation (Chapter 6).

e In a second family of approaches, an algebraic description is used and is
based on specific operations ruled by axioms on those operations, thus
characterising an abstract data type, which is the set of objects we are
interested in and the set of transformations that are assigned to them
[Gut77, GTWWY75, LZ77]. This approach is more abstract, since in one
sight we look at all the objects and all their constructions.

2 Binary trees

2.1 Algebras “Binary Trees labelled by Alph”

We sees immediately that two sorts of objects appear, the trees and the values.
Let us denote the first Arb and the second Val. Here Val = Alph U INDEF where
INDEF ¢ Alph. Further, we define operations which allow us to extract sub-trees
and to construct new trees. Each operation has a signature, that is a description
of its operands and of its result. Thus CONS which builds a binary tree, from
two trees and from a value, has signature:

(Arb, Val, Arb) — Arb

which means that its first operand is a tree, that its second operand is a value,
that its third operand is a a tree and that its result is a tree. We keep this
notation in what follows.

Similarly, the operations GAU, DRO! have signature

(Arb) — Arb

L Note at translation: Arb stands for arbre which means tree, GAU stands for gauche which
means left, DRO stands stands for droite which means right, TET stands for téte which means
head, VID stands for vide which means empty.



and associate, with a tree x, another tree called the left-hand side or the right-
hand side of the tree . TET has signature:

(Arb) — Val

and associates, with a tree, a value, namely the label at the head of the tree.
Thus, we build an algebraic structure which we call a heterogeneous algebra or
a many sorted algebra. Such an algebra is characterised by a family of sets,
namely the sorts? and a family of operators of a given signature.

The operations CONS, GAU, DRO and TET satisfy identities which charac-
terise the binary trees and are well known by programmers:

GAU(CONS(z,v,y)) = =z (I.1)
DRO(CONS(z,v,y)) = vy (1.2)
TET(CONS(z,v,y)) = v (1.3)

These three identities give the properties of the operations on binary trees
but do not tell what a binary tree is. Here is a possible answer: a binary tree is
an object which can be described by a constant expression. But to speak of a
constant expression, we need at least one constant. The simplest one is the one
which describes the empty tree, written VID. Moreover it allows by composition
with CONS to describe all the binary trees. With no parameter and with a
result tree, this is a 0-ary operation. We write its signature:

() = Arb
Similarly we introduce v + 1 operations (where v is the cardinal of Alph) of
signature:

() — Arb
which correspond to the elements of Alph or to an undefined element written
INDEF. We get the equation

TET(VID) = INDEF (I.4)

Every tree can be represented using the operations CONS, GAU, DRO, TET, VID
and using the elements of the family Alph U {INDEF}. It is interesting to study
the algebras that contain only those elements, in other words the algebras that
satisfy the equations 1.2, 1.3, 1.3 and 1.4 and that contain only the elements built
using CONS, GAU, DRO, TET, VID and using the elements of the family Alph
U {INDEF} . Such an algebra is called a primary algebra®. Notice that such an
algebra may contain infinitely many elements of the form GAU(VID), DRO(VID),
GAU(GAU(VID)), GAU(DRO(VID)) etc. In computer science, this makes no sense
to consider those elements as different. Two solutions are possible, to create a
tree ERR: () — Arb, which represents an errored tree, resulting from an error in
applying GAU or DRO. Then, we state

2Some authors especially the logicians, speak, in this case, of types; this word has several
meanings for the computer scientists, rarely this of sets of objects [Mor73], this is why we
prefer the word “sort”.

3This naming comes from the fact that Z/pZ is a unitary ring without proper sub-ring, if
and only if p is a prime number.



GAU(VID) = GAU(ERR) = GAU(ERR) = DRO(VID) = DRO(ERR) = ERR
together with the axioms which state that the result of an operation on a tuple
containing on ERR is ERR. Another solution which avoids introducing ERR, but
does not distinguish trees, yielded by errored operations, is to state:

GAU(VID) = VID = DRO(VID). (L5)

For simplicity, we adopt the second solution.

Notations If 2 is an algebra, then Arbg and Valg denote the sets of sort Arb
and Val in the algebra 2.
Then we notice that:

Proposition 1. Let A be a primary algebra,
x € Arbg Az # VID = (Jy € Arbg)(3z € Arbg)(Jv € Valy) x = CONS(y,v, 2)

Proof. By induction on the possible representations of x, since all the elements
of Arbg admit a representation on basic elements.

First case. x = GAU(2’), if 2/ = VID then z = VID and the result is straight-
forward, else, by induction, z = CONS(y’, v, 2’), since clearly x admits a sim-
pler representation on basic elements, hence x = GAU(CONS(y,v’,2')) = ¢/

where 3’ has a simpler representation than x, hence still by induction, y' =
CONS(y",v",2") = x.

Second case. x = DRO(z’) works like the previous case.

Third case. x = CONS(y,v, z) involves no proof. O
Proposition 2. z # VID = z = CONS(GAU(z), TET(x), DRO(x)).

Proof. From the previous result, x = CONS(y, v, z). Hence

CONS(GAU(z), TET(x),DRO(z)) = CONS(y, TET(x),DRO(z))
= CONS(y,v,DRO(x))
= CONS(y,v,2)
= =z
by applying the equations 1.2, 1.3 and 1.3. O

We would show easily that all the algebras which satisfy 1.2, 1.3, 1.3, 1.4 and
I.5% are isomorphic, in other words each of them defines the binary trees. One
of them is the class of terms without variables modulo the equations.

4 Note at translation: They have to be primary and to satisfy no identity which is not a
consequence!
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Figure I.1:

2.2 Algebras “One binary tree”

If we looks at a tree, we notice that there are nodes and that, from each of
these nodes, we can reach another node, either on the left, or on the right or
we can get a value. Therefore we can consider a binary tree as a finite algebra
with a set Noe of nodes, a set Val of values (which we suppose equal to Noe U
{INDEF}) and operations G, D : (Noe) — Noe, VA: (Noe) — Val and T: — Noe.
We are not so much interested by a specific algebra, but a family of algebras
satisfying properties.

In these algebras, G and D are not defined everywhere. We call them partial
algebras. Those algebras are the daughter algebras of the abstract data type,
called the binary trees.

Thus the binary tree of Figure I.1 can be represented by a finite algebra
where Noe = {®,©, @, 0}, Val = {a, b, ¢} and the operations are defined by

G|D|VA
® Q|0 a
oo a T=®
o b
© c

Here are the properties that this algebra has to satisfy.

a) A node is on the left of at most another node and on right of at most
another node. To claim this property we need another set Bool and another
total operation EG : (Noe, Noe) — Bool together with

TRUE, FALSE : () — Bool.

10



We also claim the following inequations:

EG(z,y) & EG(y,x)
EG(G(z),G(y)) T EG(z,y)
EG(D(z),D(y)) T EG(z,y)
EG(G(z),D(y)) T FALSE (L6)
EG(G(z),T) T FALSE
EG(D(z),T) T FALSE
EG(T,T) T TRUE

Here we use the sign C to tell that the left-hand side is less defined than
the right-hand side, or, said otherwise, that if the left-hand side is defined
then the right-side is defined and both side are equal. Thus the algebra
(Figure 1.2) such that Noe = {x, A,0} and such that G, D and VA are
defined by

G| D|VA

* [ A |O] a
A 0 T =x

c

is not candidate to represent a tree. Indeed EG does not satisfy the relation

Y D
Figure 1.2: This is not a tree

EG(D(x),D(y)) E EG(z,y)
since if x = % and y = A then D(z) = D(y) = 0.

Each node of the algebra is reached. This is expressed by saying that all
the operations of signature ()—Noe, which are defined, represent all the
nodes. In term of algebra this means that the algebra is generated by 0
(see [Pie68] p. 105) or what is equivalent that the algebra does not contain
proper sub-algebras, like previously. We will call such algebras, primary
algebras. For instance, the algebra such that Noe = {$, ®,6,0,0},

11



G| D|VA
EG @ ® o ©) %)
a
S @ | TRUE | FALSE | FALSE | FALSE | FALSE
& b T — ® | FALSE | TRUE | FALSE | FALSE | FALSE
ololol a =® S | FALSE | FALSE | TRUE | TRUE | TRUE
® | FALSE | FALSE | TRUE | TRUE | TRUE
© @| b © | FALSE | FALSE | TRUE | TRUE | TRUE
@ ®| c

satisfies the equations and the inequations of a) despite this is not a tree
(see Figure 1.3).

Figure 1.3: This is still not a tree

¢) The operations VA and EG which provide external values are total.
d) For each algebra 2 the sets Valy and Booly are the same.
We write AA[Alph, Bool] the class of algebras that satisfies a), b), ¢) and d).

Let us consider on AA[Alph, Bool] several operations.

Cons: Cons : AA[Alph, Bool] x Alph x AA[Alph, Bool] — AA[Alph, Bool] is defined
as follows.
Given two daughter algebras (i.e., two binary trees) 2 and % and v € V,
Cons(2A,v,B) is the algebra € such that

e C =% UgxAUdxB where A = Noey, B = Noey and C = Noeg®

o T =x

* Ge(¥) = (g,

® De(x) = (d, T‘B)

. Ge((g,w)) (9:Ga(x))  De((g,2)) = (9, Da(x))
* Ge((d,z)) = (d,Ga(z))  De((d,z)) = (d, Da(x))

and such that

5 Note at translation: *, g and d are three fresh values.
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We have to prove:

Lemma 1. Cons(,v,B) is an algebra of AA[Alph, Bool].

Elements of a proof

a) We check by case that EGg satisfies the inequalities of 1.6. For instance,

EG(’:(GQ‘(x)’ G(’i(y)) C EG@(xv y)

in the case x = x and y = (g,y)

EGe(Ge(*),Ge((9,9") = EGe((g, Tan); (9,Gau(y')))
EGa(Tar, Gau(y'))
— FALSE

= EGG(*? (g7y/))

b) € is a primary algebra. Indeed each element of A is represented by a
composed operation of signature pg(Tg) : () — Noe. Therefore each
element of the form (g, z) is reached by a composed operation

(9, pa(Tat)) = pe(g, Ta) = pe(Ge(Te))

where pg corresponds to py in €. We do likewise for elements of the form
(d,pa(Tg)). For x, there is nothing to prove since it is represented by T¢.

¢) The operations VAg and EGe are trivially total.

d) Val and Bool are preserved. O

Gau: Gau : AA[Alph,Bool] — AA[Alph, Bool] is defined as follows: let 2 be a
binary tree, let B be the algebra such that:

13



Noeg = Noegl T% = GQ[(TQ[)
Gy =Gy Dg = Dy
VAg = VAy  EGg = EGy

B = Gau(2A) is the smallest sub-algebra (with operations Ty, G, Dss,
VAg, EQg), namely the algebra generated by (.

Lemma 2. Gau(2A) is an algebra of AA[Alph, Bool].

Proof. b), c), d) are obvious. For a), we have just to prove the equations dealing
with Ty, namely

EG«B(D%(IE),T%) = EGQ[(DQ[((E),GQ[(TQL)) = FALSE

EGy (G (), Te) = EGa(Ga (), Ga(Ta)) = EGa(z, Tar)

Since x € B and ‘B is a primary algebra, x is of the form = = py where py is a
variable free expression of B. Therefore there exists y € A such that z = Gy (y)
or z = Dy (y). Hence

EGw(z, Tes) = EGn (G (v), Ts) = FALSE

or

EGy (2, Tes) = EGn (D (y), Ts) = FALSE
Finally
EGa (T8, Tas) = EGar(Gar(Tar), Gar(Tar)) = EGau(Tar, Ter) = TRUE.
O

Dro: AA[Alph, Bool] — AA[Alph, Bool] is defined like Gau with the difference

that T = Dg(Ta).

Let us consider now a selection.

Tet: AA[Alph, Bool] — Alph defined as Tet(2A) = VAy(Ty).

Morphisms In AA[Alph, Bool] the morphims & are maps Noeg — Noegy which
satisfy:

e Tg is defined when it Ty is and

Ty =h(Ty)

e if Gy is defined than h(Gg) is defined and

Gy = h(Ga)

14



e if Dy is defined than h(Dsg) is defined and

Do = h(Ds)
e Moreover,
VAyx = h(VAg)
EGu(z,y) = EGwu(h(x),h(y))

If h is bijective, we say that h is an isomorphism. Since algebras are partial
algebras, there exists a unique algebra, i.e., a binary tree, with an empty
carrier Noe. Let us call it Vid. In Vid, Ty;q is not defined. It is obviously
primary. Naturally it represents the empty tree. Notice that if 2( is an
algebra of AA[Alph,Bool] which is not Vid, Ty is defined, otherwise, 2
would have a sub-algebra isomorphic to Vid.

Let us focus on the class of algebras in AA[Alph, Bool], in which Noegy is
finite and which a subset of a finite enumerable set D. If we want Cons,
Gau and Dro to be stable in this class we must have *x € D and if A C D
then {g} x D C D and {d} x D C D. Henceforth, we choose for D the
smallest set such that

DD {g,d} xD

The isomorphism ~ is a equivalence relation on the algebras of carrier D.
We show easily that Cons, Dro, Gau preserve isomorphism. That the value
of Tet does not change if we take an isomorphic algebra and that Vid does
not admit isomorphic algebras besides itself. Let us call AAF[Alph, Bool]
the equivalence class of algebras modulo isomorphism with nodes in D. Let
us call Cons’, Gau', Dro’, Tet' and Vid' the operations on AAF[Alph, Bool]
deduced from Cons, Gau, Dro, T et and Vid. We get the following theorem.

Theorem 1 (Algebraic representation of binary algebras). The algebra of ARB[Alph]
where Arb = AAF[Alph, Bool] and which has the operations Cons’, Gau', Dro’,
Tet' and Vid' is an algebra of ARB[Alph]. Moreover this is the initial algebra of
ARBJ[AIph]. -

Proof. Show first that € = Gau(Cons(A,v,B)) ~ A.
Consider the bijection h : 2 — {g} x 2, such that h(a) = g x a. This is a
morphism from 2 to €. Indeed let us state © = Cons(2, v, B).

e h(Ty) =Te because Te¢ = Gp(To) =g x Ty = h(Ty).
o 1 (Gg(x)) = Ge(h(z)) because
Ge(h(x)) = Ge((g,2)) = Go((g, 7)) = (9, Ga(x)) = h(Ga(z))

The proof of the equality h(Dg(z)) = De(h(x)) is the same as are the
proofs of VAy(z) = VAe(h(z)) and EGg(z,y) = EGe(h(x), h(y)). We also
)
(

show that Dro(Cons(2,v,%B)) ~ B. Moreover we have
Tet(Cons(A,v,B)) =

15



Indeed
Tet(Cons(A,v,B)) = VAp(To) =VAp(x) = v

To prove that Gau(Vid) = Vid, we have just to look at the definition
Gau(Vid). Let us consider the algebra B such that Noeg = Noey;q = 0.
T = Gyia(Tyia) is indeed not defined. This is the same for Gy = Gyig,
Das = Dyig, VAs = VA, EQy = EQyig. Thus Gau(Vid) which is the
smallest sub-algebra of 9B is Vid itself. Therefore Gau(Vid) = Vid. We
prove as well than Dro(Vid) = Vid. To prove that this is an initial algebra,
we need a lemma.

Lemma 3. Ift is a variable-free term built using the operations of the variety
Arb[Alph], then there exists a variable-free term t', built using only Cons and
Vid such that t =t'.

Proof of the lemma. By induction on the number of Gau’s and Dro’s in t.
Assume that there exist occurrences of Gau or Dro in t. Hence there exists at
least one occurrence, written f, occurring in f(Vid) or in f(Cons(g,v,d)).

If this is of the first form, the term ¢” in which we substitute Vid to f(Vid)
contains less occurrences of Gau or Dro and satisfies t” = t.

If this is of the second form, the term ¢” in which, we substitute, in ¢, g to
f(CONS(g,v,h)), if f = GAU and h to f(CONS(g,v,h)), if f = DRO, contains
less occurrences of GAU and DRO and satisfies t = t”. O

Proof of the theorem (next)

Each daughter algebra of AA[Alph, Bool] has only finitely many elements in
Noe. Moreover, if  is not Vid, Gau(2) and Dro(2A) are algebras with less
elements in Noe, fulfilling the property:

A = Cons(Gau(A),v, Dro(A))

Thus we can show that 2f can be decomposed uniquely, up to an isomorphism.
This result and the lemma show that the algebra is initial. Proposition 3, of
Section 2 of Chapter II will yield a simpler proof of the initially of AA[Alph, Bool].

O

2.3 Links with programming

The theorem we have just proved can be formulated as follows: “The alge-
bra AA[Alph, Bool| is a representation of the type ’binary tree’ by objects and
operations of a lower level of abstraction”. Those objects are more concrete,
because, among other concepts, they are built using pointers. This modelling
is a step toward programming, because daughter algebras, i.e., the algebras of
AA[Alph, Bool] are a good approach for objects represented in the computer, by
a programming language. The properties a), b), ¢) d) are invariants of con-
structions. For instance, the statement: “the algebra is primary” is for the
programmer the natural statement: “at any time, a tree contains only nodes
that can be reached from the head”.
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Translation in a programming language
In ALGOL 68

As an illustration, we show how the objects of AA[Alph, Bool] can be translated
into ALGOL 68. Sorts are modes®. We assume that the mode Alph is known.
mode Alph...

The mode Noe should provide a mean to yield a value by VA and to access
two nodes by G and D. It is naturally translated by:

mode Noe struct(rep Noe G, Alph VA, rep Noe D)

As we saw, a tree gives a node, a value and two access functions G and D
yielding a node from another node, through a pointer. VA is available at each
node. Therefore T is the only node that we must provide when we give a tree.
Thus a tree is given by the only natural access T

mode Arb =  struct(rep Noe T) (1.7)

This definition may look sophisticated to an expert programmer (we discuss
further a definition of a tree by mode Arb rep Npe and the removal of all the
expressions “T of”. At first , we keep Definition 1.7 to show the reader how this
fits with the algebras we described.)

Constructions and selections are described by procedures.

e Thus GAU is described by
proc gau = (Arba) Arb : (G of T of a)
e CONS is described by

proc cons = (Arb a, Alph v, Arb b) Arb :
begin heap Noe* := (T of a,v, T of b)

In a language a la Pascal

We give a translation of the same objects and the same procedures in a Pascal-
like language with the difference that procedures are allowed to return results
of all the types described in the language:

type alph = ... ; noe = necond G :Tnoe ; VA : alph ; D : ! noe end i
arb = necond T :Tnoe end

function gau(a : arb) : arb ; begin gau. T : =a. T1. G end ;

function dro(a : arb) : arb ; begindro. T : =a. TT.D end

function tet(a : arb) : alph sbegin tet : =a. Tt. VA end 3

function cons(a : arb ; v : alph ; b : arb) : arb ;
begin var &toile : ! noe ; new (eétoile) ;
étoile .6 : = a. T ; etoile T.VA : =v ; étoilet.D : = b.T
cons.T : = gtoile
end

S Note at translation: modes are what languages like ML or Haskell call a types.
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If now in the Algol 68 program we replace the declaration mode Arb =
rep struct(rep Noe T) by mode Arb = (rep Noe) and if we remove expression
T of we get:

mode Alph = ...; mode Noe = struct (rep Noe G, Alph VA, rep Noe D);
mode Arb = rep Noe;

proc gau = (Arb a) Arb : G of a;

proc dro = (Arb a) Arb : D of a;

proc tet = (Arb a) Arb : nil;

proc vid = (Arb a) Arb : G of a;

proc cons = (Arb a; Alph v; Arb b) Arb : heap Arb := (a, v, b) .

Examining the mode declarations of Noe and Alph, we notice than we can
change them without changing the program by the unique declaration:

mode Arb = rep struct (Arb G, Alph VA, Arb D).

The only change will be on cons:

proc cons = (Arb a, Alph v, Arb b) Arb :
heap struct (Arb G; Alph VA; Arb D) Arb := (a, v, b) .

Discussion To state mode Arb = rep struct (Arb G, Alph VA, Arb D), is
to define the domain Arb as a fixed point:

Arb = {VID} + (Arb x Alph x Arb)

This is an extensional definition & la Scott (cf [LS77]) where the algebraic
aspect disappeared. An approach aiming at narrowing the extensional and the
algebraic aspects would be probably extremely fruitfully. However the definition
of the type Arb by

mode Arb = rep struct (Arb G, Alph VA, Arb D).

has two risks (see in particular the article of J. H. Morris “Types are not
sets” [Mor73]).

e The best known is surely the use of operations not foreseen when describ-
ing the type, with risks when running the program, which has much chance
to bug. Assignments like

Gof z:==z.

generate monsters which are not trees at least not finite trees. Indeed the
object a represented by z satisfies

Gof a=a.

Notice that programming languages like CLU, ALPHARD, ATM" protect
the programmer against such risks ([LZ74, WLS76, CCD*79])

" Note at translation: ATM is a confidential programming language developed in Nancy.
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e The second danger is the confusion of two different concepts, this of node
and this of tree. Figure 1.4 aims at illustrating the difference between
those two concepts. A node is an internal object that must be hidden
to the user of trees. This principle of hiding information is the warranty
of reliable software, because it avoids the modification of values that the
user should not access to. This protection could be enforced if we can
forbid the user to know about Noe. This could be done by putting the
declaration of Noe in a part of the program, not accessible to the user, for
instance, in the prologue. Thus the distinction between Noe and Arb and
the consecutive distinctions between GAU and G, DRO and D and TET and
T do not allow, for instance, the assignment G of z := z, already noticed,
since we can only access the nodes through the procedures gau, dro and
tet. Let us notice that only one value is attached to a node whereas a

a eee
& ©® O

Figure I1.4: A node and a tree

family of values is attached to a tree. Among them, one value is put in
evidence, namely the head (called tet)

Advantage of an algebraic approach. Let us notice that when program-
ming an abstract data type in a programming language, we have to prove that
the procedures represent the operations. Going through daughter algebras is a
convenient way to proceed.

Finally let us say that the example of binary trees has been chosen to illus-
trate type algebras and daughter algebras, because it is simple and because it
contains dyadic operations. But this example is less convincing when we go to a
representation in ALGOL 68, because this language contains structures closed
to those found in trees. Examples of Section 6 and Chapter 4 will provide more
convincing examples.

2.4 Binary trees and sharing

In the binary trees that we encountered, no sharing was possible. In the following
a restricted form of sharing is allowed. A same node can be both left and right
son of another node. In other words, we replace

EG(D(z), G(x)) C FALSE

b
' (EG(D(z), G(y)) = EG(z,y)) E TRUE
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where = is a well known Boolean operator.

O

Figure 1.5: A tree with sharing

On those trees, the operations Gau, Dro, T et and Vid are not modified. If 2
and B are two non isomorphic algebras, we define Cons(2l, a,B) like previously,
but if the algebras are isomorphic, we define € = Cons(2, a,B) as follows.

C={xjuA®

Te =+

Ge (%) = De(x) = Ty

if  # * then Ge(x) = Gy(x) and De(x) = Dy ().
EGe(x, ) = TRUE

if  # * then EGe(x, ) = EGg(,z) = FALSE

if x # % and y # * then EGe(z,y)) = EGe(y,z) = TRUE
VA(x) =a

if  # % then VAg(x) = VAy(z)

It is easy to prove that the algebras built that way fulfil the axioms of Figure 1.6.

Let Arbgs be the class of algebras that satisfy the axioms of Figure 1.6. On
Arbs and Alph, we define the operations Cons”, Gau', Dro”, Tet”, Vid", by
quotienting the operations Cons, Gau, Dro, Tet, Vid. Thus we define an algebra
of ARB[AIph] which is an initial algebra in this class.

3 Recall on homogeneous algebras

This section and the two following ones can be dropped in a first reading®.

Not translated

8 Note at translation: Assuming that * ¢ A.
9 Note at translation: For this reason, it is not translated.
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EG(z,y) T EG(y,x)

EG(G(x),G(y)) £ EG(z,y)
EG(D(z),D(y)) C EG(z,y)
EG(G(z),D(y)) = EG(z,4y) T TRUE
EG(G(x),T) C FALSE

EG(D(x), T) C FALSE

EG(T,T) C TRUE

Figure 1.6: The axioms of binary trees with sharing

3.1 Heterogeneous algebras

3.2 Construction of algebras

3.3 Free algebras and initial algebras

3.4 Generated algebras and primary algebras
3.5 Polynomial functions

3.6 Identities on algebras

4 Heterogeneous paramaterised algebras

Not translated
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4.1

4.2

4.3

4.4
4.5
4.6

Heterogeneous algebras and partial heterogeneous al-
gebras

Free heterogeneous algebras and initial free heteroge-
neous algebras

Generated heterogeneous algebras and primary het-
erogeneous algebras

Final algebras
Polynomial functions

Identities on heterogeneous algebras

5 Paramaterised heterogeneous algebras

6 Three examples: File, Set and Circular Lists

The +we three'? following abstract data types, which we are going to study, will
contribute with the abstract data type Binary Tree to illustrate the next chapter.

6.1 The Files

We will consider the files, denoted File, on an alphabet Alph. The operators are
the following:

FILEVIDE : () — File,

AJ : (File, Alph) — File,

OT : (File) — File,

FR : (File) — Alph U (INDEF),
CONCAT : (File, File) — File ;

They satisfy the identities:

0T1) OT(FILEVIDE) = FILEVIDE.

0T2) OT(AJ(FILEVIDE, a))) FILEVIDE,

0T3) OT(AJ(AJ(,), a), b)) AJ(OT(AJ(f.a)).b),
FR1) FR(FILEVIDE) = INDEF,

FR2) FR(AJ(FILEVIDE, a)) = a,

FR3) FR(AJ(AJ(f, a), b)) = FR(AJ(f.a))
CONCAT1) CONCAT(f, FILEVIDE) = f

CONCAT2) CONCAT(f,AJ(f',a)) = AJ(CONCAT(ff),a).

10 Note at translation: The example of Circular Lists is Section 4.4 of Chapter II in the
original document.
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This abstract data type has deep differences with the abstract data type,
‘binary trees’, which we studied in Section 2. In binary trees GAU and DRO
plaid antagonistic roles w.r.t. CONS. Here OT is not antagonistic w.r.t. AJ: we
do not “remove” the last element which we “added”; the specification of OT
is recursive, thus the left-hand side of the third equation contains OT; we find
similar properties with the specification of FR. CONCAT allows us to build a file
from two other files, but each file can be expressed uniquely from AJ, so that in
CONCAT(f,f"), the operator CONCAT can disappear completely. This is what
we call a secondary operator. Such an operator does not exist in binary trees.

The class of models FILE[Alph] proposed here is made of primary partial
finite algebras with the following operations:

SU : (Place) — Place,
PREM : () — Place,

VA : (Place) — Alph,

EG : (Place, Place) — Bool.

It satisfies the following inequations:

EG(PREM, PREM) C TRUE
EG(PREM, S U {x}) C FALSE

rf(co (2 NDrAAN— FAL O
type alph = ... ; noe = necond G :Tnoe ; VA : alph ; D : T noe end 3
arb = necond T :Tnoe end ;
function gau(a : arb) : arb ; begin gau. T : =a. T1. 6 end ;
function drofa : arb) : arb ; begindro. T : =a. T1.D end ;

function tet(a : arb) : alph sbegin tet ; =a. Tt. VA  end
funetion cons(a : arb ; v : alph ; b : arb) : arb ;
begin var étoile : ! noe ; new (eétoile) ;
étoile! .6 : =a. T ; étoile T.VA : =v ; éteilel.D : = b.T
cons.T : = étoile

end

Figure 1.7: Definition of the constructions Ot, Aj, Concat

Notations In what follows, we use sometimes the following conventions in
order to ease the understanding of formulas:

e FILEVIDE will be written A

o AJ(f,a) will be written f ©a
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o CONCAT(f,f") will be written f x f’

o INDEF will be written 7

ThuCSONCAT(AJ(f, FR(FILEVIDE,a), OT(AJ(AJ(FILEVIDE,a), b))
will be written
[fOFR(A®a)] =0T(A®a®b)
6.2 The sets
For the set!! we propose here the following description:
VIDE : () — Ens,
AJ: (Ens, Alph) — Ens,
PR : (Ens, Alph) — Bool.
They satisfy the following identities:
PR(AJ(e, a), b) = if EG(A, b) then TRUE else PR(a, b)
PR(VIDE, a) = FALSE

Three families of models will be presented.'?

The first family is made of algebras with essentially an operator €: (Alph —
Bool. We notice that in these models, no sort, in other words, no part of the
object, is hidden from outside. No category of objects has been added and
nothings holds for the sort Noe in trees or of the sort Place in files. We define
easily an operator.

e Vide is defined as €y ;4.= FALSE

o Aj(2A, A) is defined as follows: A € 45,4)= TRUE and when B # A,
B GAj(QLA): B €q.

e Pr(A,A)=A ey
The second family is made of the same objects as files, but
e Vide is the algebra such that Place = 0,

o Aj(2, a) is the algebra B such that Places = Placeg U {Placeg}. Let us
write a the new element:

PREMy = a.

1 Note at translation: “ensemble” means “set” and “vide” means “empty”. Pr stands for
“present” an alternative to “is in” in order to avoid confusion.
12 Note at translation: Actually four families are presented.
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if z € Placegg then SU{z}AVAg(xz)= VAy(z)
else SU{z} =PREMy AVAy(z) =a
if z,y € Placeg then EQu(z,y) = EQy(z,y)
if x € Placegy then EQg(z,a) = FALSE = EQg(a,x)
eventually EQx (o, o) = TRUE

o Pr(2,a) = (Jz € Placey)(VAy(z) = a)

The third family is less orthodox, it assumes that Alph contents one specific
element which we write O. If Alph would be the set of the non negative numbers,
it would be zero for instance. In those models, we define a sort Place. There
are three operators of the previous model and one operator OE: ()— Bool which
tells whether O belongs to the set or not:

e Vide is the algebra such Place = ) and OE = FALSE.
e In order to define Aj(2, a) two cases are to be considered

— if a # O then Aj(2,a) is defined as in the previous representation
and OEAj(g[ﬂ) = OEQ[
— Aj(2, 0) is the algebra % such that Placeys = Placeg. All the opera-

tions are the same on 2 and on B, except possibly OEg which takes
the value TRUE.

—Ifa# 0, Pr(,a) = (3z € Placey)VAy = a.
If a =0, Pr(,0) = OEq.

A fourth family represents sets by “lists without repetitions”. Here again,
we get a representation as lists with operators:

e SU : (Place) — Place,

e PREM : () — Place,

e VA : (Place) — Alph,

e EG : (Place, Place) — Bool

It satisfies the same equations as the files.

e Vide is still the algebra such that Place = 0.

o Aj(2A, A) depends on the existence of a place z, such that VAy(x) = a.
— if (3z € Place)VAy(z) = a) then Aj(A,a) =2A
— else Aj(2, a) is defined as in the second model.

e Pr(A,a) = (3z € Place)VAy(z) = a

Along the third representation, we could build other representations, in par-
ticular, not only one element in Alph, but two, three, ...., n etc. In another hand,
we could develop other representations based on search binary trees [AHUT74].
We will not address them here.
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Notation In what follows we will adopt the following conventions:

VIDE will be written 0.
Al(e, a) will be written a + e.

6.3 The circular lists

Consider the abstract data type listcirculaire

Type Listecirculaire [Alph]
Fonctionnal (e
LVIDE :() - Listecirculaire
AJ : (Listecirculaire, Alph) -» Listecirculaire,
ROT  :(Listecirculaire) - Listecirculaire
TET  :(Listecirculaire) - Alph U {INDEF}

AxdLomatique

ROT(LVIDE) = LVIDE
ROT(AJ(LVIDE, a)) = AJ(LVIDE, a)
ROT(AJ(AJ(a, b), a) = AJ(ROT(AJ(x, a)), b)
TET(x, b) = b

TET(LVIDE) = INDEF

Figure 1.8 represents representations'® obtained by applying Rot on the
Listcirculaire (the circular list) AJ(AJ(AJ(LVIDE,c),b),a). We notice that
we need four states for a representation which we can imagine to be much
simpler, by using primary algebras. For a simple representation, we define two
0-ary operations.

T,Q: () — Noe

and one unary operation

S : (Noe) — Noe.
S is defined everywhere and satisfies
S(Q) =R.
It is easy to build Rot(A) = B as follows (Figure 1.9):
Ry = Su(Ra)
Sy = Sy
Qe = Sa(Qu) which is therefore Rgs.

13 Note at translation: This refers to a construction described in Chapter II, which consists
in making each term a daughter algebra, in a rather straightforward way.
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@ Original list g 3rd state
@ 1st state
@ 4th state
2nd state

Figure 1.8: Canonical representation of Rot

It seems that the second “representation” is the most natural one and it is
amagzing that the abstract data type suggests the first one. This comes the fact
that the algebraic specification, in other words the rewriting mechanism, induces
a representation by trees instead of any other representation. This refers to a
most general problem well known in data bases. It is difficult to specify simply
and efficiently a circular structure and reciprocally to implement efficiently and
without error the specification of such a structure.
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A Original list

A Final list

c O (R)-| B

Figure 1.9: A more natural representation of circular lists
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Chapter 11

Algebraic study of the
representation of an
Abstract Data Type

This chapter has essentially two parts. In the first part, we present several
algebraic aspects of abstract data types and their representations: rewriting
type algebras, representations by algebras. In the second part we present a
canonical representation of an abstract data type.

Convention In this chapter, we take the convention to write T% the sort
associated with the abstract data type which we define, also called the type
of interest and FExtq, ..., Ext,, the types which are parts of the definition, also
called parameter types.

1 Abstract data types and rewriting

1.1 Rewriting systems [Hue77, RV80]

We can consider abstract data types as rewriting systems, where each identity
is oriented, in other words, each identity is a couple (not a pair) g — d and is
called a rewrite rule.

We present here relativity informally the concepts of rewriting. In particular,
the concept of occurrence of a sub-term is presented intuitively. Huet [Hue77)
gives a more complete treatment.

A substitution is a family o = {z1 := t1,...,2, = t,} of couples variable-
term. The application of the substitution ¢ to the term ¢ is the term ot obtained
by substituting each occurrence of x; by ;.

A term t rewrites in a term ¢’ if

e there exists a sub-term s of ¢,
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e there exists a substitution o
e there exists a rule g — d

such that og = s and t’ is the term obtained by replacing in ¢, s by od.
We write then t — /. The transitive and reflexive closure is written 2.

A terms is irreducible if t = t' implies tt’, in other words ¢ can no more be
reduced. A system is confluent or has the Church Rosser property if ¢ = ¢ and
t = to imply that there exists ¢’ such that t; = ¢ and ¢t = ¢/ (Figure II.1). If

/\ /\
\/

Figure II.1: Confluence or Church-Rosser property

the rewrite system is confluent, each term rewrites in at most one irreducible
term p[t] which is called its normal form. The function p is, in general a partial
function.

A rewrite system is noetherian or has the finite termination if for each term ¢,
there exists no infinite sequence such that tg —t; — ---t; = t;41 — -+

A rewrite system is complete, if it is confluent and noetherian. In case of con-
fusion with another concepts of completeness we will say confluent-noetherian.
Musser [Mus78] proposes the term convergent.

If a system is complete, we can associate one normal form with each term.
Hence the function y is total.

1.2 Confluence in the case of Abstract Data Types

The Knuth-Bendix algorithm [KB70, Hue77] tests the confluence of a rewrite
system. It proceeds as follows: g and ¢’ are supposed to have distinct variables,
a term g is superposable to ¢’ if there exists a sub-term s of ¢’ (no reduced to
variable) and a substitution ¢ of g such that cg = os. The term og’ is called
the result of the superposition.

A rewrite system is locally confluent if t — t; and t — to imply that there
exist ¢/ such that ¢t; = ¢t/ and t5 = t'.

Knuth and Bendix show that it is enough in order to test the confluence of a
noetherian system to test the local confluence on the left hand sides g’ of rules
which result of a superposition, more precisely in the case the substitution o is
“the most general”, called unifier (cf Chapter VI).

From experience, we noticed the following phenomenon:
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Figure I1.2: Local confluence property

In an abstract data type, the left-hand side of rewrite rules are generally
not superposable.

Here is the explanation of this phenomenon. The operators of signature
.. = T can be partitioned into two families.

— the generators, i.e., those which appear in normal forms.

— the secondary operators, i.e., those which do not appear in normal
forms. We call them destructors. More precisely a destructor has a
signature (T4, Ext;, , ..., Bxt; ) — Ti.

and
le(f(x, y1s s yn))| < ()] for every expression x.

|| is the length.

A selector is an operator of signature ... — Ext;.

Most of the rules of an abstract data type have the form H(ty,...,t,) — ¢
where tq,...,t, are secondary operators. Thus if there is a superposition of a
left-hand side H' (¢}, ...,t.,) on H(t1,...,t,), it cannot appear in a strict sub-term
since these sub-terms do not contain secondary operators.

Thus H' = H and there exists a substitution ¢ such that

oty = ot},...,ot, = otl,.

Therefore, the term H(oty,...,ot,) rewrites into two ways ot and ot’. This
ambiguity is often embarrassing in a specification: this is why we avoid it as
most as possible. This leads to avoid all cases of superposition. We could even
imagine an automatic system which detects the superpositions, let the specifier
know about them and possibly tells him whether there is local confluence!.
Example 1. Toke again the example of File of Section 5.1.2 Assume the
specifier writes the rules:

(CONCAT1) CONCATI(f, FILEVIDE) = f

I Note at translation: Four years later, I created such a system called Reve [Les83].
2 Note at translation: There is a mistake in the original, because this is actually Example 6.1
of Chapter L.
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then

(CONCAT?2') CONCAT (f, AJ(f', a)) = CONCAT(AJ(f,FR(AJ(f",a))),OT(AJ(f,f)))
then finds out another rule:

(CONCAT2) CONCAT(f, AJ(f',a)) = AJ(CONCAT(f,f"), a)

The second and the third rules superpose trivially, the rule (CONCAT2’)
which is a little too complicated can be removed. A reason will occur in Ez-
ample 77.

Notice that those two rules do no reduce so obviously one to the other, since
the proof of their equivalence is not by rewriting, but requires induction.

1.3 Termination in the case of Abstract Data Types

The finite termination, which is subtle to proof in the most general algebraic
systems, is often easy to test in “well built” abstract data types. For that, we
use a criterion proposed by Musser [Mus78].

Definition 1. Let F' and H be two operators, a rule H(t1,...,t,) — t reduces
F if it exists i € {1..n} and terms s1, ..., S, such that t; € F(s1,...,sp) and all
occurrences of H in t have the form H(s,,...s,) where s; is one of the s;’s for

j € [1..p] (Figure I1.3).

AN
7 AN
i\

1

Figure I1.3: Reduction scheme of F’

Translation under work.
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