
Information Structure: Formalisation of the

Notions of Access and of Data

Jean-Luc Remy

25 June 1974

Foreword for the translation

This is a faithful translation of parts of the Thèse de troisième cycle of Jean-
Luc Rémy entitled Stuctures d’information, formalisation des notions d’accès et
de modification d’une structure de donnée defended at the University of Nancy
(France) on the 24th June of 1974.

Notice that by lack of time, I translated only the parts that I found the
most interesting, but this is a matter of taste. The footnotes I wrote during
the translation are prefixed by Note of the translator. Possibly I made mistakes
during the translation. In case of doubt, do not hesitate to send a mail at
pierre.lescanne@ens-lyon.fr.

In this translation I decided to translate the French word “modification” by
the English word “modification” (a lazy decision for such an important concept
here), but I could have chosen “update” as well, which would be consistent with
the modern literature.

If you think that this thesis has been written in 1973-1974, you are amazed
by the clear-seeing of Jean-Luc Rémy. Many problems of computer science are
addressed. The mathematical approach is clear and rigorous using tools known
at that time. There is strict hierarchy of concepts from data, to information,
to information structure and modification, to computation, to program and to
problem as shows in the above picture:

information
structure

&&
data
structure

// information

99

&&

computation // program // problem

modification

88

Reader has to remember that logic for computer science and semantics of
programming language were in their infancy. Mathematical logic in France has
been basically killed by Bourbaki, who was born in Nancy and obviously not
thought, in his city. This is summarised in a text due to Jean Dieudonné and

1

called The Bourbaki choice. Concerning other locations, for instance, the con-
ference STOC (Symposium on Theory of Computing), the first conference on
theoretical computer science, was created in 1969 and was mostly oriented to-
ward complexity, POPL (Principles of Programming Languages) in 1973, other
conferences in TCS were created after 1975. For all these reasons, I do not
put the bibliography because it was extremely poor and carries no interesting
information to any connected research, as there was none. People in Nancy
worked in autonomy. When I read the document, like a translator does, I no-
ticed that sometime things are repeated, with subtle differences. Reader has
to be indulgent, because she has to remember how those documents were writ-
ten. They were first handwritten, corrections at this level were difficult, for
instance systematic corrections, like changing a notation, were not possible or
were extremely tedious and error-prone. Then the document was typed by an-
other person who was not a scientist. When the text was seen by its author
in its almost final version, corrections were not possible (unlike now) and only
signs that were not typed were added with a pencil, like calligraphic letters or
mathematical signs.

January-February 2019
Pierre Lescanne

2

Introduction

The main aim of this work is to offer a formal framework for the study of
computer science problems. We mean by problem a transition from a given
information to another. More generally, a problem applies to an information
of some type. Thus we have to make precise the notion of information, of data
and of type of information (or information structure)

A preliminary idea studied in Section 1.1. is to define a data first by sets
E1, ..., En and second by a set Λ of applications (or accesses) defined on sets
of the form Ei1 , ..., Eiq with values in one of the Ei’s. We say that two data
are of same type if their accesses satisfy the same properties.

A way to express the properties of the accesses of a data is to build a formal
system in which each application of Λ is represented by a symbol and each
object of E1, ..., En by a functional scheme. In Chapter 0, we survey language
theory, functional schemes, formal systems and propositional calculus. The
definitions of functional schemes, of informations and of interpretations
are given in Section 1.2.

This axiomatic method allows us to define information structures, the same
way we define in mathematics group structure or field structure. We try, in this
work, to use this method for other applications. We define systems of axioms for
informations (Chapter 1), for modifications of an information structure (Chap-
ter 5) and for recursive definitions of new accesses (Chapter 3) and (Chapter 4)

In Chapter 2, we present classical results in logic on the theorems of a func-
tional system. In particular, we compare functional systems with two types of
formal systems: propositional calculus and first order predicate calculus with
equality. Eventually we exhibit two types of informations of interest, namely
consistent informations and complete informations.

In Chapter 3, we address extensions of an information structure. After giv-
ing, in the first section, general properties, we focus on conservative extensions.
Last, in Section 3 we study on the example of recursive modes of ALGOL 68, a
few techniques of construction of interpretations.

In Chapter 4, we focus on systems of recursive equations. In the framework of
formal systems, we get most of the classical results. In particular, it is possible
to define a fixed-point induction rule similar to Scott’s. Our work allows us,
thanks to a system of axioms, to make precise the basic domains.

3

Chapter 5 is devoted to the study of modifications1. An information struc-
ture is completely specified by a formal system which makes precise the prop-
erties of the accesses and of a set of elementary modifications, that are ap-
plications defined on the set of informations. A modification can be obtained,
either by composition of elementary modifications, or as a solution of a system
of recursive equations. We give an axiomatic method for defining modifica-
tions. Last, to conclude the chapter we study shortly the notions of program,
of computation and of problem.

We develop in the conclusion, points which might be addressed, or simply
mentioned. It is very likely that definitions of the present document are not
adequate, because it is a first try of formalisation, moreover it seems necessary
to study, in this framework, more complex data. We end the conclusion by
mentioning related works.

Warning The use of functional symbols with many variables and of objects of
distinct types requires generally somewhat heavy notations. We use generally
short notations which allow us to work like with one variable. The reader finds
at the end of this document a notation index and a terminological index2.

1Note of the translator: or update.
2Note of the translator: not translated.

4

Contents

0 Survey 6

1 Information structures 7
1.1 Functional point of view (Claude Pair and Jean-Pierre Finance) . 7

1.1.1 Examples of data – Definitions 7
1.1.2 Data structures . 9

1.2 Functional systems . 10
1.2.1 Alphabet . 10
1.2.2 Functional schemes of the system 11
1.2.3 Atomic formulas . 12
1.2.4 Formulas . 13
1.2.5 Axioms . 14
1.2.6 Inference rules . 15
1.2.7 Informations . 15
1.2.8 Interpretation of an information 17
1.2.9 Information structures . 18

2 Mathematical Study of Functional Systems 19

3 Extension of an Information Structure 20

4 Recursive Equations in Information Structures 21

5 Modifications, Computations, Problems 22
5.1 Elementary modification . 22
5.2 Modification generated by a set of elementary modifications . . . 24
5.3 Formalisation of the notion of problem 27

5.3.1 Introduction . 27
5.4 Definitions . 28

6 Conclusion 29

5

Chapter 0

Survey

This chapter is not translated yet.

6

Chapter 1

Information structures

1.1 Functional point of view (Claude Pair and
Jean-Pierre Finance)

1.1.1 Examples of data – Definitions

Let us try on examples to know what a composed information is.

Lists A list on a set E is a finite sequence of elements of E. To make precise
this notion of sequence and, in particular, to express the accesses to the elements
of such a sequence, we introduce a linearly ordered set F (set of “locations” in
the list) of which the first element τ is the head and the last element δ is the tail
of the list. The linear order is given by a succession function in F , written σ,
which is a bijection of F − {δ} to F − {τ}. Therefore, each element of F is the
image of τ by σi for some i. Moreover a function ν assigns to each element of F
a value in E.

Therefore a list is a triple (F,E,Λ) where Λ is the set of functions {σ, ν, τ}
(τ is considered here as a function with 0 variable. The access to any element
goes through the head). Consing an element to a list (F,E,Λ) leads to a new
list (F ′, E′,Λ′) by setting

F ′ = F ∪ {τ ′}
Λ′ = {σ′, ν′, τ ′}

σ′(τ ′) = τ

σ′(x) = σ(x) if x ∈ F − {δ}
ν′(x) = ν(x) if x ∈ F

Actually, we obtain a quasi-list, since the value assigned to τ ′ is not defined.
We notice on this simple example that it is not easy to define the modifications
from this point of view.

7

F τ
σ //

��

× σ //

��

× σ //

��

× σ //

��

δ

��
E a b c d

Figure 1.1: Picture of the list abbcd

Management of products in stocks A plant has a set p of products stored
in a set d of stores.1 For each p one has a list d1(p), .., dkp(p) of stores in
which this product is stored and, for each store d, we make a list of products
p1(d), ..., p`d(d) stored in d. Furthermore, for each product and each store we
know the quantity of products stored in this store.

store1

��

store2

��

store3

��
blade // 25 99 8

��

knife
88 42

��

glass // 16

��

88 17

plate // 30 // 40 // 50

Figure 1.2: management of a stock

We can present this data by considering the following sets:

D = set of stores

P = set of products

F = D × P
Q = set of quantities

and the following functions:
τ1 associates with each store d the couple (d, p1(d))
τ2 associates with each product p the couple (d1(p), p)
σ1 associates with (d, p) the couple (d, p′) if it exists, such that p′ follows p

in the list p1(d), p2(d),

1Note of the translator: In French a store is called a “dépôt”, hence the letter “d”.

8

σd associates with (d, p) the couple (d′, p) if it exists, such that d′ follows d
in the list d1(p), d2(p),

π1 associates with each couple (d, p) its first component d.
π2 associates with each couple (d, p) its second component p.
χ associates with each couple (d, p) the quantity of product p stored in d
Moreover, we can access each product and each store. Therefore we should

consider D and P as sets of 0-ary functions.
Hence this data is a quintuple (D,P, F,Q,Λ) with

Λ = D ∪ P ∪ {τ1, τ2, σ1, σ2, π1, π2, χ}.

Let us notice that, in Figure 1.2, couples like (store2, blade) or (store1, knife)
are not “accessible”. More generally, we can define a data as follows.

Definition 1. A data is m+1-tuple (E1, ..., Em,Λ) where the Ei’s for i = (1, ...m)
are sets of objects and Λ is a set of (partial) functions defined on sets of the
form Ei1 × ... × Eiq (q is a non negative integer and 1 ≤ ij ≤ m) with values
in one of the Ej’s. Such a function is called an elementary access with q
variables. A function with 0 variable is considered to be a value.

Comment 1. It is always possible to consider total functions instead of partial
ones by introducing an element ⊥ (undefined element). If E is a set which does
not contain ⊥ we write E+ = E ∪{⊥}. We extend a partial function f , defined
on E, into a total one f̄ , by{

f̄(x) = if f(x) is defined then f(x) else ⊥ (x ∈ E)
f̄(⊥) = ⊥

1.1.2 Data structures

We formalised the notion of data. We presented also examples of structures like
list or stock management. In each case, we defined those structures by expressing
properties satisfied by basic sets and accesses in those data. It is difficult to state
general results on the structure without giving a mathematical meaning to the
notion of “property”. We can provide an axiomatic answer to this problem
by associating a formal system to a data structure. (This is how we define
group structures and field structures, etc.) The properties that a data structure
must satisfy are formulas or axioms built on an alphabet: this alphabet is made
of functional symbols aka accesses, of variables, of the symbol ≡ and of the
symbols ⊃ (implication), ¬ (negation), “(”, “)” (parentheses) of the proposition
calculus.

A structure is not completely specified by its formal system. It is important
to make precise the transformations or the elementary modifications applicable
to the data of the structure. For the lists, we should be able

• to modify the value of an element,

• to cons an element at the head of the list,

9

• to delete an element.

This aspect is addressed in Chapter 5.

1.2 Functional systems

In the previous approach, a data (E1, ..., Ep,Λ) is a “concrete” object. On
another hand we consider an information as an “ideal” object which allows us
to express statements. In a nutshell, an information is the set of theorems of a
formal system (cf 0.3). An information is interpreted (in a logical sense) by a
data.

An information structure S is composed of a formal system (described in this
section) and of a set M of elementary modifications (addressed in Chapter 5).
In what follows, we use sometimes expression like: the alphabet of S, the axioms
of S, the theorems of S, the information of S, instead of: the alphabet of F ,
the axioms of F , the theorems of F , the information of F .

Definition 2. A functional system is a formal system2 F = (L, F,X , H),
which satisfies the conditions given in the next section. Formula in F are propo-
sitional formulas on a set A, that is that A satisfies the equation:

F = A ∪ ¬F ∪ (F ⊃ F)

1.2.1 Alphabet

Given a non negative integer m which is the number of types of object of the
system, we write [m] the interval of integers between 1 and m, said otherwise
[m] = {n ∈ N | 1 ≤ n ≤ m}.
L = L ∪ V ∪ {≡} ∪ {(,),¬,⊃} is the alphabet of F .
≡ is the symbol of equality and its use is ruled by the axioms Eg.
L is the set of functional symbols.
V =

⋃m
j=1 Vj is the set of variables.

We define an application source from L to [m] (cf 0.1): source(f) is a
word on [m], that is a sequence of integers between 1 and m. The length of
source(f) is called the arity of f . If it is equal to 0, 1, 2, q, the function is
said to be 0-ary, unary, binary, q-ary. The 0-ary functions are also symbols of
constant. We define an application goal from L to [m]. With source and goal
we build a function profile from L to [m]∗ × [m] such that

profile(f) = (source(f),goal(f))

Notations: In what follows, we use the letters a, b, c for the constant symbols
and the letters f and g for the function symbols. x = (x1, ..., xn) is always a
n-tuple of distinct variables. We write L(x) = L ∪ {x1, ..., xn}. Furthermore,
we write L′ = L ∪ V .

2Note of the translator: X are the axioms, and H are the inference rules, described in
Chapter 0.

10

The function symbols are the elementary accesses of the system. This is
justified by the fact that the objects of the systems are obtained by composition
of theses accesses (see below, especially Definition 5).

Example 1. In the list structure we consider two types of objects (the places
and the values). L = {t, s, v,nil,nil′}

profile(t) = (1) profile(nil) = (1) profile(nil′) = (2)
profile(s) = (1, 1) profile(v) = (1, 2)

Comment 2. nil is the dummy element which is put conveniently as the end
of the list. We set σ(δ) = σ(nil) = nil and ν(nil) = nil′.

1.2.2 Functional schemes of the system

We consider only some functional schemes (see 0.2), namely those that are
obtained by taking, in the composition, profiles into account. Let us introduce
now a few notations.
Notations:

1. If A1, ..., Am are sets, if i = (i1, ...in) ∈ [m]∗, we write
Ai = Ai1 × ...×Ain . In what follows, i is always an element of [m]∗.

2. If u = (u1, ...un) ∈ (L′∗)n and if f ∈ L, we write fu instead of fu1...un.

3. If A ⊆ (L′∗)n then fA = {fu | u ∈ A}.

Definition 3. A functional scheme compatible with the function profile is an
element of the language S′ on L′ defined by S′ =

⋃m
j=1 S

′
j where (S′1, ..., S

′
m) is

the unique solution of the system

S′j =
⋃
{fS′i | f ∈ L ∧ profile(f) = (i, j)} ∪ Vj

We call terms the functional schemes compatible with profile. A function
scheme is of type j if u ∈ S′j

For x = (x1, ...xn) we write Sj(x) = S′j ∩ L(x)∗. Specifically, Sj = Sj(ε)

is the set of the variable-free terms3 of type j. We write S =
⋃m
j=1 Sj and

S(x) =
⋃m
j=1 Sj(x).

We assume that Sj 6= ∅ for j = 1, ...,m.

Example 2. In the list structure, the variable-free terms are the elements of
the set S defined by

S = S1 ∪ S2

S1 = sS1 ∪ {t,nil}
S2 = vS1 ∪ {nil′}

3Note of the translator: These variable-free terms are those we call today ground terms
or closed terms.

11

Notations: We use the letters u, v, w, to denote functional schemes or n-tuples
of functional schemes. When these functional schemes contain variables we use
the letters h or k.

Let h be a functional scheme, i be (i1, ..., in) ∈ [m]∗, x be (x1, ..., xn) and u
be (u1, ...un) ∈ S′j . We write hx[u] (or h[u] if there is no ambiguity) the term
obtained by replacing in h all the occurrences of x1, ...xn by u1, ...un respectively.
We assume type(u) = type(x) = i.

Definition 4. An interpretation of S is a m+1-tuple E = (E1, ..., Em, Em+1)
where the Ei’s are non empty sets and r is an application associating with
each f ∈ L such that profile(f) = (i, j) an application from Ei into Ej. If
E = (E1, ..., Em) we write R = (E, r).

We use in what follows the λ-notation. Let E be (E1, ..., Em), i ∈ [m]∗ and
x be (x1, ..., xn) ∈ Vi. If u(x) is an expression for a function, λx.u(x) represents
the function which associates u(x) with all x.

Example 3. The notation λx.xk represents the function πk which is the func-
tion which associates xk with (x1, ..., xn) ∈ Ei.

Proposition 1. Let (E, r) be an interpretation of S and x be (x1, ..., xn). Then
r determines a unique application r̂ from S(x) to the set of applications from
Ei to

⋃m
i=1Ei such that

r̂(xk) = λx.xk for k = 1, ...m
r̂(a) = λx.a if a is a constant,
r̂(g u1... um) = r(g)(r̂(u1), ..., r̂(un)) if g ∈ L

The proof is straightforward and similar to the proof for general functional
schemes (Section 0.2).

Comment 3. Strictly speaking we should write r̂x instead of r̂. However let us
notice that if (x1, ..., xn) ⊆ (y1, ..., yp) and if u ∈ S(x) then we can assimilate
r̂x(u) to r̂y(u). In particular if u is a variable free term of type j (u ∈ Sj), then
r̂(u) is a constant application which we assimilate to its value.

Definition 5. An interpretation (E, r) of S is strict if r̂(Sj) = Ej for j ∈ 1, ...m.

1.2.3 Atomic formulas

The set A of atomic formulas is defined by

A =

m⋃
j=1

S′j ≡ S′j

Predicates: Assume that L contains a symbol true of type j. We call propo-
sitional symbol (or predicate) every symbol of type j. From now on, we write
p u1... un instead of p u1... un = true. This is only a rewrite. Similarly p ∨ q is
a rewrite of ¬p ⊃ q.

12

Example 4. The system N formalising arithmetic has two types of objects.
The type integer and the type boolean. The symbols of N are: (the profiles are
given between parentheses)

0 (1) S (1) + (1, 1, 1) ∗ (1, 1, 1)
true (2) < (1, 1, 2)

The formula S0 < 0 is a rewrite of the formula < (S0, 0) ≡ true.

In what follows we drop the type when it corresponds to a boolean and
we write a predicate by providing just source(p). In the above example
source(<) = (1, 1). Similarly we write x + y instead of +xy and x ∗ y instead
of ∗xy.

1.2.4 Formulas

The set F is the solution of the fixed-point equation:

F = A ∪ ¬F ∪ F ⊃ F

Likewise we could have said:

1. An atomic formula is a formula,

2. If p is a formula then ¬p is a formula,

3. If p and q are formulas then p ⊃ q is a formula,

4. Every formula is obtained by the three above rules.

In order to prove that a property P is true, it is sufficient to prove (reasoning
by induction of the length of the formula) that

1. P is satisfied for every atomic formula,

2. If P (p) is satisfied then P (¬p) is satisfied,

3. If P (p) and P (q) are satisfied, then P (p ⊃ q) is satisfied.

Recall the rewriting rules stated in Section 2.1. We can write:

p ∨ q for ¬p ⊃ q
p ∧ q for ¬(¬p ∨ ¬q)
p↔ q for (p ⊃ q) ∧ (q ⊃ q)

Similarly we write u 6≡ v instead of ¬(x ≡ y).

13

1.2.5 Axioms

X = Prop(A) ∪ Eg ∪X is the set of axioms of F .

• The formulas of Prop(A) are the axioms of the propositional system built
on A (cf Section 0.4).

• The formulas of Eg define the equality ≡. For each j of [m], let xj , yj
and zj be three variables of type j.

More generally, for each i ∈ [m]∗, such that q = |i| > 0, let xi1 , ..., xiq
and yi1 , ..., yiq be two sequences of distinct variables of type i, such that
xik 6= xi` for k, ` ∈ [1, q]. Assume

– pj = xj ≡ xj for j ∈ [m]

– qj = xj ≡ yj ⊃ xj ≡ zj ⊃ yj ≡ zj for j ∈ [m], and

– if f is a q-ary symbol (q 6= 0) such that source(f) = i

rf = xi1 ≡ yi1 ⊃ ... ⊃ xiq ≡ yiq ⊃ fxi1 ...xiq ≡ fyi1 ...yiq

Eg = {pj | j ∈ [m]} ∪ {qj | j ∈ m]} ∪ {rf | f ∈ L and arity(f) > 0}

• The formulas X are the proper formulas of the functional system.

Example 5.

1. The proper axioms of the list structure are

• sx ≡ sy ⊃ x ≡ y ∨ sx ≡ nil

• sx ≡ t ⊃ t ≡ nil

• snil ≡ nil

• vx ≡ nil′ ↔ x ≡ nil

Those axioms mean that

• either the list is infinite, in this case skt 6≡ s`t (k 6= `)

• or the list is of finite length , in this case snt ≡ nil and skt 6≡ s`t (0 ≤ k, ` < n) (k 6= `).

2. The proper axioms of the structure N (non negative integers) are Peano
axioms:

Sx 6≡ 0 x.(Sy) ≡ x+ x.y
Sx ≡ Sy ⊃ x ≡ y ¬(x < 0)
x+ 0 ≡ x x < Sy ↔ (x < y ∨ x ≡ y)
S(x+ y) ≡ (Sx) + y x < y ∨ x ≡ y ∨ y < x
x.0 = 0

14

3. In each structure it is convenient to introduce for (i, j) ∈ [m]× [m] a func-
tion condi,j of profile (i, i, j, j, j) formalising the “conditional” function.
The axioms of condi,j are:

condi,j(x, x, z, t) ≡ z

x 6≡ y ⊃ condi,j(x, y, z, t) ≡ t

In what follows, we omit the indices i, j, since the context tells them.

1.2.6 Inference rules

We have two inference rules:
The modus ponens p, p ⊃ q ` q.
The substitution p ` px[u] (p ∈ F , u ∈ V , type(u) = type(x)).
Let us notice that if p ∈ T , the formula scheme {px[u] | u ∈ Sj} is contained

in T .
We study in the next chapter4 the exact scope of the substitution rule. It is

possible to avoid this rule provided we take, as axioms, copies of the formulas
of X .

However using variables offers advantages.

1. Handling axioms is nicer than handling schemes. Likewise, given a formula
p of L(x), a proof of p is more readable than a proof of p[u] (u ∈ Sj).

2. When we define new accesses, that are new functional schemes (Chapter 3
and 4), the substitution rule applies to terms containing occurrences of
new symbols. Thus in the structure N of non negative integers, define the
quotient of two numbers by the formulas:

x 6≡ y ⊃ (x < y ∗ (quotient(x, y) + 1) ∧ (y ∗ quotient(x, y)) < x)

∨ y ∗ quotient(x, y) ≡ x

The axioms of addition, multiplication and predecessor apply to quotient(m,n)
(which allows computing quotient(m,n) for each couple (m,n)).

1.2.7 Informations

Definition 6. An information F is a saturated subset I containing the theorems
of the formal system.

I is therefore an information of the structure if

1. X ⊆ I.

2. For all p and q of F , p ∈ I and p ⊃ q ∈ I imply q ∈ I.

4Note of the translator: Not translated yert.

15

3. For all p of F , for all variable x and for all u of the same type as x, p ∈ I
implies px[u] ∈ I.

Definition 7. Let I be an information of F . A set Y of formulas is a system of
axioms of I if I is the set of theorems of the functional system F ′ of the proper
axioms Y .

Example 6. 1. Lists: we can deduce from the axioms of the list structure
that for k, `, k 6= `

` skt ≡ s` ⊃ sk = nil

In order to specify an information, we need to specify the length and the
relations between the values of the list. For instance

s3t ≡ nil
s2t 6≡ nil
vt ≡ vs2t
vt 6≡ vst

We get an information by taking the first three axioms or more generally
a strict subset of the axioms. Actually the first information is complete,
while the others are not. We make it precise in Chapter 2.

2. Lists with values in a given set: In most of the cases the list struc-
ture is not studied for itself. A set of values is given, for instance, the
non negative integers. This means that S2 contains other elements beside
vt, vst, Thus the list structure with integer values is obtained by ap-
pending the structure list to the structure N . A list with integer values is
characterised by a system like:{

snt ≡ nil
vskt ≡ nk (0 ≤ k < n)

where the nk’s are terms of N . Notice that we can find pathological situ-
ations, like the information with axioms

vt ≡ S30
vst ≡ S20
vs2t 6≡ Sn0 n ≥ 0
s2t 6≡ nil
s3t ≡ nil

It is complete despite vs2t does not have “an integer value”. This is in-
herent to the chosen formalisation: the integers are an infinite sequence
and there exists no formula stating that vs2t must have an integer value.

16

1.2.8 Interpretation of an information

Let I be an information, R = (E, r) be a strict interpretation and x = (x1, ..., xn) ∈ Vi.
There exists a function r̃ from the set of formulas built on L(x) in the set of
applications from E into B = {true, false} such that:

r̃(u ≡ v) = if r̂(u) = r̂(v) then true else false

r̃(¬p) = H¬(r̃(p))

r̃(p ⊃ q) = H¬(r̃(p), r̃(q))

Definition 8. R is an interpretation of I if for all interpretation of I built
on L(x)

r̃(p) = λp.true (1.1)

Proposition 2. R is an interpretation of I if and only if for each variable-less
formula p of I

r̃(p) = true.

If Y is s system of axioms of X it suffices for (1.1) to be true for all formulas
of I.

Proof. The condition is clearly necessary.

1. On the other hand, let p be a formula of I on L(x). For each u ∈ Sj , p[u]
is a theorem of I.

r̃(p[u]) = true.

But r̃(p[u]) = r̃(p)(r̃(u)).

For all j ∈ Sj , Ej = r̂(Sj). Henceforth Ei = r̂(Si)

hence r̃(p) = λx.true.

2. If p ∈ Prop(A), then p is a tautology. Hence r̃(p) = λx.true. Likewise if
p ∈ Eg.

If q is deduced for p and p ⊃ q by the modus ponens:

r̃(p) = λx.true r̃(p ⊃ q) = λx.true

Hence r̃(q) = λx.true by definition of H⊃.

If p ∈ I and p = qy[u] then r̃(p) = r̃(q)(r̂(u)) = λx.true

Hence R is an interpretation of I whenever r̃(p) = λx.true for p ∈ Y .

17

1.2.9 Information structures

If F is a functional system, we write I(F) the set of all the informations of F
and, for all n, we write An(F) the set of the applications from [I(F)]n into
I(F). Let

A(F) =
⋃
n≥0

An(F)

Definition 9. An information structure S is given by a functional system F
and a subset M of A(F). M is the set of elementary modifications of S.

We consider again the modifications of an information structure in Chap-
ter 5.

18

Chapter 2

Mathematical Study of
Functional Systems

This chapter is not translated yet.

19

Chapter 3

Extension of an Information
Structure

This chapter is not translated yet.

20

Chapter 4

Recursive Equations in
Information Structures

This chapter is not translated yet.

21

Chapter 5

Modifications,
Computations, Problems

As we said in the introduction the aim of this work is to provide a meaning
to the notions of problem and of program. This study has just started and we
present in this chapter definitions that seem to be the most adequate.

5.1 Elementary modification

In order to define an information structure, it is not enough to define the objects
and the accesses to these objects. It is also important to specify the modifica-
tions which allow going from one information to another. Recall the notations
introduced in Section 1.2.9.
Notations: Let F be a formal system and I(F) the set of informations of F .
For all n ≥ 0 we write An(F) the set of applications from I(F)n to I(F). Let
A(F) =

⋃
n≥0An(F).

Definition 1. An information system S is given by a functional system F and
a subset M of A(F). The set M is the set of elementary modifications.
of S.

We set
Mn = M∩An(F)

An elementary modification associates with sets I1, ..., In of theorems an-
other set I ′ of theorems. A way especially interesting to realise this association
is to “embed” I1, ..., In and I ′ in the same information structure and to define
the modification by a system of axioms.

Let us have a look to an example: we want to add an element in a list after
skt and we want to set its value a. Intuitively this leads to replace sk+1t by
sk+2t ... etc. In order to do that we introduce a new symbol s1 and we consider
the bijection σ1 : L→ L∪{s1}\{s}, such that σ(s) = s1 and the other elements

22

of L are kept unchanged. There exists one and only one application, still written
σ1 defined on S′ such that

• σ1(x) = x for x ∈ V

• σ1(gu1...un) = σ1(g)σ1(u1)...σ1(un) for all g ∈ L (with source(g) =
(i1, ..., in)) and all sequences (u1, ..., un) of types i1, ..., in. σ1 can be nat-
urally prolonged to formulas of F .

Let us consider the functional system F ′′, defined as follows:

• the alphabet of F ′′ is L′′ = L ∪ L1

• and the set of proper axioms is

X ′′ = X ∪ σ1(X) ∪ Y

where Y = {sssk1t ≡ sk+1t, x 6≡ sk+1t ⊃ sx ≡ s1x, vskt ≡ a}

Call F1 the system with alphabet L1 and proper axioms σ1(X). Intuitively
F1 represent the initial information while the terms of L represent the modi-
fied information. More precisely, given an information I of F , one may define
successively :

• the information I of I1 transcribed by σ1 and written σ1(I),

• the information I ′′, extension of I1 to F ′′, and written E(I), and

• the information I ′, restriction of I ′′ to F , written R(I ′′).

I ′ is an information of F defined by

I ′ = R ◦ E ′′ ◦ σ1(I) = m(I)

We say that the bijection m is associated with the bijection σ1 and the
system of axioms Y . In what follows, we write the function m = adj(skt, a).
Notice that adj is a modification scheme which associates with each “place” skt
and each “value” a, a modification adj(skt, a).

More generally, here is a way to define a modification with n arguments.
Assume the bijection σ1, ..., σn from L to respectively L1, ..., Ln satisfying the
following properties:

1. ∀x, y ∈ L ∀k ∈ [n] (σk(x) = y ⇒ x = y)

2. ∀x, y ∈ L ∀k, ` ∈ [n] (σk(x) = σ`(y)⇒ x = y)

Let L′′ = L ∪
⋃n
i=1 Lk. From the hypotheses 1. and 2., one can define a

unique application profile on L′′ such that
profile(σk(x)) = profile(x) for all x of L and all k ∈ [n].

For each k ∈ [n], σk defines naturally a transcription, still written σk from
the set of formulas on L′ to the set of formulas

Y3 = {t1 ≡ nil ⊃ (t ≡ t2 ∧ sx ≡ s2x)}
∪{(t1 6≡ nil ∧ s1t1 ≡ nil) ⊃ (t ≡ t1 ∧ st ≡ t2 ∧ (x 6≡ t ⊃ s1x ≡ s2x)}

23

Another example of modification: the conditional

Let S be any information structure with vocabulary L. For each variable-less
formula p, let us introduce a modification cond(p) with three arguments, such
that for each I1, I2, I3 (I1 consistent)

cond(I1, I2, I3) =

 I2 if p ∈ I1
I3 if ¬p ∈ I1
T otherwise

where T is the set of theorems of S.
For j = 1, 2, 3, let σj be a bijection from a set L on sets L1, L2, L3. Moreover,

L, L1, L2, L3 are assumed to be pairwise disjoint. Let us write fj = σj(f) for
f ∈ L and j = 1, 2, 3. For all i = (i1, ...iq) ∈ [m]∗, let x be (xi1 , ..., xiq) a
sequence of distinct variables of types i1, ...iq. Let p1 = σ1(p). cond(p) can be
defined by the bijections σ1, σ2, σ3 and by the set

Y = {p1 ⊃ fxi1 ...xiq ≡ f2xi1 ...xiq | f ∈ L ∧ source(f) = i}
∪ {¬p1 ⊃ fxi1 ...xiq ≡ f3xi1 ...xiq | f ∈ L ∧ source(f) = i}

Indeed one checks by induction that, for all term u ∈ S ′

p ∈ I1 ⇒ u ≡ σ2(p) ∈ I ′′
¬p ∈ I1 ⇒ u ≡ σ3(p) ∈ I ′′

Example 1. Let S be the list structure and p be the formula t ≡ nil, let us
write Λ the information of S generated by p, in other words, the empty list. If
I1 is complete then I1 contains p or I1 contains ¬p. Hence we can write for I1
assumed to be complete.

cond(p)(I1I2, I3) = if I1 ⊃ Λ then I2 else I3

Since Λ is complete, the conditions I1 consistent and I1 ⊃ Λ imply (I1)0 = Λ0

(where I0 is the set of variable-less formulas of I).
Generally speaking if I is a complete information generated by a finite set

of variable-less axioms p1, ..., pn, write p = p1 ∧ ... ∧ pn. Then if I1 is complete:

p ∈ I1 ⇔ I ⊆ I1 ⇔ (I1)0 = I0
p ∈ I1 ⇔ p /∈ I1

Hence cond(p)(I1, I2, I3) = if (I1)0 else I2 then I3. For a given informa-
tion I1 we write if p ∈ I1 then I2 else I3 instead of cond(p)(I1, I2, I3).

5.2 Modification generated by a set of elemen-
tary modifications

We address modifications generated by M, like we addressed accesses to an
information structure.

24

Recall that the set I(F) of informations of F ordered by inclusion is a
completely inductive set (Section 2.2.1). We can apply to modifications of S
the fixed point theory presented in Section 4.2. For that we assume that all the
elementary modifications of S are continuous applications on I(F). We check
immediately that this is case when the modifications are defined axiomatically.

If B is a set of continuous applications of I(F) (B ⊆ A(F)) and if T is
a functional generated by B (Section 4.5), we know that T is continuous and
admits a fixed-point. We say that B is stable by the fixed-point operator
if for each functional generated by B, the components of the least fixed-point
belong to B.
B is stable by composition if for all m ∈ B ∩ An(F) all m1, ...,mn ∈

B ∩ Ak(F), then m(m1, ...mn) ∈ B, where

m(m1, ...mn)(I1, ..., Ik) = m(m1(I1, ..., Ik), ...,mn(I1, ..., Ik))

For n > 0, k ∈ [n], one write πnk the modification λI1...In.Ik. Let P be the set
of those projections.

Definition 3. 1 The set M̂ of modifications of S is the least set of A(F)
containing M∩P and stable by composition and by the fixed-point operator.

Example 2. Let us consider in the list structure the elementary modifications
head, tail, add, cond(t ≡ nil). Then the concat operation on the list structure,
defined as follows, is a modification of the list structure:

concat(I1, I2) = if t ≡ nil then I2 else add(head(I1), concat(Tail(I1), I2).

The definition of M̂ leads naturally to the following type of induction.
Let P be a property on M̂ such that P is satisfied on M∪P and stable by

composition and by the fixed-point operator. Then P (m) is satisfied for all m
in M. One shows by induction the following result.

Proposition 1. m belongs to M if m is the first component of a least fixed
point of a functional generated by M.

We can therefore take the following definition

Definition 4. A program on an information structure S is a fixed-point system
π on M:

π : (m1, ...,mn) = T (m1, ...,mn)

The modification mπ, induced by π, is the first component of the least fixed-point
of T .

1Note of the translator: Definition 2 does not exist in the manuscript.

25

Computations in an information structure Let us first consider the case
where all the elementary modifications are functions from I(F) to I(F) (monadic
case). We call computation on S each sequence of elementary modifications.
Therefore a computation is an element of M∗.

Example 3. We can consider on the list structure the computation

(tail, tail, head)

With this computation is associated the modification head ◦ tail ◦ tail which as-
sociates with each list I the list made of the third element of the list I, if this
element exists and the empty list otherwise. More generally if c = m1...mn is a
computation of S, one associates with c the modification mn ◦ ... ◦m1. If n = 0,
m is the identity of I(F) into itself (in other words the function π1

1).

To associate a computation with arbitrary modifications, let us notice that
we can associate with a computation c = m1...mn the functional scheme c′ =
mn...m1X on M ∪ {X} where X is a variable. In what follows we make no
difference between c and c′.

In the general case let V = {X1, X2, ...Xn, ...} an infinite set of variables.
Each variable is a 0-ary symbol and each modification of M can be seen as a
n-ary symbol. We can state the following definition:

Definition 5. A computation of S is a functional scheme on M∪V.

Example 4. add.head.X1.tail.X1 is the computation associated with the mod-
ification λI.add(head(I), tail(I)).

Let c be a computation on M ∪ X, the modification associated with c is
defined recursively as follows

1. For k = 1, ..., n, πnk is associated with Xk.

2. If m ∈ Mk and if, for (j = 1, ..., k), mj is associated with cj , then
m(m1, ...,mk) is associated with to the computation m1, ...,mk.

Such a modification is obtained by composition of elementary modifications
and projections. We do not study in the present work the computation which
should be associated with a modification defined recursively and hence with a
program. We have to embed the set of computations in a completely inductive
set. The generalised computation associated with any program m = T (m)

should be the least fixed-point of a functional T̃ deduced from T . Works have
been done in this direction [Scott], [Nivat], [Finance].

Before giving examples of programs, let us introduce the notion of problem.
Indeed, a program (or an algorithm) computes the solution, if it exists, of a
given problem.

26

5.3 Formalisation of the notion of problem

5.3.1 Introduction

In computer science, a problem is expressed as a set of relations between com-
pound objects. We can distinguish among objects:

• Constant objects whose value is determined by the statement of the prob-
lem.

• Objects whose values are let free by the statement of the problem. They
have to satisfy conditions. These objects are the data of the problem.

• Object whose value depends on the values of the data. Some of those
objects are simply used for intermediary computations. The others are
the results of the problem. Clearly, the data and the results are part of
the problem.

Let us give a first example, whose data are a set of equalities.

Example 5. Assume that we have to compute the monthly salary of a worker
with a health plan, knowing the number of work hours and the hourly wadge.
The problem can be defined by:

total = gross salary - salary deduction

salary deduction = if gross salary > threshold then ss1 +ss2
else gross salary × 0.065

threshold = 2320

ss1 = gross salary × 0.01

ss2 = threshold × 0.02

gross salary = # hours × hourly wadge

In this example, data are “# hours” and “hourly wadge”. It is possible to change
the problem by removing the equation “threshold = 2320” and by considering
“threshold” as a data, which changes each year. The result can be “total”, but
it can also be {total, salary deduction}.

Example 6 (Definition of the gcd of two integers). Given two integers a and b,
the gcd of a and b can be defined by:

gcd divides a ∧ gcd divides b ∧
[x divides a ∧ x divides b] ⊃ x divides gcd

In this problem, the statement is the above formula, the data are a and b and
the result is gcd.

27

The interest (and the difficulty) of this kind of problem is that we cannot
immediately deduce an algorithm for computing the gcd. This search of an algo-
rithm computing the solution of a problem is sometime called program synthesis
[Manna-Waldinger]. It is well known that, in general, program synthesis cannot
be made fully automatic. Research groups address methodologies for program
construction and in parallel develop proof techniques to guarantee correctness
of the found program.

Let us give a program computing the gcd. It is just a translation in terms
of modifications of Euclid’s algorithm.

gcd(a, b) = if b = 0 then a else gcd(b, r(a, b))

where r(a, b) is the remainder of the division of a by b.
For this, let us introduce assignments. they are is modification schemes.
If a1, ..., an are identifiers, that are constant symbols, and u1, ..., un terms

of same types, the modification assign(a1, ..., an;u1, ..., un) associates with each
information I the information I ′ containing the theorems: ai ≡ ui for 1 ≤ i ≤ n.
Precisely, assign(a1, ..., an;u1, ..., un) can be defined by the couple (σ, Y). where
σ is a bijection associating with each ai a symbol a′i and fixing the other symbols
and where Y is the set of formulas ai ≡ σ(ui) for 1 ≤ i ≤ n.

Taking into account this definition, Euclid’s algorithm can be translated into
a program:

m(I) = if b ≡ 0 ∈ I then assign(gcd; a) else m ◦ assign(a, b; b, r(a, b))(I)

5.4 Definitions

Definition 6. A problem P on a structure S is given by a set L(P) of new
accesses and a set X(P) of axioms, i.e., formulas on the alphabet L ∪ L(P).
L(P) and X(P) are respectively the set of unknowns and the statement of
the problem.

Example 7. We studied in Chapter 4, recursive problems. In this kind of
problem L(P) = {f1, ..., fn} and X(P) is a set of recursive equations.

The statement of a problem can be more complex, e.g., the gcd example.
We call data of P any information of S. L(P) and X(P) create an extension

of S as a structure S ′ with alphabet L ∪ L(P) and with set of proper axioms
X∪X(P). We call result of P associated with an information I of S a complete
information I ′0 containing E(I0) (where I0 is the restriction of I to F0 (Section
2.1)).

We say that a problem P is deterministic if for each complete informa-
tion I, E(I) is complete as well, hence if P associates with each complete data
one and only one result.

28

Chapter 6

Conclusion

This work can followed by others in several directions.

1. Until now we have formalised only simple problems, like integers and lists.
It should be possible to address more complex fields, like data bases or
operating systems. A first work (Jean-Pierre Finance) uses information
structures to formalise the semantics of a programming language. Claude
Pair studies the most frequent information structures, but he does not
use functional systems. In program correctness proofs, the formalisation
presented here takes into account the axiomatics of the domain.

2. In order to address more complex structures, it is necessary to take into
account algebraic operations. Thus we could be able to reduce the study
of lists of lists or of tree-like structures to these of lists.

3. In Chapter 3, we build several interpretations of the mode construction in
ALGOL 68. We should be able to generalise those constructions and to
prove the consistence of non trivial structures.

4. The concepts of computation, of program and of problem have only been
superficially addressed. The first job should be to address the computa-
tions associated with a recursive program or simply with an iterative one.
A first step in this direction has been done by Jean-Pierre Finance in the
case of one variable modifications. Similar research has been done out of
the framework of information structures, by Scott and Nivat. Ideas they
developed can surely be reused as a starting point.

5. For problems, we try to write their statements (for example for the gcd)
out of any algorithm. Is this always possible? If not, how should the
definition be modified? For instance, until now, we did not get a pleasant
statement for the merging of two sorted lists.

29

