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Abstract *X is a diagrammatic calculus. This means that it describes programs by 2-
dimensional diagrams and computations are reductions of those diagrams. In addition it
has a 1-dimensional syntax. Type system of *X interprets simply classical logic in a Curry-
Howard correspondence. Since λ-calculus can be easily implemented, its untyped version is
Turing complete.

1 Introduction

Several proposals have been made for diagrammatic description of programs, for instance for
functional programs there exists two-dimensional syntax [Car82] and interaction nets [Laf90] to
cite a few. In this paper, we propose a new paradigm for describing computations and continuations
by ways of modifying diagrams, based on a Curry-Howard correspondence with classical logic. For
us, a computation is specified by a description of connections among diagrams and the process of
computation is itself described by modifications of those connections.

*X is a diagrammatic calculus, this means that programs are represented by 2-dimensional
drawings of components. *X has one basic element to start with, plus six constructors and one
operator which show how to make new components by joining together more elementary ones.
Diagrams are connected by wires and computations are described by diagram reductions giving
untyped *X the power of Turing machines. Perhaps one of the main features of *X is its connection
with classical logic. Usually languages giving such a connection come with abstract and complex
concepts like continuations, evaluation contexts, etc. With typed *X , the so-called Curry-Howard
correspondence comes naturally in a very simple setting.

The motivations behind *X are the following. Most of the diagrammatic languages are imperative
or event driven, ours is purely functional. The functional diagrammatic languages we cited (namely
[Car82] and [Laf90]) are declarative whereas ours is purely functional, subsumes lambda-calculus
and has a strong semantics. Moreover most of the languages have either a loose semantics or
an ad hoc one (we mean built for that language), when our semantics relies on the old classical
logic [AriBC] with its recent ¡¡¡¡¡¡¡ ESOP-starX.tex developments [Gir91,CH00,UB01].

The main contribution of this paper is connection between languages that give a computational
content to classical logic like ======= developments [Gir91,CH00,UB01]. ¿¿¿¿¿¿¿ 1.59

The paper is organized as follows. First we introduce the diagrammatic calculus and the reductions
that are the basis of computation. Then we give its 1-dimensional syntax and its rules. After that
we show how to implement λ-calculus in 1-dimensional syntax. The following section presents the
type system associated with *X , revealing a Curry-Howard correspondence with classical logic.
The last section is devoted to show related works.
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Figure 1. Basic constructors

2 Diagrammatic Programming

It is agreed that programming is a way to describe computations. In this view, *X can be seen as
a programming language and even as a diagrammatic programming language, this means that its
computations are described in a 2-dimensional syntax. More precisely, in *X , programs are given
by sets of diagrams connected by wires. Computations are reductions of those sets of diagrams.
Wires are plugged on an in-port or on an out-port of a diagram1. By convention we decide that
in-ports are located on the left of diagrams and that out-ports are located on the right. Thus the
wires are oriented. In what follows, ports are named by putting an identifier above the wires2. We
adopt a convention that in-ports names are taken in x, y, z, ... and out-ports names are taken in
α, β, γ, ...

2.1 Basic Constructors

Suppose that we have well constructed diagrams with in-ports and out-ports. The *X diagram-
matic calculus proposes six basic constructors (Figure 1) to make new diagrams from old ones.

An E-fan takes a diagram M which has an in-port, say x, and an out-port, say β, it connects them
and creates an new out port, say α. We will be able to provide more meaning to this construction,
and to the others as well, first when we will speak about 1-dimensional syntax (Section 3), second
when we will speak about type (Section 5).

An I-fan takes two diagrams M and N and builds a new diagram. Suppose that M has an
out-port α and N has an in port x, this junction creates an in-port, say y.

A fork takes a diagram that has two in-ports (x and y in Figure 1) and makes a diagram that has
one in-port (z in Figure 1). There is a symmetric fork for out-ports.

A back-hole takes a diagram M and creates a new in-port ex nihilo. This new port, which did not
exist in M , is therefore connected to a specific location denoted �, that is a black-hole where the
wire ends. Also, there is a symmetric black-hole for out-ports.

Dagger as another operation The previous operators show how to combine diagrams to
make new ones. There is another operation that we call dagger. It
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��also connects two diagrams into one by linking an out-port α or one

with the in-port x of the other. It is the only operation that creates
no new port.
1 A reader who uses a color device may see that we use a blue dot to denote an in-port and a red dot to

denote a out-port.
2 Later, we will consider that the reader is used to diagrams and we will drop names and colored dots.



In-out as a ground diagram We have shown how to glue together diagrams, but we did not
say how to build a diagram form scratch, i.e., we did not say what are the basic diagrams. There
is only one ground diagram, it is called in-out and associated to the diagram ����

x α
It just

connects an in-port (here x) to an out-port (here α).

Lemma 1 Each diagram has at least an out-port.

Proof. By case and induction. For E-fan, right fork, right black-hole and, in-out, this is clear, for
the others it comes by induction.

The diagrams with no in-port and only one out-port are of interest, we call
them closed diagrams. The simplest example of such a closed diagram is rep-
resented here. Other examples are at the end of Section 6 and in Appendix B.
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2.2 Reductions Among Diagrams

The goal of the reductions in *X is to eliminate the †’s (daggers). In *X those reductions are
described by many rules. Here we are going to give only some of them. The reduction rules will
be given when we will have a 1-dimensional syntax at hand (see Section 3).

Logical Reductions The simplest reduction explains how two in-outs, connected with a dagger,
are merged into one.
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The next reduction rule specifies merging of in− out with an E − fan
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and the following specifies merging of in-out with an I − fan
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The basic computational step is given by the reduction E-I, which says how to reduce a diagram
that connects an E-fan with an I-fan through a dagger.
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The two diagrams are the same. The dotted boxes are here to give a hint on how to view (to
parse) them to get a term in the 1-dimensional syntax.

Activation For the other actions we have to chose a direction in which we perform those actions.
This direction is expressed by bending the †. If the dagger is bended (or activated) on the left,
giving † , this means that the actions are performed toward the left, the other sense of activation,
namely † , goes the other way around, that is on the right. This feature makes *X non-confluent.

Duplication This reduction tells us what a left activated dagger (respectively a right activated
dagger) does when it meets a fork. Actually it duplicates the diagrams it pulls.

P
1

R2

RP

R

Erasure Erasing says what happens when a left activated dagger of a diagram R meets a black-
hole. R is erased by this action, but at the same time free names of R are meant to be preserved.
Therefore the free names of R are connected to black holes.
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3 A 1-dimensional Syntax

We propose a 1-dimensional syntax to describe the diagrams. (See table in Appendix A for a
correspondence between concept of the 2-dimensional and the 1-dimensional syntax).

M, N ::= 〈x.α〉 capsule

| bx M bβ . α exporter

| M bα [y] bx N importer

| M bα † bxN cut

| x�M left-eraser

| M � α right-eraser

| z<
bxby〈M ] left-duplicator

| [M〉bαbβ >γ right-duplicator

Figure 2. Syntax

The coding of diagrams uses names3, more precisely innames are taken in x, y, z, ... and
outnames are taken in α, β, γ, ...4. As a matter of fact, innames (in 1-dimensional syntax) code
in-ports (in 2-dimensional syntax) and outnames code out-ports.

About Bound Names The reader may have noticed the presence of hats on some names. This
notation has been borrowed from Principia Mathematica [WR25] and is used to bind names. An
interesting feature of *X is that a same construction, e.g., an exporter, a importer, a cut and a
duplicator, binds two names. A duplicator binds either two innames or two outnames, whereas the
other operators bind an inname and an outname.

Moreover the names that are bound can belong to the same term, or to two different terms.
For example, importer and cut, which are dyadic operations, bind an outname in a term on the
left and an inname in a term on the right.

3.1 Linearity

In *X we consider only linear terms5. This means that names occur only once in the terms. This
is required to represent faithfully diagrams and wires. The predicate linear is formally described
in Figure 3 and uses the concept of free name described in Figure 4. Duplicators and erasers allow
to mimic non linear terms.

We remark that the syntax generates terms which, in general, are not linear.

The Bestiary In this section we describe the constituents of *X .
〈x.α〉 is called a capsule and codes an in-out. It creates one free inname x and one free out-

name α.
(x̂M β̂ . α) is an exporter and codes an E-fan. It binds two names, an inname x and an outname

β of the subterm M and creates a new free outname. Because of linearity, the new outname α
does not occur free in M .

(M β̂ [y] x̂ N) is called a importer and codes an I-fan. It is made of two subterms M and N
and binds an outname β of the first term, namely M , and an inname x of the second, namely N .
It creates an inname.
3 Notice the difference between name and variable. Names that we use here cannot be replaced by terms.

They can only be renamed.
4 We assume that we start with non-indexed names (see Section 3.3).
5 In that it departs from X described in [vBLL05].



〈x.α〉 linear

M linear , x ∈ fin(M ), β ∈ fon(M ), α /∈ fon(M )

bx M bβ . α linear

M, N linear , α ∈ fon(M ), x ∈ fin(N ), y /∈ fin(M ,N ), fn(M ) ∩ fn(N ) = ∅

M bα [y] bx N linear

M, N linear , α ∈ fon(M ), x ∈ fin(N ), fn(M ) ∩ fn(N ) = ∅

M bα † bxN linear

M linear , x /∈ fin(M )

x�M linear

M linear , α /∈ fon(M )

M � α linear

M linear , x , y ∈ fin(M ), z /∈ fin(M )

z<
bxby〈M ] linear

M linear , α, β ∈ fon(M ), γ /∈ fon(M )

[M〉bαbβ >γ linear

Figure 3. Linear Terms

The (Mα̂ † x̂M) is called a cut and codes the dagger operation on diagrams. It should be
noticed that it is the only operation that creates no free name.

x � M is called a left-eraser and M � α is called a right-eraser. The first one adds explicitly
the inname x (which does not occur in M) as a new free inname in the expression x�M , whereas
M � α adds the free outname α to the term M .

z<
bxby〈M ] is called a left-duplicator and [M〉bαbβ >γ is called a right-duplicator. They code forks. As

terms are linear, this is a way to simulate multiple occurrences of names in a term, more precisely
z<

bxby〈M ] allows z to behave like it would occur twice, although M is linear. One can also see z as
being duplicated into x and y.

Lemma 2 Each term has at least one (free) outname.

Some Abbreviations To ease the reading, abbreviations are welcome.

instead of we write

x1�(...�(xn �M)...) x1 � ...� xn �M

(...(M � α1)� ...)�αn M � α1 � ...� αn

x1<
cy1cz1
〈...xn<

cynczn
〈M ]...] (x1, ..., xn)<

(cy1,..., cyn)
(cz1,...,czn)〈M ]

[...[M〉cβ1cγ1
>α1...〉

cβncγn
>αn [M〉(cβ1,..., cβn)

(cγ1,..., cγn) >(α1, ..., αn)

And more generally, when Φin, Φin,1 and Φin,2 are lists of innames and Φon, Φon,1 and Φon,2

are lists of outnames we write:

Φin<
Φ̂in,1

Φ̂in,2
〈M ] and [M〉

Φ̂on,1

Φ̂on,2
>Φon

with: Φin<
Φ̂in,1

Φ̂in,2
〈M ] = M, when Φin = () and [M〉

Φ̂on,1

Φ̂on,2
>Φon = M when Φon = ().

3.2 Congruences

Sometimes more that on term correspond to the same diagram and congruences between terms
come naturally like



x<
cx1cx2
〈M ] ≡ x<

cx2cx1
〈M ]

[M〉cα1cα2
>α ≡ [M〉cα2cα1

>α

which shows that names can be freely commuted in a duplicator, or

x<
cx1cx2
〈y<

by1by2
〈M ]] ≡ y<

by1by2
〈x<

cx1cx2
〈M ]]

[[M〉cα1cα2
>α〉

cβ1cβ2
>β ≡ [[M〉

cβ1cβ2
>β〉cα1cα2

>α

[x<
cx1cx2
〈M ]〉cα1cα2

>α ≡ x<
cx1cx2
〈[M〉cα1cα2

>α]

where in the first congruence we have y /∈ {x1, x2} and x /∈ {y1, y2} and in the second β /∈ {α1, α2}
and α /∈ {β1, β2}. Those congruences say that provided they are non related, duplicators can
be freely commuted. The last congruence allows us to use a simplified notation x <

cx1cx2
〈M〉cα1cα2

> α

and more generally Φin <
Φ̂in,1

Φ̂in,2
〈M〉

Φ̂on,1

Φ̂on,2
> Φon. In the simpler case when Φin = (), we will write

[M〉
Φ̂on,1

Φ̂on,2
>Φon, and analogously for Φon = () we write only Φin<

Φ̂in,1

Φ̂in,2
〈M ].

The wires can be braided as said by the following congruences:

z<
bycx3
〈y<

cx1cx2
〈M ]] ≡ z<

cx1by 〈y<
cx2cx3
〈M ]]

[[M〉cα1cα2
>β〉 bβcα3

>γ ≡ [[M〉cα2cα3
>β〉cα1bβ >γ

illustrated by the following diagram:

x1

x2

x3

x1

x2

x3

We also have congruences for erasers:

y � x�M ≡ x� y �M
M � α� β ≡ M � β � α

(x�M)� α ≡ x� (M � α)

The last congruence suggests the notation x � M � α, and more generally Φin �M � Φon.
The terms y � x�M and x� y �M correspond respectively to the following two diagrams:

M
��

��

y
x

M
��

��

x
y

The congruence x� y�M ≡ y� x�M suggests that, instead of previous two, we can use the
simpler diagram:

M
��

��

y
x

There are other congruences to be considered for the 1-dimensional syntax in order to reflect
diagrams, but due to lack of space we are not going to see them here.



3.3 Free and Bound Names

Definition 1 (Free Names) The set of free names , i.e. free innames and free outnames are
defined in Figure 4.

Q fin(Q) fon(Q)

〈x.α〉 x αbx M bβ . α fin(M)\{x} (fon(M)\{β}) ∪ {α}
M bα [x] by N fin(M) ∪ (fin(N)\{y}) ∪ {x} (fon(M)\{α}) ∪ fon(N)

M bα † bxN fin(M) ∪ (fin(N)\{x}) (fon(M)\{α}) ∪ fon(N)

x�M fin(M) ∪ {x} fon(M)

M � α fin(M) fon(M) ∪ {α}

x<
cx1cx2
〈M ] (fin(M)\{x1, x2}) ∪ {x} fon(M)

[M〉cα1cα2
>α fin(M) (fon(M)\{α1, α2}) ∪ {α}

Figure 4. Free and Bound Names

We write fn(M) the set of free names of M , fin(M) the sets of free innames of M and,
fon(M) the set of free outnames of M . Thus we have fn(M) = fin(M) ∪ fon(M).

If we wish to think of sets fn(M), fin(M) and fon(M) as lists, we will use the notation Φn(M)
(or simply Φ), Φin(M) and Φon(M), respectively. Simpler way would be to write ΦM

n , ΦM
in and

ΦM
on. If we wish to exclude the name, say outname z, from the list, we write ΦM

on\z
We adopt Barendregt’s convention which says that free and bound names are always distinct.

Remark 1 (Convention on names). A name is never both, bound and free, in the same term.

Remark 2 (Indexing). In what follows, free names will be renamed by indexing. If i is an index (a
natural), M a term and Φ a set of free names occurring in M , ind(M,Φ, i) means, for example,
that a name x belonging to Φ is replaced in M by xi and a name α belonging to Φ is replaced in
M by αi. To avoid losing linearity, we assume that we start with non-indexed names. As we use
it, indexing preserves linearity.

When Φin is a list of innames, we write Φin,i for the same list of names indexed by i and
similarly with Φon for outnames.

We assume that terms are defined up to α-conversion, that is that the renaming of bound innames
or outnames does not change them.

4 Reduction Rules

In this chapter we define a reduction relation, denoted by ∗X−−→. The rules are divided into four
categories. The first ones are called activation and have an effect on the direction in which further
rules will be performed. The second ones are called logical and deal with cuts which can not be
activated; they perform changes on terms. The third ones are called actions and they also perform
changes on the terms. The fourth ones are called propagations as they only propagate active cuts
through terms. Actions and propagations are themselves split into two symmetric sub-categories
“left” and “right”.



Activation Rules Cuts will be eliminated in terms. Actually cut-elimination is the basis of
computation in *X when seen as a programming language. In the cut elimination procedure there
are situations where one has to choose to which side the cuts will be propagated to, in order to
be eliminated. It appears that this choice is the source of non-confluence in *X .

The direction of activation is denoted by bending the cut, like it was done with daggers in
2-dimensional syntax. A bended cut is called an active cut. The syntax shows the activation
together with its direction. See Figure 5.

(act− L) : P bα † bxQ → P bα † bxQ, with P 6= by P ′ bβ . α and P 6= 〈y.α〉
(act−R) : P bα † bxQ → P bα † bxQ, with Q 6= Q′ bβ [x] by Q′′ and Q 6= 〈x.β〉

Figure 5. Activation Rules

Definition 2 (Active Cuts) The syntax is extended with the two activated cuts:

M,N ::= . . . | Mα̂ † x̂N | Mα̂ † x̂N

The terms Pα̂ † x̂Q and Pα̂ † x̂Q are essentially different. Perhaps this is best illustrated by
Lafont’s example [GLT89]. Take P = M �α and Q = x�N , where M and N are arbitrary terms.
Then we have:

(M � α)α̂ † x̂(x�N) → ΦN
in �M � ΦN

on

(M � α)α̂ † x̂(x�N) → ΦM
in �N � ΦM

on

corresponding to the diagrams

M N M and M N N

when M and N are chosen to be closed diagrams for simplicity.
Notice that once activated cuts could be “deactivated” after been propagated. This will happen

when the conditions assigned to (act− L) and (act−R) are no longer fulfilled. These actions are
specified by the first two rules in Figures 7 and 9.

Notice also that due to side conditions, interplay between the reductions specifying the ac-
tivation and the ones specifying the deactivation can not cause infinite reduction sequences like
act, deact, act, deact ...

Priority Sometimes a cut can be activated in two ways. We define a to-the-left strategy, written
→† , as a strategy of cut activation that always activates the cut to the left when side conditions
are enabled in both activation rules in Figure 5. The to-the-right strategy,→ † , is defined likewise.
The two reductions →† and → † are confluent.

Logical Rules Logical rules describe the cut-elimination between two terms which both introduce
names involved in a cut, i.e. they refer to cuts which can not be activated. See Figure 6

The first three logical rules specify a renaming. The third logical rule represents the basic
computational step. It describes the direct interaction between an exporter and a importer, which
results in inserting the subterm of an exporter between the two subterms of a importer.

Inname and Outname Actions Each of these groups has four rules. The first two rules specify
deactivation of cuts. The other two specify erasure and duplication by referring to the situation
when that cut which is being propagated meets a weakening or a contraction. See Figures 7 and 9.



(cap− ren) : 〈y.α〉bα † bx〈x.β〉 → 〈y.β〉

(exp− ren) : (by P bβ . α)bα † bx〈x.γ〉 → by P bβ . γ

(med− ren) : 〈y.α〉bα † bx(P bβ [x] bz Q) → P bβ [y] bz Q

(exp−med) : (by P bβ . α)bα † bx(Q bγ [x] bz R) → either

(
(Qbγ † byP )bβ † bzR

Qbγ † by(P bβ † bzR)

Figure 6. Logical Rules

( †cap− deactivation) : P bα † bx〈x.β〉 → P bα † bx〈x.β〉

( † imp− deactivation) : P bα † bx(Q bβ [x] by R) → P bα † bx(Q bβ [x] by R)

( †erasure) : P bα † bx(x�Q) → Φin �Q� Φon

Φin = fin(P ), Φon = fon(P )\{α}

( †duplication) : P bα † bx(x<
cx1cx2
〈Q]) → Φin <

Φ̂in,1

Φ̂in,2
〈P2cα2 †cx2(P1cα1 †cx1Q〉

Φ̂on,1

Φ̂on,2
)> Φon

Φin = fin(P ), Φon = fon(P ) \ {α}

P1 = ind(P, Φin ∪ Φon, 1) P2 = ind(P, Φin ∪ Φon, 2)

Figure 7. Inname Actions

Left and Right-Propagation Rules Propagation rules describe how cut is propagated through
the structure of terms (Figure 8 and Figure 10). Even the propagation of cuts over other inactive
cuts is enabled, therefore it is possible to represent β-reduction. The propagation rules are relevant
only in 1-dimensional syntax, i.e. they do not correspond to operations on diagrams, they only
change the view (the parsing) one has on diagrams.

Reduction system enjoys some nice properties as expressed by the following lemma.

Lemma 3 (Basic properties of ∗X−−→)

1. The reductions preserve the set of free names: If P
∗X−−→ Q then fn(P ) = fn(Q)

(Lafont’s interface preservation [Laf95]).
2. The reductions preserve linearity: If P is linear and P

∗X−−→ Q then Q is linear.

Proof. The proof proceeds by induction on the length of the reduction rules.

5 A Type System

In this framework, types are arrow types. Given a set T of basic types, a type is given by

A,B ::= T | A → B.

The type assignment of a term is given by a sequent Γ ` ∆, where Γ is a set6 of type dec-
larations for innames, e.g., Γ ≡ x :A, y :B and ∆ is a set of declarations for outnames, e.g.,
∆ ≡ α :A, β :A → B,γ :C. The type system for *X is given in Figure 11.

Implicational Sequent Calculus If we remove the term-decoration in the type system of Fig-
ure 11, we get the system in Figure 12.

We notice that this system is just the context splitting classical implicational sequent
calculus.
6 In fact Γ and ∆ are multisets, but since all names are distinct we can treat them as sets



( †exp− prop) : P bα † bx(by Q bβ . γ) → by (P bα † bxQ) bβ . γ

( † imp− prop1) : P bα † bx(Q bβ [υ] bz R) → (P bα † bxQ) bβ [y] bz R, x ∈ fin(Q)

( † imp− prop2) : P bα † bx(Q bβ [υ] bz R) → Q bβ [y] bz (P bα † bxR), x ∈ fin(R)

( †cut(caps)− prop) : P bα † bx(〈x.β〉bβ † byR) → P bα † byR

( †cut− prop1) : P bα † bx(Qbβ † byR) → (P bα † bxQ)bβ † byR, x ∈ fin(Q), Q 6= 〈x.β〉

( †cut− prop2) : P bα † bx(Qbβ † byR) → Qbβ † by(P bα † bxR), x ∈ fin(R), Q 6= 〈x.β〉

( †L-eras− prop) : P bα † bx(y �Q) → y � (P bα † bxQ), x 6= y

( †R-eras− prop) : P bα † bx(Q� β) → (P bα † bxQ)� β

( †L-dupl − prop) : P bα † bx(y<
cy1cy2
〈Q]) → y<

cy1cy2
〈P bα † bxQ], x 6= y

( †R-dupl − prop) : P bα † bx([Q〉
cβ1cβ2

>β) → [P bα † bxQ〉
cβ1cβ2

>β

Figure 8. Right-propagation

(cap † − deactivation) : 〈x.β〉bβ † byR → 〈x.β〉bβ † byR

(exp † − deactivation) : (bx P bγ . β)bβ † byR → (bx P bγ . β)bβ † byR

( † erasure) : (P � β)bβ † byR → Φin � P � Φon

Φin = fin(R)\{y}, Φon = fon(R)

( † duplication) : ([P 〉
cβ1cβ2

>β)bβ † byR → Φin <
Φ̂in,1

Φ̂in,2
〈(P cβ1

† by1R1)cβ2
† by2R2〉

Φ̂on,1

Φ̂on,2
> Φon

Φin = fin(R) \ {y}, Φon = fon(R)

R1 = ind(R, Φin ∪ Φon, 1) R2 = ind(R, Φin ∪ Φon, 2)

Figure 9. Outname Actions

– Implicational means that only arrows (or implications) occur to form types (or propositions).
– Classical means that the types (or the propositions) are these of the implicational fragment

of classical propositional logic.
– Context splitting means that in the rules with two premises, namely (L →) and (cut), contexts

are split.

Lemma 4 (Subject Reduction)

– If M ··· Γ ` ∆ and M ≡ M ′, then M ′ ··· Γ ` ∆

– If S ··· Γ ` ∆ and S
∗X−−→ S′, then S′ ··· Γ ` ∆

6 Representing λ-Calculus

*X is closely connected to explicit substitution. It can be seen as a calculus of explicit substitution
in which entities propagate into two directions. In one direction, the substitution propagates
through the term. In the other direction, the term propagates through the substitution. This is
actually the duality exhibited by interpretations of classical logic [CH00].

In order to present the encoding elegantly we define the operation ◦, which adds erasers where
necessary:

x ◦, VMUα =
{

x� VMUα, x /∈ fv(M)
VMUα, x ∈ fv(M)



(exp † − prop) : (bx P bγ . α)bβ † byR → bx (P bβ † byR) bγ . α

(imp † − prop1) : (P bα [x] bz Q)bβ † byR → (P bβ † byR) bα [x] bz Q, β ∈ fon(P )

(imp † − prop2) : (P bα [x] bz Q)bβ † byR → P bα [x] bz (Qbβ † byR), β ∈ fon(Q)

(cut(caps) † − prop) : (P bα † bx〈x.β〉)bβ † byR → P bα † byR

(cut † − prop1) : (P bα † bxQ)bβ † byR → (P bβ † byR)bα † bxQ, β ∈ fon(P ), q 6= 〈x.β〉

(cut † − prop2) : (P bα † bxQ)bβ † byR → P bα † bx(Qbβ † byR), β ∈ fon(Q), q 6= 〈x.β〉

(L-eras † − prop) : (x�M)bβ † byR → x� (M bβ † byR)

(R-eras † − prop) : (M � α)bβ † byR → (M bβ † byR)� α, α 6= β

(L-dupl † − prop) : (x<
cx1cx2
〈M ])bβ † byR → x<

cx1cx2
〈M bβ † byR]

(R-dupl † − prop) : ([M〉cα1cα2
>α)bβ † byR → [M bβ † byR〉cα1cα2

>α, α 6= β

Figure 10. Left propagation

Notice that M is a λ-calculus term, and that x is here a variable of the λ-calculus (hence the use
fv for “free variables”). The same letters are used for variables as for innames in *X . Moreover,
they correspond to each other in the sense that a free variable in λ-calculus becomes a free inname
in ∗X after the encoding.

Definition 3 (Encoding λ-calculus) The encoding of λ-calculus terms in *X -calculus is defined
as follows:

VxUα := 〈x.α〉
Vλx.MUα := x̂ (x ◦, VMUβ) β̂ . α

VMNUα := Φin<
Φ̂in,1

Φ̂in,2
〈Mγ̂ † x̂N ],

where
Φin = fv(M) ∩ fv(N) \ {x}
M = ind(VMUγ , Φin, 1)
N = ind(VNUβ , Φin, 2) β̂ [x] ŷ 〈y.α〉

Lemma 5 (Faithfulness) If M β−→ N , then VMUα
∗X−−→ (fin(VMUα) \ fin(VNUα))� VNUα.

For the simple case, when fin(VMUα) \ fin(VNUα) = ∅, the property becomes VMUα
∗X−−→ VNUα.

Representing λx To add the coding for explicit substitution, namely for λx-calculus is easy
[BR95,LLD+04]. We just have to add the definition:

VM〈x = N〉Uα := Φin<
Φ̂in,1

Φ̂in,2
〈N β̂ † x̂M ] where

Φin = fv(M) ∩ fv(N) \ {x}
N = ind(VNUβ , Φin, 1)
M = ind(VMUα, Φin, 2)

Untyped *X is Turing Complete Since it implements λ-calculus, untyped *X is clearly Turing
complete.

Call-by-Name and Call-by-Value *X can easily represent and clarify call-by-name and call-
by-value in the λ-calculus following the approach presented in [vBLL05] to the new operators and
which is based on strategies →† and → † .



(capsule)
〈x.α〉 : x :A ` α :A

M : Γ ` α :A, ∆ N : Γ ′, x :B ` ∆′

(importer)
M bα [y] bx N : Γ, Γ ′, A → B ` ∆, ∆′

M : Γ, x :A ` α :B, ∆
(exporter)bx M bα . β : Γ ` β :A → B, ∆

P : Γ ` α :A, ∆ Q : Γ ′, x :A ` ∆′

(cut)
P bα † bxQ : Γ, Γ ′ ` ∆, ∆′

M : Γ ` ∆
(L-eraser)

x�M : Γ, x :A ` ∆

M : Γ ` ∆
(R-eraser)

M � α : Γ ` α :A, ∆

M : Γ, x :A, y :A ` ∆
(L-duplicator)

z<
bxby〈M ] : Γ, z :A ` ∆

M : Γ ` α :A, β : A, ∆
(R-duplicator)

[M〉bαbβ >γ : Γ ` γ :A, ∆

Figure 11. Type System

(axiom)
A ` A

Γ ` A, ∆ Γ ′, B ` ∆′

(L→)
Γ, Γ ′, A → B ` ∆, ∆′

Γ, A ` B, ∆
(R→)

Γ ` A → B, ∆

Γ ` A, ∆ Γ ′, A ` ∆′

(cut)
Γ, Γ ′ ` ∆, ∆′

Γ ` ∆
(L-weakening)

Γ, A ` ∆

Γ ` ∆
(R-weakening)

Γ ` A, ∆

Γ, A, A ` ∆
(L-contraction)

Γ, A ` ∆

Γ ` A, A, ∆
(R-contraction)

Γ ` A, ∆

Figure 12. Classical Sequent Calculus

Using Diagrams To end, we give two diagrams. The diagram on the left corresponds to the
combinator S ≡ λxyz.xz(yz) (encoded in *X ) while the diagram on the right corresponds to the
Peirce law (Peirce law can not be associated with a λ-term). They can be typed.

– The type (A → B → C) → (A → B) → A → C can be assigned to α, for the first diagram
(S-combinator).

– The type ((A → B) → A) → A can be assigned to α, for the second diagram (Peirce law).

If one is interested to compare, we also give 1-dimensional *X -terms corresponding to these dia-
grams, thus we have:

ω̂ (û (x̂ (x<
cx1cx2
〈〈x2.ε〉 ε̂ [w] v̂ ((〈x1.δ〉 δ̂ [u] ŷ 〈y.β〉) β̂ [v] ẑ 〈z.γ〉)]) γ̂ . η) η̂ . θ) θ̂ . α

ẑ ([(x̂ (〈x.δ1〉 � β) β̂ . γ) γ̂ [z] ŷ 〈y.δ2〉〉
bδ1bδ2

>δ) δ̂ . α

for the first and second diagram, respectively.



α

I

I

I

E

E

E

E

α

I

E

7 Related Work and Inspiration

The paper lies in a long chain of research on classical logic initiated by Gentzen [Gen35] and Griffin
[Gri90]. Here is a non exhaustive list of works which inspired us.

– The several calculi for interpreting classical logic were a source of inspiration among them
the works on constructive classical logic of Girard [Gir91] and Danos, Joinet and Schellinx
[DJS97], the works on λµ by Parigot [Par92,Par97], Ong and Steward [OS97] and de Groote
[dG94] and the work on the symmetric calculus by Barbanera and Berardi [BB96] and Wadler
[Wad03,DGL05]. The strongest influence in this respect is this of Curien and Herbelin [CH00]
with their dual calculus.

– Further in that direction the researches about strong normalization of cut elimination in classi-
cal logic which proposed languages, namely this of Urban [Urb00,UB01] and Lengrand [Len03]
which deeply influenced us.

– Proof nets in linear logic are clearly behind this work [Gir87,Laf95,Lau03], but also interaction
nets [Laf90,Laf95,AG99].

– Last but not least, the connection with the main stream of diagram directed design of computer
system is important [Laf90,Mil99] and has been presented in the introduction.

We would like to give a special mention to two works that are the main sources of our inspira-
tion, namely the work on X [vBLL05], which is the ancestor of our *X , and the work of Kesner and
Lengrand [KL06] who introduced explicit duplicators and explicit erasers in a calculus of explicit
substitution.

8 Conclusion

In this paper we have presented the calculus *X which is first a diagrammatic calculus, but which
possesses also a 1-dimensional syntax. Our approach can be summarized as the power of logic with
the clarity of diagrams in programming.
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A The Terminology

The two systems presented in this work exhibit a Curry-Howard correspondence for classical logic.
The terminology is summarized in the following table.



diagrams 1-dim syntax types
in-out capsule axiom
E-fan exporter →R-intro
I-fan importer →L-intro
fork duplicator contraction

black hole eraser weakening
dagger cut cut
port name named proposition

B An Example

In a programming language, one of the most basic construction is a conditional (aka if ). Let us
say in terms of diagrams what we expect from an if. When the diagram True and two arbitrary
diagrams P and Q are plugged into if it reduces to P and, if instead of True we use False it
yields Q.

True

P

Q

Pif P

Q

if

False

Q

Actually if(B,P,Q) corresponds to the construction represented by the first, while the second
diagram gives a more detailed view (one see the diagram proposed for B = True).

B

I

P

Q

I
I

P

Q

I

E

E

Below are reduction steps leading to P . For simplicity we assume that M and N are closed
diagrams diagrams.



P
Q

E
I

P

Q
E

I

Q P

P

PP

Notice that starting from the first diagram in this sequence, we would have got the same result
if we would have reduced the right dagger first. This means that, in this specific case, priority of
daggers is irrelevant. Since *X is not confluent, this cannot be generalized.

C The Example Revisited

Here we wish to revisit the example given in Section B, this time using one-dimensional syntax.
The terms coding the diagrams for True and False are:

True , x̂ (ŷ (y � 〈x.α〉) α̂ . β) β̂ . γ

False , ŷ (x̂ (y � 〈x.α〉) α̂ . β) β̂ . γ

The term representing the conditional is:

Bγ̂ † ẑ(P δ̂ [z] t̂ (Q ε̂ [t] û 〈u.σ〉))

Let P and Q be arbitrary terms (for simplicity we will assume that they are closed), then the
above term when B = True reduces to P and for B = False reduces to Q, as shown bellow.

Reducing the conditional term when B = True yields:

(bx (by (y � 〈x.α〉) bα . β) bβ . γ)bγ † bz(P bδ [z] bt (Q bε [t] bu 〈u.σ〉))
→ (P bδ † bx(by (y � 〈x.{〉α})b{ . α}β))bβ † bt(Q bε [t] bu 〈u.σ〉)
→ (by (y � P{α/δ}) bα . β)bβ † bt(Q bε [t] bu 〈u.σ〉)
→ (Qbε † by(y � P{α/δ}))bα † bu〈u.σ〉
→ (y � P{α/δ})bα † bu〈u.σ〉
→ P{α/δ}{σ/α}

Reducing the conditional term when B = False yields:

(by (bx (y � 〈x.α〉) bα . β) bβ . γ)bγ † bz(P bδ [z] bt (Q bε [t] bu 〈u.σ〉))
→ (P bδ † by(bx (y � 〈x.α〉) bα . β))bβ † bt(Q bε [t] bu 〈u.σ〉)
→ (bx 〈x.α〉 bα . β)bβ † bt(Q bε [t] bu 〈u.σ〉)
→ (Qbε † bx〈x.α〉)bα † bu〈u.σ〉
→ (Q{α/ε})bα † bu〈u.σ〉
→ Q{α/ε}{σ/α}



D Encoding λ-calculus; Illustrations and Examples

We give several instances of encoding, as an illustration of the general definition:

Vλx.MUα = x̂VMUβ β̂ . α, when x ∈ fv(M)

VMNUα = VMUγ γ̂ † x̂(VNUβ β̂ [x] ŷ 〈y.α〉), when fv(M) ∩ fv(N) = ∅
VMNUα = z<

bz1bz2
〈(Rz

z1
(VMUγ))γ̂ † x̂((Rz

z2
(VNUβ)) β̂ [x] ŷ 〈y.α〉)], when fv(M) ∩ fv(N) = z

Example 1. We give several examples of the encoding of non-linear λ-terms:

VzzUα , z<
cz1cz2
〈VzUγ{z1/z}bγ † bxVzUβ{z2/z} bβ [x] by 〈y.α〉]

, z<
cz1cz2
〈Vz1Uγbγ † bx(Vz2Uβ

bβ [x] by 〈y.α〉)]
, z<

cz1cz2
〈〈z1.γ〉bγ † bx(〈z2.β〉 bβ [x] by 〈y.α〉)]

∗X−−→ z<
cz1cz2
〈〈z2.β〉 bβ [z1] by 〈y.α〉]

Vλt.uUα , bt (t ◦, VuUβ) bβ . α

, bt (t� 〈u.β〉) bβ . α

V(λt.u)vUα , Vλt.uUγbγ † bx(VvUβ
bβ [x] by 〈y.α〉)

, bt (t� 〈u.δ〉) bδ . γbγ † bx(〈v.β〉 bβ [x] by 〈y.α〉)
∗X−−→ (〈v.β〉bβ † bt(t� 〈u.δ〉))bδ † by〈y.α〉
∗X−−→ v � 〈u.α〉
, v � VuUα


