






You know

that this guy is Napoléon



He believes he is Napoleon,

but it is well known

that I am Napoleon.
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Examples related to
computers
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A sender receiver protocol

M2 - Logic and Games, 2004
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A sender receiver protocol

Network transmits messages between a sender and a receiver:

M2 - Logic and Games, 2004
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receiver

network

sender
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A sender receiver protocol

Network transmits messages between a sender and a receiver:

• network can duplicate messages,

• network can loose messages,

• however, network cannot loose a message forever.

This is Internet TCP .

M2 - Logic and Games, 2004
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A sender receiver protocol (suite)

As long as the sender does not know whether the receiver has

received a given message mi, it resends it.

The receiver acknowledges reception of a message by sending an

acknowledgment message acki as long as it does not know whether

the sender has received this acknowledgment.

M2 - Logic and Games, 2004
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The coordinated attack

M2 - Logic and Games, 2004
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The coordinated attack

• Two generals and their armies on two hills,

• They must attack together the enemy , i.e., at the same hour.

• Each general must be sure that the other will attack at the same

time.

• They communicate trough messengers

– who take half an hour to go from one camp to the other,

– who can be caught, be killed or get lost.

How do the generals coordinate their attack?

M2 - Logic and Games, 2004
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But, the messenger can
be caught or killed !
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But, the messenger can
get lost !
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The coordinated attack

General 1 chooses a time for the attack, say H , and sends a

messenger.

Upon arrival of the messenger, general 2 agrees on the hour H and

sends a messenger with an agreement.

General 1 will attack at time H if he knows that General 2 knows his

proposed hour and agrees on.

General 2 will attack at time H if he (General 2) knows that General 1

knows that he (General 2) knows the proposed hour H .

General 1 must send a second messenger with an acknowledgment.

M2 - Logic and Games, 2004
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General 1 will attack at time H if he (General 1) knows that General 2

knows that he (General 1) knows that General 2 knows the proposed

hour.

General 2 must send a second messenger with an acknowledgment.

General 2 will attack at time H if he (General 2) knows that General 1

knows that he (General 2) knows that General 1 knows that he

(General 2) knows the proposed hour H .

General 1 must send a third messenger with an acknowledgment.

...

M2 - Logic and Games, 2004
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The coordinated attack

The process goes forever.

M2 - Logic and Games, 2004
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The coordinated attack

The process goes forever.

One can prove that,

with asynchronized communications,

a coordinated attack is not possible.

M2 - Logic and Games, 2004
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Security on Internet

M2 - Logic and Games, 2004



37

Security on Internet

The goal is to transform sentences “I believe that ... ”

into sentences “I know that ... ”.

Messages are encoded and traverse a public network,

but this is not enough.

Intruders on the network can

• listen to messages,

• stock them

• and replay them or build fake messages.

M2 - Logic and Games, 2004
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Security on Internet

Assume A received a message from B.

A must be able to assert

“I know that the message I received has been sent by B”.

M2 - Logic and Games, 2004
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The Needham-Schroeder protocol

M2 - Logic and Games, 2004
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Some notations for protocols

• One→ Two : Message

Agent One sends a message Message to agent Two.

M2 - Logic and Games, 2004
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Some notations for protocols

• One→ Two : Message

Agent One sends a message Message to agent Two.

• {M}Key−a

the contents M is encoded by the key Key − a of agent a.

M2 - Logic and Games, 2004



42

Some notations for protocols

• One→ Two : Message

Agent One sends a message Message to agent Two.

• {M}Key−a

the contents M is encoded by a keyKey − a.

• Na is a nonce created by agent a.

It is a number generated uniquely for this instance of the protocol,

as a freshness warranty.

M2 - Logic and Games, 2004
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The Needham-Schroeder protocol

1. Alice→ Bob : {Na,A}Key−b

2. Bob→ Alice : {Na,Nb}Key−a

3. Alice→ Bob : {Nb}Key−b

M2 - Logic and Games, 2004
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An attack of the Needham-Schroeder protocol

1. Alice→Mallory : {Na,A}Key−m

1. Mallory → Bob : {Na,A}Key−b

2. Bob→Mallory : {Na,Nb}Key−a

2. Mallory → Alice : {Na,Nb}Key−a

3. Alice→Mallory : {Nb}Key−m

3. Mallory → Bob : {Nb}Key−b

M2 - Logic and Games, 2004
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An attack of the Needham-Schroeder protocol

1. Alice→Mallory : {Na,A}Key−m

1. Mallory → Bob : {Na,A}Key−b

2. Bob→Mallory : {Na,Nb}Key−a

2. Mallory → Alice : {Na,Nb}Key−a

3. Alice→Mallory : {Nb}Key−m

3. Mallory → Bob : {Nb}Key−b

Bob believes he speaks to Alice, whereas he speaks to Mallory.

M2 - Logic and Games, 2004
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Where is the failure ?

The knowledge of each agent has been badly apprehended.

M2 - Logic and Games, 2004
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Where is the failure ?

The knowledge of each agent has been badly apprehended.

The existence of a bad agent has been forgotten.

M2 - Logic and Games, 2004
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Where is the failure ?

The knowledge of each agent has been badly apprehended.

The existence of a bad agent has been forgotten.

Alice starts to communicate with the not trusty agent Mallory.

One must formalize precisely knowledge.

M2 - Logic and Games, 2004
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Modal logic

and

logic of knowledge

M2 - Logic and Games, 2004
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The modalities

A modality is an operator which transforms a sentence in another

sentence.

One creates a modality KA for each agent A.

A logic with modalities is called a modal logic.

M2 - Logic and Games, 2004
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Examples of modalities

• Temporal logic: � always, 3 eventually

�ϕ means ϕ is always true.

3ϕ means ϕ is eventually true.

• Genuine modal logic (Leibniz): � necessarily, 3 possibly,

�ϕ means ϕ holds in all possible worlds.

3ϕ means ϕ holds in a possible world.

• Epistemic logic: Ki “Agent i knows” Bi “Agent i believes”,

Kiϕ means Agent i knows ϕ,

Biϕ means Agent i believes ϕ,

M2 - Logic and Games, 2004
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Interdefinition of modalities

In classical logic we pose:

3ϕ , ¬�(¬ϕ)

Eventually ϕ is the same as not always not ϕ.

M2 - Logic and Games, 2004
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Interdefinition of modalities

In classical logic we pose:

3ϕ , ¬�(¬ϕ)

Eventually ϕ is the same as not always not ϕ.

Similarly

�ϕ , ¬3¬ϕ.

M2 - Logic and Games, 2004



54

Modal logic

M2 - Logic and Games, 2004
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In what follows we are going to give rules and axioms for the

modalities “always”, “necessarily” or “knowledge”.

We are going to going to use a generic notation ⊞ for these

modalities.

The modalities “eventually”, “possibly” or “belief” can be also

axiomatized, but one has to use a different set of rules and axioms.

M2 - Logic and Games, 2004
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Rules

It is a logic à la Hilbert.

Modus ponens
⊢ ϕ ⊢ ϕ⇒ ψ

(MP)
⊢ ψ

Generalization
⊢ ϕ

(G)
⊢ ⊞ϕ

M2 - Logic and Games, 2004
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The axioms

All theorems of traditional logic.

(Cl) if ϕ is a theorem of logic.
⊢ ϕ

M2 - Logic and Games, 2004
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The axioms

Four more axioms

(K)
⊢ ⊞(ϕ⇒ ψ) ⇒ ⊞ϕ⇒ ⊞ψ

(T)
⊢ ⊞ϕ⇒ ϕ

M2 - Logic and Games, 2004
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The axioms

(4)
⊢ ⊞(ϕ) ⇒ ⊞(⊞(ϕ))

(5)
⊢ ¬ ⊞ (ϕ) ⇒ ⊞(¬ ⊞ (ϕ))

M2 - Logic and Games, 2004
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A proof

⊢ ⊞ϕ⇒ ⊞(ϕ⇒ ψ) ⇒ ⊞ψ

(K)
⊢ ⊞(ϕ ⇒ ψ) ⇒ ⊞ϕ ⇒ ⊞ψ

(CI)
⊢ (⊞(ϕ ⇒ ψ) ⇒ ⊞ϕ ⇒ ⊞ψ) ⇒ ⊞ϕ ⇒ ⊞(ϕ ⇒ ψ) ⇒ ⊞ψ

(MP)
⊞ϕ ⇒ ⊞(ϕ ⇒ ψ) ⇒ ⊞ψ

M2 - Logic and Games, 2004
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The systems

There are several systems of modal logic.

The best known are

K = MP + G + CI + K.

T = K + T.

S4 = T + 4.

S5 = S4 + 5.

M2 - Logic and Games, 2004
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The Geach hierarchy

All the axioms but K are of the form 3
i�mϕ⇒ �j

3
nϕ.

This is called the the Geach hierarchy.

Axiom 3
i�mϕ⇒ �j

3
nϕ is associated

with the quadruple (i, j,m, n).

For instance, 5 can be seen as

(5)
⊢ 3(ϕ) ⇒ �(3(ϕ))

hence associated with (1, 1, 0, 1).

M2 - Logic and Games, 2004
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Temporal Logic

M2 - Logic and Games, 2004
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Two new operators

One presents usually temporal logic with �.

But for a more precise temporal logic, one can also present it using

two operators © and U .

• © means next time, ©ϕ is true if ϕ is true at the next step.

This makes the time discrete.

• ϕU ψ is true if ϕ is true until ψ is true and ψ is eventually true.

M2 - Logic and Games, 2004
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Axioms

(T1)
⊢ ©(ϕ⇒ ψ) ⇒ ©ϕ⇒ ©ψ

⊢ ϕ
(RT1)

⊢ ©ϕ

(T2)
⊢ ©¬ϕ⇒ ¬© ϕ

(T3)
⊢ ϕU ψ ⇒ ψ ∨ (ϕ ∧ ©(ϕU ψ)

⊢ θ ⇒ ψ ∨ (ϕ ∧ ©θ)
(RT2)

⊢ θ ⇒ (ϕU ψ)

M2 - Logic and Games, 2004
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� and 3 expressed with U

Exercise How to express � with U?

M2 - Logic and Games, 2004
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� and 3 expressed with U

Exercise How to express � with U?

Answer:

3ϕ , trueU ϕ

et

�ϕ , ¬3¬ϕ.

M2 - Logic and Games, 2004
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Logic of knowledge

or

epistemic logic

M2 - Logic and Games, 2004
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After Napoleon
another warrior

M2 - Logic and Games, 2004
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”Reports that say something hasn’t happened are always interesting

to me, because as we know, there are known knowns; there are

things we know we know,”

”We also know there are known unknowns; that is to say we know

there are some things we do not know. But there are also unknown

unknowns – the ones we don’t know we don’t know.”

Defense Secretary Donald Rumsfeld,

at a news briefing in February 2002

M2 - Logic and Games, 2004
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What is logic of knowledge ?

The logic of knowledge also known as epistemic logic

is the logic that formalizes

• “the agent i knows that ϕ”, written Ki(ϕ),

• “ϕ is a common knowledge”, written CG(ϕ).

M2 - Logic and Games, 2004
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Belief

A way to define belief is by using knowledge:

Bi(ϕ) , ¬Ki(¬ϕ)

M2 - Logic and Games, 2004
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Rules and axioms

M2 - Logic and Games, 2004
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Rules

It is a logic à la Hilbert.

Modus ponens
⊢ ϕ ⊢ ϕ⇒ ψ

(MP )
⊢ ψ

Knowledge generalization

⊢ ϕ
(KG)

⊢ Ki(ϕ)

M2 - Logic and Games, 2004
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The axioms

All theorems of traditional logic.

(Cl) if ϕ is a theorem of logic.
⊢ ϕ

M2 - Logic and Games, 2004
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The axioms

Four more axioms

Distribution axiom

(K)
⊢ Ki(ϕ) ⇒ Ki(ϕ⇒ ψ) ⇒ Ki(ψ)

Knowledge axiom

(T)
⊢ Ki(ϕ) ⇒ ϕ

M2 - Logic and Games, 2004
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The axioms

Positive introspection axiom

(4)
⊢ Ki(ϕ) ⇒ Ki(Ki(ϕ))

M2 - Logic and Games, 2004
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The axioms

Positive introspection axiom

(4)
⊢ Ki(ϕ) ⇒ Ki(Ki(ϕ))

If an agent knows a fact ϕ, then he knows that he knows ϕ.

M2 - Logic and Games, 2004
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The axioms

Positive introspection axiom

(4)
⊢ Ki(ϕ) ⇒ Ki(Ki(ϕ))

Negative introspection axiom

(5)
⊢ ¬Ki(ϕ) ⇒ Ki(¬Ki(ϕ))

M2 - Logic and Games, 2004
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The axioms

Positive introspection axiom

(4)
⊢ Ki(ϕ) ⇒ Ki(Ki(ϕ))

Negative introspection axiom

(5)
⊢ ¬Ki(ϕ) ⇒ Ki(¬Ki(ϕ))

If an agent does not know a fact ϕ, then he knows that he does not

know ϕ.

M2 - Logic and Games, 2004
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Beware

In modal logic, one cannot have plain natural deduction.

One can use “natural sequents” like Γ ⊢ ϕ.

But the knowledge generalization is

Γ ⊢ ϕ

Ki(Γ) ⊢ Ki(ϕ)
or

Γ ⊢ ϕ

�(Γ) ⊢ �(ϕ)

where Ki(Γ) (resp. �(Γ)) means that one puts a Ki (resp. a �) in

front of all the propositions in Γ.

The operation Ki(Γ) is not a traditional operation in natural

deduction.

M2 - Logic and Games, 2004
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A proof of ⊢ ϕ ⇒ Ki(¬Ki(¬ϕ)

If ϕ holds then I know that I do not know ¬ϕ.

M2 - Logic and Games, 2004



84

A proof of ⊢ ϕ ⇒ Ki(¬Ki(¬ϕ)

(5)

⊢ ¬Ki(¬ϕ) ⇒ Ki(¬Ki(¬ϕ))

(Cl)

⊢ ψ

(T)

⊢ Ki(¬ϕ) ⇒ ¬ϕ

(MP )

⊢ (¬Ki(¬ϕ) ⇒ Ki(¬Ki(¬ϕ))) ⇒ ϕ ⇒ Ki(¬Ki(¬ϕ))

(MP )

⊢ ϕ ⇒ Ki(¬Ki(¬ϕ))

where

ψ , (Ki(¬ϕ) ⇒ ¬ϕ) ⇒ (¬Ki(¬ϕ) ⇒ Ki(¬Ki(¬ϕ))) ⇒ ϕ ⇒ Ki(¬Ki(¬ϕ))

which is a classic theorem.

Indeed this is an instance of (B ⇒ ¬A) ⇒ (¬B ⇒ C) ⇒ (A ⇒ C).

M2 - Logic and Games, 2004
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Common knowledge

M2 - Logic and Games, 2004



Hi, who are you ?

Am Napoleon.

Yeah. Who told you that?

God told me.

Did I say that?
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Common knowledge

CG(ϕ) formalizes sentences like

• “Agent i knows that agent j knows that agent i knows that ’agent

j knows that, etc.”.

One needs a modality E, called “shared knowledge”, that says

“Everybody knows that ϕ”,

EG(ϕ) =
∧

i∈G

Ki(ϕ).

M2 - Logic and Games, 2004
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Common knowledge

CG(ϕ) is a fixpoint of

ψ ⇔ ϕ ∧ EG(ψ)

i.e.,

CG(ϕ) ⇔ ϕ ∧ EG(CG(ϕ))

M2 - Logic and Games, 2004
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The axioms of common knowledge

Definition of EG

(C1)
⊢ EG(ϕ) ⇔

∧

i∈G

Ki(ϕ)

CG(ϕ) satisfies the inequality ψ ⇒ ϕ ∧ EG(ψ).

(C2)
⊢ CG(ϕ) ⇒ ϕ ∧ EG(CG(ϕ))

M2 - Logic and Games, 2004
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The rule of common knowledge

CG(ϕ) is the greatest fixpoint when one takes ⇒ as the inequality,

i.e.

if any ψ satisfies ψ ⇒ ϕ ∧EG(ψ)

then ψ ⇒ CG(ϕ).

⊢ ψ ⇒ ϕ ∧ EG(ψ)
(RC1)

⊢ ψ ⇒ CG(ϕ)

M2 - Logic and Games, 2004
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The models

M2 - Logic and Games, 2004
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The Kripke models

A Kripke model is a triple M = (UM,IM,RM) where

• UM is a set of elements which are called worlds,

• IM : V ariables→ P(UM).

Intuitively IM(p) is the set of worlds where variable p is satisfied.

• RM = (R1, ..Rn) is a set of relations (one by agent) called

accessibility relations.

If uRi v then the world v is accessible from u for i.

If IM(p) contains a world u,

then it must contain all the worlds v such that uRiv for all i.

M2 - Logic and Games, 2004
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Forcing

In addition one defines in each model M a relation 
 between worlds

and propositions.

It is written M, u 
 ϕ

or u 
 ϕ is there is no ambiguity on M.

M2 - Logic and Games, 2004
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A simple game

2 agents, 3 cards {A,B,C}.

Agent 1 receives one card

Agent 2 receives one card

The third card is face down.

There are six possible worlds :

(A,B), (A,C), (B,A)(B,C), (C,A), (C,B).

M2 - Logic and Games, 2004
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A simple game

In worlds (A,B) agent 1 (its accessibility relation is written ) accepts

two possible worlds namely (A,B) and (A,C).

A,B A,C

C,B B,C

C,A B,A

The Kripke model M.

M2 - Logic and Games, 2004
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A simple game

Primitive propositions are

• 1A player (agent) 1 holds card A,

• 2A player (agent) 2 holds card A,

• 1B player (agent) 1 holds card B,

• 2B player (agent) 2 holds card B,

• 1C player (agent) 1 holds card C ,

• 2C player (agent) 2 holds card C .

M2 - Logic and Games, 2004
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Some forcing assertions

(A,B) 
 1A ∧ 2B,

(A,B) 
 K1(2B ∨ 2C),

(A,B) 
 K1(¬K2(1A)).

For all worlds u the assertion u 
 K1(2A ∨ 2B ∨ 2C) holds

hence M � K1(2A ∨ 2B ∨ 2C).

M2 - Logic and Games, 2004
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Accessibility and forcing

1. If ϕ is a variable p:

M, u 
 ϕ iff u ∈ IM(p)

2. If ϕ is a conjunction ψ ∧ θ

M, u 
 ϕ iff M, u 
 ψ and M, u 
 θ

3. If ϕ is a disjunction ψ ∨ θ

M, u 
 ϕ iff M, u 
 ψ or M, u 
 θ

4. If ϕ is an implication ψ ⇒ θ

M, u 
 ϕ iff M, u 
 ψ implies M, u 
 θ

5. If ⊥ is absurd, then M, u 6
⊥.

M2 - Logic and Games, 2004
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Accessibility and forcing

6.If ϕ is a modality Ki(ψ) then

u 
 Ki(ψ) iff (∀v ∈ UM) u Ri v implies v 
 ψ.

This means also that

agent i knows ψ in world u

if and only if

in each worlds that he takes as possible, ψ holds.

M2 - Logic and Games, 2004



100

Accessibility and forcing

7.If ϕ is a modality CG(ψ) then

u 
 CG(ψ) iff (∀v ∈ UM) u (
⋃

i∈G

Ri)
∗ v implies v 
 ψ.

This means also that

CG(ψ) holds in world u

if and only if

in each worlds that are reachable

by a path of accessibility relations, ψ holds.

M2 - Logic and Games, 2004
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Axioms and properties of
accessibility

M2 - Logic and Games, 2004
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We are going to show that every axiom of modal logic corresponds to

a property for the accessibility relation.

M2 - Logic and Games, 2004
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We are going to show that every axiom of modal logic corresponds to

a property for the accessibility relation.

Proof theory Models

axiom property

M2 - Logic and Games, 2004
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We are going to show that every axiom of modal logic corresponds to

a property for the accessibility relation.

Proof theory Models

axiom property

For instance if we consider temporal logic we wish to have an

accessibility relation which is a linear order.

Which axioms should we consider?

M2 - Logic and Games, 2004
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T means accessibility is reflexive

Assume w ∈ UM satisfies w 
 Ki(ψ) ⇒ ψ.

Then “(∀v ∈ UM) w Ri v implies v 
 ψ”

implies w 
 ψ.

In other words, “(∀v ∈ UM) w Ri v implies v ∈ E ”

implies w ∈ E .

This means w Ri w.

Then Ri is reflexive.

M2 - Logic and Games, 2004
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T means accessibility is reflexive

Assume w ∈ UM satisfies w 
 Ki(ψ) ⇒ ψ.

Then “(∀v ∈ UM) w Ri v implies v 
 ψ”

implies w 
 ψ.

In other words, “(∀v ∈ UM) w Ri v implies v ∈ E ”

implies w ∈ E .

This means w Ri w.

Then Ri is reflexive.

In Geach hierarchy (1, 0, 0, 0) is associated with reflexivity.

M2 - Logic and Games, 2004
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4 means accessibility is transitive

Assume w ∈ UM satisfies w 
 Ki(ψ) ⇒ Ki(Ki(ψ)).

Then “(∀v ∈ UM) wRiv implies v 
 ψ”

implies (∀u ∈ UM) w Ri ◦Ri u implies u 
 ψ.

Then “(∀v ∈ UM) wRiv implies v ∈ E ”

implies (∀u ∈ UM) w Ri ◦Ri u implies u ∈ E .

This means w Ri ◦Ri u implies w Ri u.

Ri is transitive.

M2 - Logic and Games, 2004



108

4 means accessibility is transitive

Assume w ∈ UM satisfies w 
 Ki(ψ) ⇒ Ki(Ki(ψ)).

Then “(∀v ∈ UM) wRiv implies v 
 ψ”

implies (∀u ∈ UM) w Ri ◦Ri u implies u 
 ψ.

Then “(∀v ∈ UM) wRiv implies v ∈ E ”

implies (∀u ∈ UM) w Ri ◦Ri u implies u ∈ E .

This means w Ri ◦Ri u implies w Ri u.

Ri is transitive.

In Geach hierarchy (1, 1, 0, 1) is associated with transitivity.

M2 - Logic and Games, 2004
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5 means accessibility is Euclidean

Assume w ∈ UM satisfies w 
 ¬Ki(ψ) ⇒ Ki(¬Ki(ψ)).

Note first that v 
 ¬Ki(ϕ) means (∃w ∈ UM) w 
 ¬ϕ.

A relation R is Euclidean iff a R b and a R c implies b R c

b b

a ⇒ a

c c

M2 - Logic and Games, 2004
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5 means accessibility is Euclidean

Assume w ∈ UM satisfies w 
 ¬Ki(ψ) ⇒ Ki(¬Ki(ψ)).

Then [(∃v ∈ UM)w Ri v and v 
 ψ] implies (∀u ∈ UM)w Ri u

implies (∃u′ ∈ UM) uRiu
′ and u′ 
 ψ.

Then (∀u, v ∈ UM)w Ri u and w Ri v and v 
 ψ

implies (∃u′ ∈ UM) u Ri u
′ and u′ 
 ψ.

Then (∀u, v ∈ UM)w Ri u and w Ri v and v ∈ E

implies (∃u′ ∈ UM) u Ri u
′ and u′ ∈ E .

If one takes E = {v} this means w Ri u andw Ri v implies u Ri v.

Ri is Euclidean.

M2 - Logic and Games, 2004
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Euclidean + reflexive implies symmetric

Exercise: Show that if a relation is Euclidean and reflexive

then it is symmetric.

Accessibility relations for S5 are equivalence relations.

M2 - Logic and Games, 2004
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Euclidean + reflexive implies symmetric

Exercise: Show that if a relation is Euclidean and reflexive

then it is symmetric.

Accessibility relations for S5 are equivalence relations.

M2 - Logic and Games, 2004
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Temporal logic

Temporal logic involves only one accessibility relation.

Therefore only one accessible relation which is reflexive and transitive.

• •

• ⇒6 •

M2 - Logic and Games, 2004
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Model of temporal logic

M2 - Logic and Games, 2004
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The specificity of temporal logic

Worlds are natural numbers 1, 2, ..., n, ....

n 
 �ϕ iff for all n′ ≥ n, n′ 
 ϕ

n 
 3ϕ iff for some n′ ≥ n, n′ 
 ϕ

n 
 ©ϕ iff n+ 1 
 ϕ

n 
 ϕU ψ iff for some n′ ≥ n n′ 
 ψ

and for all n′′ with n′ > n′′ ≥ n, n′′ 
 ϕ.

M2 - Logic and Games, 2004
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Correction and proofs

M2 - Logic and Games, 2004



117

Correction

Correction theorems are of the form

Theorem : If ⊢ ϕ then � ϕ .

for each systems and families of Kripke models, thus

Theorem : If ⊢S5 ϕ then �MEQ,n
ϕ .

Where MEQ,n is the set of Kripke models with n accessibility

relations that are equivalence relations.

M2 - Logic and Games, 2004
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Completeness

There are many versions of completeness theorems of the form

If � ϕ then ⊢ ϕ .

For instance,

Theorem : If �MRT,n
ϕ then ⊢S4 ϕ.

Where MRT,n is the set of Kripke models with n accessibility

relations that are reflexive and transitive.

It would be boring to give all of them.

M2 - Logic and Games, 2004
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The puzzle of the muddy children

M2 - Logic and Games, 2004
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The muddy children

• There are n children some of them have mud on their head.

• Father says “There is at least one child with mud on his head”.

M2 - Logic and Games, 2004



121

   
on his head.

one child with mud

There is at least

M2 - Logic and Games, 2004
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The muddy children

• There are n children some of them have mud on their head.

• Father says “There is at least one child with mud on his head”.

• Then Father tells many times (how many ?) the following request

“If you have mud on your head, please step forward.”.

• As n children have mud on their head,

• after n requests, they all step forward.
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Kripke model for three muddy children

1, 1, 1

1, 0, 1 1, 1, 0 0, 1, 1

1, 0, 0 0, 0, 1 0, 1, 0

0, 0, 0

One drops reflexivity loops.
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After Father has spoken

1, 1, 1

1, 0, 1 1, 1, 0 0, 1, 1

1, 0, 0 0, 0, 1 0, 1, 0

0, 0, 0
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After Father has asked his first request

1, 1, 1

1, 0, 1 1, 1, 0 0, 1, 1

1, 0, 0 0, 0, 1 0, 1, 0

0, 0, 0
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After Father has asked his second request

1, 1, 1

1, 0, 1 1, 1, 0 0, 1, 1

1, 0, 0 0, 0, 1 0, 1, 0

0, 0, 0
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Let us play
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The aces and the eights
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The aces and the eights

There are 8 cards : four aces et four eights.
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The aces and the eights

There are 8 cards : four aces et four eights.

Each player gets two cards that she does not look at,

she shows everybody.
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The aces and the eights

There are 8 cards : four aces et four eights.

Each player gets two cards that she does not look at,

she shows everybody.

Each player speaks her turn:

• Either she says I do not know,

• Or she says

– I have two aces,

– I have two 8’s,

– I have an ace and an 8.
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The aces and the eights

There are as many rounds as necessary

There is always a player who may guess the cards she holds.
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The aces and the eights

There are as many rounds as necessary

There is always a player who may guess the cards she holds.

How may this happen ?
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The aces and the eights

1rst deal 1: A+A 2: 8 + 8 3: 8 + 8
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The aces and the eights

1rst deal 1: A+A 2: 8 + 8 3: 8 + 8

2nd deal 1: A+A 2: 8 + 8 3: A+ A
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The aces and the eights

1rst deal 1: A+A 2: 8 + 8 3: 8 + 8

2nd deal 1: A+A 2: 8 + 8 3: A+ A

3rd deal 1: A+A 2: 8 + 8 3: A+ 8
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The aces and the eights

1rst deal 1: A+A 2: 8 + 8 3: 8 + 8

2nd deal 1: A+A 2: 8 + 8 3: A+ A

3rd deal 1: A+A 2: 8 + 8 3: A+ 8

4th deal 12: A+ 8 2: 8 + 8 3: A+ 8
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The aces and the eights

1rst deal 1: A+A 2: 8 + 8 3: 8 + 8

2nd deal 1: A+A 2: 8 + 8 3: A+ A

3rd deal 1: A+A 2: 8 + 8 3: A+ 8

4th deal 12: A+ 8 2: 8 + 8 3: A+ 8

5th deal 1: A+ 8 22: A+ 8 3: A+ 8
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The aces and the eights

1rst deal 1: A+A 2: 8 + 8 3: 8 + 8

2nd deal 1: A+A 2: 8 + 8 3: A+ A

3rd deal 1: A+A 2: 8 + 8 3: A+ 8

4th deal 12: A+ 8 2: 8 + 8 3: A+ 8

5th deal 1: A+ 8 22: A+ 8 3: A+ 8

6th deal 1: A+ 8 2: A+ 8 32: A+A
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The aces and the eights

1rst deal 1: A+A 2: 8 + 8 3: 8 + 8

2nd deal 1: A+A 2: 8 + 8 3: A+ A

3rd deal 1: A+A 2: 8 + 8 3: A+ 8

4th deal 12: A+ 8 2: 8 + 8 3: A+ 8

5th deal 1: A+ 8 22: A+ 8 3: A+ 8

6th deal 1: A+ 8 2: A+ 8 32: A+A

7th deal 1: 8 + 8 2: 8 + 8 3: A+ A
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The aces and the eights

1rst deal 1: A+A 2: 8 + 8 3: 8 + 8

2nd deal 1: A+A 2: 8 + 8 3: A+ A

3rd deal 1: A+A 2: 8 + 8 3: A+ 8

4th deal 12: A+ 8 2: 8 + 8 3: A+ 8

5th deal 1: A+ 8 22: A+ 8 3: A+ 8

6th deal 1: A+ 8 2: A+ 8 32: A+A

7th deal 1: 8 + 8 2: 8 + 8 3: A+ A

8th deal 1: 8 + 8 22: A+ 8 3: A+ A
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The aces and the eights

1rst deal 1: A+A 2: 8 + 8 3: 8 + 8

2nd deal 1: A+A 2: 8 + 8 3: A+ A

3rd deal 1: A+A 2: 8 + 8 3: A+ 8

4th deal 12: A+ 8 2: 8 + 8 3: A+ 8

5th deal 1: A+ 8 22: A+ 8 3: A+ 8

6th deal 1: A+ 8 2: A+ 8 32: A+A

7th deal 1: 8 + 8 2: 8 + 8 3: A+ A

8th deal 1: 8 + 8 22: A+ 8 3: A+ A

9th deal 1: 8 + 8 2: A+ 8 32: A+ 8
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The aces and the eights

1rst deal 1: A+A 2: 8 + 8 3: 8 + 8

2nd deal 1: A+A 2: 8 + 8 3: A+ A

3rd deal 1: A+A 2: 8 + 8 3: A+ 8

4th deal 12: A+ 8 2: 8 + 8 3: A+ 8

5th deal 1: A+ 8 22: A+ 8 3: A+ 8

6th deal 1: A+ 8 2: A+ 8 32: A+A

7th deal 1: 8 + 8 2: 8 + 8 3: A+ A

8th deal 1: 8 + 8 22: A+ 8 3: A+ A

9th deal 1: 8 + 8 2: A+ 8 32: A+ 8

10th deal 12: A+ 8 2: 8 + 8 3: A+ A
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The COQ formalization
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The type of propositions

A proposition is either

• an implication,

• or a universal quantification,

• or a modal “knowledge” proposition with a K ,

• or a modal “common knowledge” proposition with a C .

Inductive proposition: Set :=

Imp : proposition -> proposition -> proposition |

Forall : (A:Set) (A -> proposition) -> proposition |

K : nat -> proposition -> proposition |

C : (list nat) -> proposition -> proposition.
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Agent as natural

Agents are represented by natural numbers.

Groups of agents are lists of naturals.
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The meta-predicate theorem

|- tells which propositions are theorems.

For instance, |- p says that proposition p is a theorem in the object

theory representing epistemic logic.
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Axioms and rules

Axioms are just given by declaring basic theorems.

Hilbert_K: (p,q:proposition) |- p => q => p

Hilbert_S: (p,q,r:proposition)

|- (p => q => r) => (p => q) => p => r

MP: (p,q:proposition) |- p => q -> |- p -> |- q.
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Axioms and rules

Hilbert_K: (p,q:proposition) |- p => q => p

should be read

(∀p, q ∈ proposition) ⊢ p⇒ q ⇒ p
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Axioms and rules

Hilbert_S: (p,q,r:proposition)

|- (p => q => r) => (p => q) => p => r

should be read

(∀p, q, r ∈ proposition) ⊢ (p⇒ q ⇒ r) ⇒ (p⇒ q) ⇒ (p⇒ r)
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Axioms and rules

MP: (p,q:proposition) |- p => q -> |- p -> |- q.

should be read

(∀p, q, r ∈ proposition) if ⊢ p⇒ q and ⊢ p then ⊢ q.

which can be written

(∀p, q, r ∈ proposition)
⊢ p⇒ q ⊢ p

⊢ q
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The proof

The proofs require using only Hilbert proofs.

For that one uses systematically the Cut Rule

(p,q,r:proposition)

|- p => q -> |- q => r -> |- p => r.

which is
⊢ p⇒ q ⊢ q ⇒ r

⊢ p⇒ r

M2 - Logic and Games, 2004
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The king,

the three wise men

and the hats
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The statement

“There are three wise men. It is common knowledge that there are

three red hats and two white hats. The king puts a hat on the head of

each of the three wise men and asks them (sequentially) if they know

the color of the hat on their head. The first wise man says that he

does not know; the second wise man says that he does not know;

then the third man says that he knows”
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�� �� �� ��

Alice Bob Carol
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A definition and the main theorem

An agent knows the color of his (her) hat.

Definition Kh := [i:nat] (K i (white i)) V (K i (red i)).

With a minimal set of hypotheses, we are able to prove

|- (K Bob (Not (Kh Alice))) & (Not (Kh Bob)) => (red Carol).
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The proof requires only modal logic.

There is no common knowledge.
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The puzzle of the muddy children
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Two predicates

At_least and Exactly

(At_least n p) is intended to mean that among the n

children, there are at least p muddy children.

Exactly means that among the n children, there are exactly p

muddy children.

Exactly is defined as

[n,p:nat] (At_least n p) & (Not (At_least n p+1)).
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The axiom of Knowledge diffusion

Axiom Knowledge_Diffusion : (n,p,i:nat)

|- (E (list_of n) (At_least n p))

=> (E (list_of n) (Not (Exactly n p)))

=> (K i (E (list_of n) (Not (Exactly n p)))).

⊢ EChdn(At least(n, p)) ⇒ EChdn(¬Exactly(n, p))

⇒ Ki(EChdn(¬Exactly(n, p)).
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Two theorems

Lemma E_Awareness : (n,p:nat)

|- (E (list_of n) (At_least n p))

=> (E (list_of n) (Not (Exactly n p)))

=> (E (list_of n) (E (list_of n) (Not (Exactly n p)))).

⊢ EChdn(At least(n, p)) ⇒ EChdn(¬Exactly(n, p))

⇒ EChdn(EChdn(¬Exactly(n, p))

M2 - Logic and Games, 2004



162

Two theorems (next)

Lemma C_Awareness : (n,p:nat)

|- (C (list_of n+1) (At_least n+1 p))

=> (E (list_of n+1) (Not ((Exactly n+1 p))))

=> ((C (list_of n+1) (Not (Exactly n+1 p)))).

⊢ CChdn+1
(At least(n+ 1, p)) ⇒ EChdn+1

(¬Exactly(n+ 1, p))

⇒ CChdn+1
(EChdn+1

(¬Exactly(n+ 1, p)))

C Awareness can only be proved for a non empty group of children.
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The main theorem

(C (list_of n+1) (At_least n+1 p))

& (E (list_of n+1) (Not (Exactly n+1 p)))

=> (C (list_of n+1) (At_least n+1 p+1))).

⊢ CChdn+1
(At least(n+ 1, p)) ⇒ EChdn+1

(¬Exactly(n+ 1, p))

⇒ CChdn+1
(At least(n+ 1, p+ 1))
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What should be retained?
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• Modalities are operators that transform logical propositions.

• Models of modal logic are Kripke models,

– with worlds,

– and with accessibility relations.

• Some reasoning are subtle and intricated.
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A bibliography
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A good introductory book

Ronald Fagin, Joseph Y. Halpern, Yoram Moses, and Moshe Y. Vardi.

Reasoning about Knowledge.

The MIT Press, 1995.

A comprehensive book

Patrick, Blackburn, Maaren de Rijke and Yde Venema

Modal Logic

volume 53 of Cambridge Tracts in Theoretical Computer Science.

Cambridge University Press, 2001
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Another book on epistemic logic John-Jules Ch. Meyer and Wiebe

van der Hoek.

Epistemic Logic for Computer Science and Artificial Intelligence,

volume 41 of Cambridge Tracts in Theoretical Computer Science.

Cambridge University Press, 1995.

Logique épistémique,

Wikipédia.
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About my COQ implementation

Pierre Lescanne

Mechanizing epistemic logic with Coq,

Annals of Mathematics and Artificial Intelligence, 2006,
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That’s all !
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He believes he is Napoleon,

but it is well known

that I am Napoleon.


