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Abstract. We characterize those terms which are strongly normalizing in a composition-free
calculus of explicit substitutions by defining a suitable type system using intersection types.
The key idea is the notion of awailable variable in a term, which is a generalization of the
classical notion of free variable.

1 Introduction

An explicit substitutions calculus is a refinement of traditional A-calculus in which substitution is
not treated as a meta-operation on terms but rather as an operation of the calculus itself. The
inspiration for such a study is the observation that, in the presence of variable-binding, substitution
is a complex operation to define and to implement, so that making substitutions explicit leads to a
more pertinent analysis of the correctness and efficiency of compilers, theorem provers, and proof-
checkers. Abadi, Cardelli, Curien, and Lévy defined the first calculus of explicit substitutions in
[1].

The original motivation for the Abadi-Cardelli-Curien-Lévy system was pragmatic, but there is
another point of view one may take on such a calculus, namely that making substitution explicit
reflects a more refined analysis of substitution than that of the classical A-calculus. As historical
context we note that Curry and Feys emphasize, in their book [13], the importance of substitution
in logic in general and especially in the framework of A-calculus. They write [page 6] that the
synthetic theory of combinators

... gwes the ultimate analysis of substitutions in terms of a system of extreme simplicity.
The theory of lambda-conversion is intermediate in character between synthetic theories and
ordinary logics. Although its analysis is in some ways less profound—many of the complexities
in regard to variables are still unanalyzed there—yet it is none the less significant; and it has
the advantage of departing less radically from our intuition.

With this perspective one can see an explicit substitution calculus as an improvement on both
the system of combinators and the classical A-calculus, since it is a system whose mechanics are first-
order and as simple as those of combinatory logic yet which retains the same intensional character
as traditional A-calculus. Observe that the classical A-calculus is a subsystem of explicit substitution
systems, defined by the strategy of “eagerly” applying the substitution induced by contracting a
B-redex. In this sense explicit substitutions calculi are logically prior to classical A-calculus, and
the study of explicit substitutions represents a deeper examination of the relationship between
abstraction and application. This point of view invites the programme of refining the results of
the classical A-calculus by finding proofs of their explicit-substitutions analogues in the explicit
substitutions system itself. One can reasonably expect in this way to gain insight into the original
A-calculus.

A fundamental property of classical typed lambda-calculi is strong normalization: no term admits
an infinite reduction sequence. Melliés [27] made the somewhat surprising discovery that strong
normalization fails even for simply-typed terms of the calculi of [1] and [12].



Given the central place that strong normalization occupies in the theory and application of
classical lambda calculus it is important to study this property in systems of explicit substitutions.
Melliés’ result exploits the existence of a composition operator on substitutions, so there are two
obvious and complementary research directions. The first is to define classes of reduction strategies
in the original calculus which support strong normalization; a notable example of work in this area
is that of Eike Ritter [29]. The second direction is to investigate calculi in which substitutions are
explicit but composition is absent; the current paper is part of this effort.

Composition-free calculi of explicit substitutions have been studied in [25,8,21,7,5] among
others. Here we work in the composition-free calculus Ax [8] and the calculus Axg4. obtained by
adding explicit garbage collection to Ax.

In previous work [17, 18] we explored some reduction properties of this system using intersection
types. Working with the natural generalization of the classical type systems we were able to
characterize the sets of normalizing and head-normalizing terms in terms of typability. But it was
shown in [17] that the naive generalization of the classical system did not characterize the strongly
normalizing terms. Typable terms were strongly normalizing but the converse fails.

Example 1 Let S be the term Au.uu. Consider the terms
M, = (A\y-2)zz)(x = S) — My = 2(y = zx){x = S)

The term M, is readily seen to be strongly normalizing. But M, is not typable in the system D
of [17]: it is obtained from the (non-SN, hence untypable) term M; by contracting a S-redex, and
such a contraction does not change the typing behavior of terms under D. Finding a type system
characterizing the strongly normalizing terms was left as an open problem in [17].

Main results. In this paper we solve the aforementioned problem: we define an extension £ of system
D which types precisely the strongly normalizing terms. Furthermore when a universal type w is
added the resulting system &, satisfies the same theorems as those in [17] characterizing the weakly
normalizing, head normalizing, and solvable terms. Our claim, then, is that the system presented here
— with or without a universal type — is a robust type system appropriate for analyzing reduction
properties in explicit substitutions calculi.

The key insight for the solution is a new notion, that of available variable occurrence in a term
(Definition 3). This is a refinement of the notion of free variable and is the key to extending D. As a
corollary of our approach we are able to define a somewhat more general notion of garbage collection
than has been studied in the literature of Ax and show that adding a reduction for garbage-collection
does not change the set of strongly normalizing terms.

Related work. Independently of the present work, Mariangiola Dezani and Steffen van Bakel [32]
have defined a type system which also characterizes the strongly normalizing terms. Their system is
different from ours and the technical development of their argument proceeds along different lines.
In section 6 we present a comparison of our work with theirs.

The system of intersection types is due to Coppo and Dezani [11]. The fact that the strongly
normalizing terms in the classical A-calculus are precisely the typable terms was first proved in [28].
Other notable works in this area include [24,31,19], and the books [23] and [2].

Explicit substitutions calculi without composition typically enjoy the preservation of strong
normalization property: a pure term is strongly normalizing in the presence of explicit substitutions
if it is so under B-reduction [26,5,8,6,7,30,16]. It follows that the classical intersection types
system does characterize strong normalization for pure terms. In contrast, the current results provide
information about all terms. Perhaps more significant is the fact that the proofs here are direct,
involving reasoning in the explicit substitutions calculus itself, not passing through the indirection
of an argument about S-reduction.

Plan of the paper. Section 2 presents the syntax of Ax; section 3 defines the type systems £ and
E., and verifies that the results of [17] extend to system &,. In section 4 we prove that all strongly
normalizing terms are typable in system &, and in section 5 we show the converse. There is one



subtlety to be noted: in section 4 we treat reduction without garbage collection; while in section 5
we admit garbage collection. Since it is clear that the strongly normalizing terms in the presence of
garbage collection are strongly normalizing in the simpler system we obtain as a corollary the fact
that garbage collection does not affect strong normalization.

Our notation is consistent with that of [4], to which we refer the reader for background on the
classical A-calculus.

2 The calculus Ax
Definition 2 The set Ax of terms with explicit substitutions is defined as follows :
M,N = x| Xz.M |M N | Mz = N)

One defines the notions of free and bound variable occurrences in a term as usual. But it turns
out that in the presence of explicit substitutions a refinement of the notion of free variable, called
available variable occurrence, is key.

Definition 3 The free variables in a term are:

FV () =)
FV(Az.M) = FV(M)\{z}
FV(M N) :=FV(M)UFV(N)
FV(M(z = N)) := (FV(M)\{z}) UFV(N)
The available variables in a term are:
AV (z) = {z}
AV (Az.M) = AV(M)\{z}
AV (M N) = AV (M) U AV (N)
AV(M{z = N)) := (AV(M)\{z}) UAV(N) ifz e AV(M)
AV (M(x = N)) := AV (M) if o ¢ AV (M)

A variable occurrence which is not free is a bound occurrence.

For pure terms the notions of freeness and availability coincide. But availability differs from
freeness in that the available variables of M{x = N), where z is not available in M, are exactly
those of M, whereas the free variables in any case are those of M and of N. The intuition is that x
is not available just when the term N disappears in the course of fully applying the substitutions in
M{z = N).

Further discussion of the motivation for defining available variable occurrences will be given
after we present our type system. For now we can observe, referring to Example 1, that in the term
z{y = xzx) the variable z is free, but is not available.

From the definitions of AV (M) and FV (M), an easy induction over the structure of M shows
that the available variable occurrences in a term are a subset of the free variable occurrences.

In what follows we consider terms up to a a-conversion. Moreover, when one chooses a
representative in a term, one does that in such a way that the Barendregt convention [3] is fulfilled:
no variable occurs both free and bound. Since available variables are free it follows that we may
assume that no variable occurs both available and bound.

As usual we often treat contexts, terms C[ ] with a designated variable [ ] called a hole; terms
can be “grafted” into the hole with variable-capture permitted (see [3]).



Definition 4 (Ax and \x,.) We identify the following reduction rules on Ax terms.

(Az.M) A — Mz = A) B
(M N)(z = A) — Mz = A) N(z = 4) App
Ay M)z = A) — \y.(M(z = A)) Abs
z(z = A) — A Varl
ylx = A) —y VarK

M{z = A) — M ifzg AV (M) gc

The notion of reduction Ax is obtained by deleting the rule gc, and the notion of reduction Axg. is
obtained by deleting the rule VarK.
The rule gc is called “garbage collection”, as it removes useless substitutions.

In contrast with the classical A-calculus we are considering a rewrite system with several rules,
which in fact interact with each other in interesting ways. For example there is a critical pair formed
by the rules B and App, which is responsible for much of the complexity in analyzing the theory.

Definition 5 (Reduction) Let I — r be a reduction rule; we refer to an instantiation s(I) of !
as a reder. A (unconstrained) reduction is determined by a redex occurrence in a term C[s(l)] and
gives rise to the ordered pair C[s(l)] — C[s(r)].

We write SN for the set of strongly normalizing terms under Ax, and SN for the corresponding
set under Axge.

The notion of garbage collection in this paper is more liberal than that originally defined by
Bloo and Rose [8] and treated in [17]: here we define “garbage” in terms of available occurrences
rather than free occurrences. Our results will imply that a term is strongly normalizing under Ax .
if and only if it is strongly normalizing under Ax (a result shown directly in [8] for their notion of
garbage-collection).

The following easy observations will be useful later. They apply to each of Ax and Ax..

Lemma 6 If M{x = N) is not a redex then M = M'{y = N'). In particular M (x = N) is never a
normal form.

We will also need the fact that if we omit rule B then the resulting reduction is strongly
normalizing, so that an infinite derivation contains infinitely many applications of rule B.

To prove that strongly normalizing terms are typable, we will induct over the reduction relation,
and so we will want to show that the converse of the reduction relation preserves typability. Of
course this is not true in full generality, and we restrict attention to reductions following a certain
strategy, a leftmost-outermost strategy. As discussed in [17] the notion of leftmost reduction is not
as straightforward as in classical A-calculus, in particular the notion there is a non-deterministic
strategy. The strategy defined below is a deterministic restriction. It makes sense for each of Ax and
Axgc, although we make use of it only in Section 4, where we consider only Ax.

Definition 7 For any term not in normal form, the leftmost-outermost strategy reduces the
leftmost-outermost redex, where the leftmost-outermost redex of M is :

M if M is a redex,

otherwise:

the leftmost-outermost redex of Ny if M = N; Ny where N; is not a normal form
the leftmost-outermost redex of No if M = N; Ny where N; is a normal form

the leftmost-outermost redex of N if M = N{z = A) since N is not a normal form
the leftmost-outermost redex of N if M = Az.N.

Note that the leftmost-outermost redex in a term N(z = A) is never a B-redex.



3 The system & of intersection types

Definition 8 The set of types is inductively defined as follows.
T, T2 == 0| TMNT |71 = T
The standard ordering < on types is the smallest transitive and reflexive relation such that
1N < n

TlﬁTQ S T2
ifo <t ando <7 theno <71 NT

Definition 9 An environment is an assignment from variables to types, where each individual
assignment is written (z : 7). Environments are partially ordered as follows.

r<r ff (@:7)el'=@3r)(z:7)eland7<7
Definition 10
nnh={(z:7n)|(@:7)e 1 ANo)(z:0) ¢ I}

U{(m:T)|($:T)€I"2/\(Va)(:c:a)¢1"1}
U{(m:nﬂwﬂ(x:n)éf‘l and (z : ) € I}

Lemma 11

- F1|—|F2SF1 andFll_IFQSFQ.
_IfFISF andF2§FthenF1["|F2§F.

Proof. These are routine verifications. /1]

Definition 12 A judgment is a triple consisting of an environment I', a term M, and a type 7. A
judgment is derivable in system &, denoted I' F M : 7, if this form can be derived by the rules of
inference given in Table 1. A term M is typable if for some I and 7, I' + M : 7 is derivable.

_ : r
start TFo. o (z:0)€

z:oFM:T SE I'-M:0—>T1 I'FN:o
r'-xeM:o—r I'-MN:T1

— 1

x:oFM:1 I'+A:o
I'-M{z=A):1

cut

I'+M:r A typable
I'FM{z=A):T1

drop z & AV (M)

I'-M:n I'-M:7m I'FM: 0N |
-1 -E ——MMMM 1,2
" T-M:mnm “E i, L

Table 1. Typing rules for £.




The innovation in the type system here is the presence of the rule drop. The type system of [17]
had no such rule: the point of view taken there was that a closure M (z = N) should always have
the same typing behavior as the B-redex (Az.M)N which yields it. This is a plausible strategy since
B-reduction involves no (immediate) erasing of subterms, even when z is not free in M; and indeed
the resulting system — in the presence of a universal type — yields the expected characterizations
of head-normalizing and leftmost-normalizing terms. But as we have seen in Example 1 this system
failed to provide a characterization of the strongly normalizing terms. This example makes clear that
we must allow the type system to distinguish between certain B-redexes and their contractions.

Perhaps one’s first instinct is to note that in Example 1 the input variable of the B-redex in
M does not occur free in the function body (i.e., we have a “K-redex” in classical A-calculus). This
suggests modifying the cut-rule to obtain one which, when typing M(z = N) with z not free in M,
relaxes the typing hypothesis for N to merely ask that it be typable under some environment. This
seems particularly appropriate since it echoes the hypotheses of the Subject Expansion Theorem in
treatments of intersection types for classical A-calculus. But such a rule doesn’t work: it is still too
restrictive. For example, the reader can easily check that the term M} = x(y = zx){x = S) cannot
be typed in such a system, but is clearly strongly normalizing. This last example should motivate
our notion of awvailable variable occurrence and the corresponding typing rule drop.

A good exercise at this point is to check that the terms M, and M} can be typed in system £. On
another hand, notice that rule cut has no side condition, therefore when ¢ AV(M) and I'F A : o,
one can freely use cut or drop.

The following are some elementary properties of the type system.

Lemma 13

1. If x ¢ AV (M), then for all types o, ' = M : 7 if and only if [, (z : o) - M : 7.
2. Ifr <7’ then (z:7)Fx: 7
3 Ifr<Ir" and I'-M:7then '+-M: 7

Proof. The first is a structural induction over type derivations. The second is an induction over
the definition of < as the reflexive transitive closure given by Definition 8. The third is proved by
structural induction on the typing tree, using part 2 for the start case. /1]

Adding a universal type to £

The system & is obtained from the system D of [17] by adding the rule drop. The system D, is
the extension of D obtained by adding a universal type w; in [17] characterizations of the head-
normalizing and leftmost-normalizing terms of Ax were obtained in terms of typability in D,,.

The main result of this paper is that typability in system & serves to characterize the strongly-
normalizing terms of Ax, and therefore that the rule drop captures an important aspect of reduction
in explicit substitutions calculi. But an important question to raise at this point is whether the
addition of rule drop behaves well in the presence of a universal type. In particular we may ask
whether the normalization theorems of [17] still hold in the presence of drop.

Definition 14 The type system &, is obtained from system £ by adding the type constant w and
the rule:

“l e

Since system D, is a subsystem of &, it is clear that the following results follow from the
corresponding results for D,,.

— if M is head normalizing then M is typable in system &, with a non-trivial type, and
— if M is normalizing then M is typable in system &, with a type not involving w.

The following theorem is sufficient to establish the converses of these results.



Theorem 15 Suppose I' = M : 1 in system &,. Then I' & M : 7 in system D, as well.

Proof. By induction over typing derivations; it suffices to show that an application of rule drop can
be simulated in D,,. So suppose

I'=M:r A typable
I'M{z=A4):71

drop z ¢ AV(M)

By induction we can derive I' - M : 7 in D,,, so certainly I'z: wk M: 7. By w-l, ' + A: win D,,,

SO0 we have
x:wkHM: T F A w

I'rM{z=A):1
in D,,, as desired. /11

cut

For completeness we state here the results relating reduction properties of terms with their typing
properties in system &,,. The results follow from those in [17] together with Theorem 15.

The following definitions are due to Cardone and Coppo [10]: A type is proper if it has no positive
occurrence of w. A type is trivial if it can be generated by the following rules: (i) w is trivial, (ii) If
o is trivial and 6 is any type, then § — o is trivial, (iii) If o and 7 are trivial, then o N 7 is trivial.

Theorem 16 Let M be o closed term. The following are equivalent.

1. M is typable with a non-trivial type in system &, .

2. M 1is head-normalizing in the calculus Ax4.

3. M is head-normalizing in the calculus Ax (without garbage-collection).

4. M has a head normal form.

5. M 1is solvable, that is, there is an n and terms X1,... X, such that MX; --- X,, = \x.x.

Theorem 17 Let M be a closed term. The following are equivalent.

1. M is typable in system &, with a type not involving w.

2. M is typable with o proper type in system &, .

3. M is leftmost-normalizing in the calculus Axgc.

4. M is leftmost-normalizing in the calculus \x (without garbage-collection).
5. M has a normal form.

In Theorem 17 the implications 5 to 3 and 5 to 4 state that in Ax and Ax,. leftmost reduction is
a normalizing strategy. The notion of leftmost reduction in Ax is rather subtle. We refer the reader
to [17] for details but we may say here that leftmost reduction is a non-deterministic strategy, and
to say that a term is leftmost-normalizing above is to say that any sequence of leftmost reductions is
guaranteed to reach a normal form. Note that leftmost reduction is different from the (deterministic)
leftmost-outermost strategy of Definition 7, introduced in this paper for technical reasons only.

4 Typing strongly normalizing terms

In this section “reduction” will always mean “Ax reduction,” that is, we do not consider garbage
collection. Our goal is to prove, by induction over the leftmost-outermost strategy, that strongly
normalizing terms are typable.

Definition 18 When M is not strongly normalizing we set h(M) := oo. Otherwise we define
h(M) :=max{h(N)+1| M — N}.

This definition makes sense since the reduction —— is finitely-branching, so that a term M
which is strongly normalizing under — will have only finitely many N such that M —» N, and
the definition of (M) involves taking the maximum of a finite set. The height h(M) of a term M
is the length of the longest derivation to normal form, and in particular the height of a normal form
is 0. Note that M — N = h(M) > h(N) and M = C[N] = h(M) > h(N).



Normal forms in Ax are the same as in classical A-calculus, and the type system £ is an extension
of the standard system of intersection types for classical A-calculus. The following proposition is thus
an immediate consequence of the classical result.

Proposition 19 If M is a normal form then M is typable in system &.

4.1 From restricted judgments to general judgments

In Section 4.2 we show that if M — N by a leftmost-outermost reduction, we assign a type to
M built from the type assigned to N. If the last rule of the typing tree is not an intersection rule,
then it is directly determined by the structure of the term. The following technical lemma will allow
us, as we treat the various cases for IV, to avoid explicitly considering the situation when the last
typing rule is N-1 or N-E.

Definition 20 We write I' F M: 7 if I' - M : 7 is provable with a typing tree whose root (i.e. its
last rule) is neither N-I nor N-E.

Lemma 21 Let M ,M' be terms and I" be an environment.
Vi(FrEM:r=30"<Ir|I"'tEM':7)

! (21.1)
Vr(CFM:r=30"<T|I["-M:7)

and
Vr(FrEM:7=TFM:71)
U (21.2)
Vir(P’FM:7=T+FM:71)
Proof. The proof is in the appendix. /11

Lemma 22 1. Ifz € AV(P), '+ P{lz=A):p=>Frp | (x:7p)F P:pand '+ A: 7p.
2. Ift ¢ AV(P), -P{x=A):p=ITF P:p and A is typable.
3. Ife ¢ AV(P), N7) ' P{z=A)y:p=>I,(x:7)F P:p.

Proof. The proof is in the appendix. /17

4.2 Subject expansion

It is convenient to identify a general property we will refer to throughout this section as we induct
over the height of terms:

\M € SN and (VP € Ax) h(P) < h(M) = P is typable P(M)

We wish to prove that for any term whose leftmost-outermost redex is s(l), if it reduces to a
typable term, then the term itself is typable. For such a term, we consider the context C[ | such that
the term is C[s(l)]. The proof lies on a structural induction on contexts CJ ].

For this induction to work, we need a somewhat stronger statement.

— A term is assigned the same type as this of the term obtained by contracting its leftmost-
outermost redex, except when the rule is B and the term is an abstraction.

— This assignment is made in the same environment, except when the rule is B, in which case the
environment is more constrained.

Notice that the initial case of the induction concerns terms whose root can be reduced (so the
type is preserved, since such terms are not abstractions) and is treated in the following Lemma.

Lemma 23 (Root reduction) Given a rulel — r and an instance s(l) of I, assume P(s(1)).
I'ts(r):7=TIFs(l):7 if the rule is not (B) (23.1)
Frs(r):7=>30"<T|I'"Fs():7 if the rule is (B) (23.2)

Proof. The proof is in the appendix. ///



Lemma 24 (Leftmost-outermost reduction) Let ! — r be a rule and let s(I) be an instance
of l. Let C[ ] be a context such that s(l) is the leftmost-outermost redex of C[s(l)]. Assume P(s(l))
and I' = C[s(r)] : 7.

If the rule is not (B) : I' - C[s(l)] : . (24.1)

If the rule is (B) : 3" < I' | {i'f,u g'[:(l)(’;[fg)] Hr Z g{ % ; iig:% % (24.2)

Proof. The proof is by structural induction on CJ ].

If C[] =[], this is exactly Lemma 23.

If the rule is not (B), the environment and the type of C[s(l)] are the same as of C[s(r)]. The
proof is easy using the same typing tree.

The proof is harder when the rule is (B).

C[] = Az.C'"[ ]| According to Definition 7, s(I) is also the leftmost-outermost redex of C'[s(1)].
We can apply the induction hypothesis to C'[ ], namely

L(z:m)FC's(r)) i = 3T, 7,7 | " <T and (I',(z:7)) F C'[s(l)] : 4.

On the other hand (Definition 20)

F'EXe.C'[s(r)]:7 = In,n|((z:m))FC's(r)]:m and T=71 = 7.
hence combining the above statements

F'EXeC'[s(r)]:7 = 37,5 | "< and I'"'FXx.C'[s()] : 7{ — 75.
Clearly I' F C[s(r)] : 7= 37" | ' E C[s(r)] : 7", therefore combining everything we get

'tCls(r)):7 = 3AI',7'|I"<T and I'"FC[s(l)]: 7.

C[]1=C'[] N |C'[] cannot be an abstraction, otherwise C'[s(I)] N would be a redex and s(I)

would not be the leftmost-outermost redex of C[s(l)]. Definition 7 says that s(I) is the leftmost-
outermost of C'[s(1)]. By Definition 20

F'eC's(MN:np=>3n |[I'+-C'[s(r)]:71 > 7 and ' N : 7.
By induction hypothesis on C'[ ] :
'tC's(r)):m—m = 3II'|I"<T and I"FC'[s(l)]:11 = 7
and by I"<I' and 'FN:n = I'"F N:7 we get
FTEC[s(r)]N:m = 3n, 3" |I"<T and I"'FC'[s()]:71 72 and "N : 7

therefore ' F C'[s(r)] N :m» = 3" |I"<I and I"FC'[s(D)] N : 7.
And by Lemma 21.1 ' C[s(r)] : o = 3" | I" < I and I'"F C[s(])] : 2.
C[]= N C'[ ]| N is not an abstraction, otherwise N C'[s(I)] would be a redex and s(I) would

not be the leftmost-outermost redex of C[s(l)]. From Definition 7, we know that N is a normal
form. Hence N is a A-free normal form and s(I) is the leftmost-outermost redex of C'[s(l)]. The
induction hypothesis on C'[ ] yields :

F'rC's(r)):mn = 3,7 |I"<T and I'"+C'[s()]: 7.

Assume I' H N C'[s(r)] : 72 and apply Lemma 21.1 with type 71 — 72 for N, then there exists
I' such that '+ N : 7{ = 72, hence

I'nr"eN:7 =57 and I'NI")EC'[s(r]: 7y
Finally, using transitivity and naming I as I 1 "

FENC's(r)]:m = 3T |I"FNC's()]: 2.

‘ Cl]=C"}{z = A) ‘ can never happen, since the left-outermost cannot both belong to C'[s({)]
and be a (B) redex.

/17
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In the above proof it is important to notice that the reduction is the leftmost-outermost one.
Indeed this way we escape difficult cases, namely when the term to reduce is a closure or when
C[]1=C'[] N and we have a B-redex.

Theorem 25 If M € SN then M is typable.

Proof. By induction on the height of terms: if M is a normal form, we are done. If not, then it can be
reduced to a term N by a leftmost-outermost reduction. By induction every P such h(P) < h(M) is
typable, thus P(M) is fulfilled. Especially h(N) < h(M), hence N is typable. Then, using Lemma, 24,
we get M is typable. ///

5 Characterization of strongly normalizing terms

In this section “reduction” will always mean “Ax,. reduction,” that is, we allow garbage collection.
Our goal is to prove that typable terms are strongly normalizing (we use SAgc to refer to the set
of such terms. As described in the introduction, a consequence of this result and the result of the
previous section is the fac that garbage collection does not change the set of strongly normalizing
terms. See Theorem 31.

5.1 Saturated Sets and the Soundness theorem

We only slightly modify the proof made in [17], in changing F'V to AV when required namely in
definition sat-gc.

Definition 26 A set S is X-saturated (or saturated if there is no ambiguity about the set X), if it
is closed under the rules of inference in Table 2.

Bz =A)T A{z=8)T
satB ——— sat-I

(Ax.B)AT z{rx =AY z=8S)T
onp, QUB@=A)(z=8)T ngy E= V=)= 9T

(Ay.B){z = A)(z=8)T UV {z=A)(z=8)T
My=Q¥x=Ply=Q)){z=8)T N{z=8S)T Ae X, z¢ AV(N)
sat-comp sat-gc
M(z = P)y = Q)(z= T Nia = A)z=8)T

Table 2. X-saturated sets

Lemma 27 SN is SNjc-saturated.

Proof. The proof relies of Corollary 3.6 of [17], which itself relies on Lemma 3.5 there. But in this
lemma, F'V can be changed safely into AV, since the statement z; ¢ F'V(M;) is used for insuring
that rule gc can be applied, but in our formulation of gc, F'V has been precisely changed into AV.

/11
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Definition 28 We define S, for each type 7 as

— 8¢ 1= SN for each type variable t.
- S =8 nSa'-
- S, ={FeAx| (VAES,) (FA) €S}

Lemma 29 Then for any type 7, Sy C SNgc, and S; is SNgc-saturated.

Proof. The proof is entirely done in [17] by structural induction on types. Although the first
statement is completely independent, the initial case of the second one relies on the former lemma.
/11

Theorem 30 (Soundness theorem for SA;) For any terms M, As,..., Ay, suppose

—(z1:01)y-- (@ o) E M7
_Vie[ln], A €S,
—Vie [l,n],‘v’] > 0,.’17,'4_]' g AV(A,)

Then M(Il,‘l = Al) <£L“n = An) € ST.

Proof. The proof in [17] consists in a structural induction on the typing tree of M. Most of it need
not to be modified (the weakening of the hypothesis -AV" instead of F'V- is balanced by the change
in the definition of saturated sets), we only have to proceed with a new case due to the addition of
the drop rule.

Let I' := (z1 : 01),-.-,(Zn : op) and assume I' F M(z = A) : 7 comes by the drop rule from
I'FM:7and I'"F A : o for some I'" and o.

Applying the induction hypothesis to I' F M : 7 we get M{x; = Ai)...(z, = A,) € S;.
Applying the induction hypothesis to I F A : 0 and using Lemma 29, we get A € SNg. Since S; is
SNgc-saturated, we can apply rule sat-gc which yields M(z = A)(xy = A1) ... (zn = An) €S;. ///

Theorem 31 The following are equivalent.

1. M is typable in system &.
2. M € SNg.
3. M eSN.

Proof. Part 1 implies part 2 by Theorem 30 together with Lemma, 29. Clearly 2 implies 3. Theorem
25 yields 3 implies 1. /11

The fact that garbage-collection does not change the set of strongly normalizing terms was
originally established by Rose [30] for the slightly more restricted original notion of garbage-
collection.

6 The type system of Dezani and van Bakel

As mentioned in the introduction, Dezani and van Bakel [32] have independently found a typing
characterization of the strongly normalizing terms. The innovation in their typing system also
involves a new rule for typing closures M{x = N), but rather than attending directly to the way x
occurs in M, as we do, they focus on whether M can be typed in an environment not binding z.
Specifically, they use the following rule in place of our drop (let us write p,p for typability in the
system of Dezani and van Bakel).

I'btpwp M: T AFpy N:o
K-cut z not in dom(I"
FI—DvBM<.’13:N):T ( )

They prove that typability in their system characterizes the strongly normalizing terms, so clearly
their system types the same terms as ours. In this section we give a direct proof that the system of
Dezani and van Bakel is equivalent to ours, in the strong sense that it types the same terms as ours,
with the same types.
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Lemma 32 If ' v P: 7 then I'" = P: 7 where I'" is I' restricted to the variables of AV (P).
Furthermore the derivation from I'' is no longer than the given one from I.

Proof. An easy induction over typing derivations. ///

Proposition 33 If '+ P: 7 then I'' bpyg P: 7. where I'' is I restricted to the available variables
of P.

Proof. Induct over derivations. The non-trivial case is drop in our system

I'-M:r AFN:o
ilable in M
drop Tr M@=Ny:r z not available in

By Lemma 32 we can replace I' = M : 7 by I'' - M : 7 where I'" does not contain z. Then apply the
induction hypothesis to the two premises, to obtain I'' Fp,p M{(z = N): T by a K-cut.
/11

Lemma 34 If I'tpy,p P: 7 and x is available in P then x is in dom(I").

Proof. Induct over derivations; consider cases according to the form of P. The interesting case is
when P is M{y = N) and the derivation ends with |-cut or K-cut.

So suppose I' Fpy,g M(y = N): 7 with z available in M{y = N). Note that since available
variables are always free and since y is bound in the term M{y = N), we may assume without loss
of generality that x is not y.

We identify two cases: either y is available in M or not. If not, then x must be available in M
itself. Then no matter which rule (l-cut or K-cut) was used, the induction hypothesis applies to the
premise typing M, and (using the fact that z is not y in the |-cut case) we conclude that z is in
dom(I).

On the other hand, if y is available in M then z could be available in M or available in N. But
the typing rule used must have been I-cut. Since the induction hypothesis applies to each premise,
we conclude (again perhaps noting that z is not y) that x is in dom(I"). 11/

Proposition 35 If I'tp,p P: 7 then '+ P: .

Proof. Induct over derivations. The non-trivial case is K-cut. Referring to their rule as given at the
beginning of this section, suppose that I' Fp,p M (z = N): 7 with N typable and z not in dom(I").
By induction hypothesis I' - M{x = N): 7 and N is typable in our system. By Lemma 34 z is not
available in M, so our drop rule applies to give I' - M(x = N): 7 as desired. ///

Theorem 36 I'+ M: 71 if and only if I' Fp,p M : T.

Proof. One direction is immediate from Proposition 35; the other follows from Proposition 33 and
the “weakening” property of the system of Dezani and van Bakel (cf. [32]). ///

7 Conclusions and future work

We have defined a new intersection-types system & for terms of the explicit substitutions calculus
Ax and shown that typability in £ characterizes strong normalization. We defined a new notion of
garbage-collection and proved that a term is strongly normalizing in the core calculus if and only if
it is strongly normalizing in the presence of garbage collection.

Using results from [17] we have shown that the system &, obtained by adding a universal type
smoothly characterizes the weakly normalizing terms and the head-normalizing, or solvable terms.

We have also given a direct proof of equivalence with a different system, found independently by
Dezani and van Bakel, which also characterizes strong normalization in Ax.
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Future work. Intersection types have long been known to be a robust tool for exploring properties
of classical A\-terms: Krivine’s book [23] has many examples of this; recent work includes [9,22,15,
14,20]. There is much more work to be done in applying intersection types to calculi of explicit
substitutions. One intriguing idea is to attempt to better understand the reduction properties
of calculi with substitution-composition with the help of these type systems. Another, largely
unexplored, area of investigation is semantics for explicit substitutions calculi: of course intersection
types have proven to be a very fruitful tool for studying semantics of the classical A-calculus.
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A Appendix

This appendix is addressed to the referees. We supply some proofs which could not be given in the
main body due to space constraints.

Lemma 21 Let M ,M' be terms and I' be an environment.

Vir(FrEM:r=30"<Ir|I"'tM':71)
4 (21.1)
Vi(’FM:r=30"<I'|I"EM':71)
and
Vir(FrEM:17=TFM:71)
(2 (21.2)
Vi('FM:7r=TFM:71)
Proof. AssumeVp(I'E M :p=3I"<I'|I'"F M'":p). Fix 7 and assume I" - M : 7. The proof
of 21.1 is by structural induction on the typing tree of I' - M : 7.

— If the last rule is neither N-1 nor N-E then I' E M : 7 and the conclusion comes from
Vo(IT'EM:p=3I"<I'|I"FM:p).
I'M:m 'EM:7

— if the rule is Nl : TFM-mnm then the induction hypothesis yields: 311 <I'| I
M:nmandIL<IT|LEtM i Ifweset I":=I 1N, then I M': 17 N 7o.
I'+-M:
— if the rule is N-E : WHSTQ (with i € {1,2}), then the induction hypothesis yields:
1T

Ar'<r|r'eM :m N then we have I F M’ : 7.
The proof of 21.2 (i.e., when I'" = I') is exactly the same. /1]

Lemma 22 1. Ifz € AV(P), I’'+P{lz=A):p=>F1p | (x:7p)F P:pand '+ A: 7p.
2. Ift ¢ AV(P), T-P{x=A):p=TF P:pand A is typable.
3. Ife ¢ AV(P), Nr) ' P{z =Ay:p=>T,(z:7)F P:p.

Proof. We prove the first two parts simultaneously, by induction on the typing tree.

— If I'E P(x = A) : p, we know that the last rule is either cut or drop, then their definitions induce
the expected result.
) I'rPlz=A)y:pp TEP{z=A):p
The rule is N-1 : TF Plz=4):pi N o
e if x € AV(P), the induction hypothesis yields
x 3rp | I(z:7p)F P:ppand 'FA:7p
* drp | I, (x:7p)F P:iprand I'F A7
then IN(z:7p N7p)F P:piNpeand 'F A:7p N 7p
e if x ¢ AV(P), the induction hypothesis yields :
* I'F P:p; and A is typable
x* I'F P: ps and A is typable
then I'+ P : p1 N p2 and A is typable.
— The rule is N-E : %}VIPI;PQ (with ¢ € {1,2}), therefore
e if x € AV(P), the induction hypothesis yields :
x 3rp | I(z:7p)F P:prNprand '+ A: 7p
then I'(z:7p) F P:pjand ’'F A: 7p
e if x ¢ AV (P), the induction hypothesis yields :
* ['F P:pyNpe and A is typable
then I'F P : p; and A is typable.

Part 3 follows from part 2, using part 1 of Lemma 13. ///

2 , therefore
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Lemma 23 (Root reduction) Given a rulel — r and an instance s(l) of I, assume P(s(l)).
I'ts(r):7=IFs(l):7 if the rule is not (B) (23.1)
bs(r)y:7=30" < |I"Fs(l):7 if the rule is (B) (23.2)
Proof. Let us reason by case on the rule used.

- (Az. M)A — M{z=A)

We wish to prove I' - Mz =AY : 7= 3" <I' | I'"F (Az.M) A : 7. Using Lemma 21.1, we
only have to prove : (V) 'EM{(z =A):7=3I" <I'|I'"F (Ax.M) A: 7. Therefore assume

I'eM{z=A4):T.

o Ifx g AV(M),wehave ' M :7and 31", 7' | I"+ A: 7'. From Lemma 13.1, I, (z : ') F

M : 7 which yields ' M. M : 7' - 7. Hence 3", 7' | ’'F Xz M : 7 > 7and I"H A : 7

Ifweset I tobe I'MI"< T'weget I'"FAXx.M:7 — 7and I'" F A : 7/ which entails

I'+QzM)A:r
oIf z € AV(M) we have 3 7 | IN'(z : 7)) v M : 7andI” + A : 7',
A7 | I't Xz M : 7" - 7 and I'F A: 7" which entails ' (Az. M) A : 7.

— If the top rules are (App) and (Abs), we have to prove : I' b s(r) : 7 = I' b s(I) : 7. Using
Lemma 21.2, we only have to prove : V7 I' F s(r) : 7 = I' F s(l) : 7. Therefore assume I' F s(r) : 7

and let look at the details for each rule.

— (M Nz = A) — M{x = A) N(z = A). In this case, the assumption we have made is

I'E M{z = A) N(z = A) : 7 which induces
A7 | 't M{z=A):7" 57and ' Nz = A) : 7.

Itz ¢ AV(M) and z ¢ AV (N), we apply Lemma 22.2 with P := M and P := N, which induces
I'EM:7 > 7and I'E N : 7, as well as A is typable. Consequently, I' = M N : 7 and finally

I'(M N)(xz=A):T.
If x € AV(M) or z € AV(N), we have to prove

I | r'rA:7" and I(z:7")FM:7" 57 and I(z:7")EN:7

(which induces I' F (M N){z = A) : 7). Let us look at each case.

o Ifx € AV(M) and = ¢ AV (N), applying Lemma 22.1 with P := M and p := 7" — 7, we get
7r - Taking 7" to be 7y and using Lemma 22.3 with P := N and p := 7' we get the result.
o If ot ¢ AV(M) and z € AV (N), applying Lemma 22.1 with P := N and p := 7’ we get 7n.
As above, taking 7' to be 7y and using Lemma 22.3 with P := M and p:= 7' — 7 we get

the result.

o If z € AV(M) and = € AV(N), applying Lemma 22.1 with P := N and p := 7', we get v,
and applying it again with P := M and p := 7' — 7, we get Tar. Then, we get four judgments

* I'H A1y,
* ' A:1y,
x* N(z:mmq) M :7 - 7 and
« N(z:7n)F N 7',
If we set 7" to 7ar N Tn we get the result.

- (WM)z = A) — My.(M{(z = A)) in which we suppose y ¢ AV(A) and =z # y
then x ¢ AV(M) & =z ¢ AV(M\y.M)). In this case, the assumption we have made is

I'E \y.(M{(z = A)) : 7 which induces 3r,72 | I,(y: ) F M{z =A):7» and 7 =7 = 7.

If x € AV(M) we have to prove 37" | ' A: 7" and I,(z:7"),(y:71)F M : 7. Applying
Lemma 22.1 with P := M and p := 75 and with the environment I, (y : 71) instead of I" we get
INy:n),(x:my)FM:7m and I,(y:7)F A: 7. But as we assumed y ¢ AV (A), we can

apply Lemma 13.1 and with 7"’ =7, we get [, (z : 7""),(y : ) F M : 75 and I'H A: 7"

If £ ¢ AV(M) we have to prove A typable and I', (y : 1) = M : 72. Applying Lemma 22.2 with

P := M and p := 7» and with the environment I, (y : 1) we get the result.
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—z(r=A) — A Assume ' A:7. Clearly I, (z : 7) Fz:7and I' F z(z = A) : 7.
— M{z=A) — M,if x ¢ AV(M). Assume I' - M : 7. The redex to be reduced lies at the root,

so we have h(M(x = A)) > h(A). By P(M{x = A)), we conclude that A is typable. Therefore
I'-M{z=A):T.
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