
RESUME

Pierre LESCANNE
Born March 22 1947, at Dakar Sénégal.

Pierre LESCANNE born March 22, 1947, in Dakar Senegal.

2001-2004 Director of the master in Computer Science of Lyon and deputy director of the doctoral school
mathematics and Computer Science of Lyon.

1997-.... Professor at Ecole Normale Superieure of Lyon.

1998-2001 Chair of Department of Mathematics and Computer Science at ENS Lyon.

1987-1998 Directeur de recherche at Centre National de la Recherche Scientifique.

1993-1996 Director of the CNRS National Research Consortium Programmation,

1993-1997 Director of Centre Charles Hermite, Centre Lorrain de Comp étence en Mod élisation et Calcul
à Haute Performance.

1989-.... Member of the editorial board of the journal Applicable Algebra in Engineering, Communication
and Computing published by Springer Verlag.

1986-1997 Manager of INRIA Project (EURECA) in Nancy,

1986-1992 Deputy Director of Centre de Recherche en Informatique de Nancy.

1992-1994 Vice Pr ésident of SPECIF, (Soci ét é des Personnels Enseignants et Chercheurs de France).

July 1987 Scientific Consultant at Institute for New Generation Computer Technology, Tokyo, Japan.

July-August 1985 Visiting Scientist at Computer Science Laboratory of SRI-International, invited by Dr
Joseph Goguen.

July-August 1984 Visiting Scientist at Laboratory for Computer Science du MIT, invited by John Guttag.

1983-1984 Professor at University de Nancy 2.

1980-1987 Charg é de Recherche at Centre National de la Recherche Scientifique.

1980-1982 Visiting scientist at Laboratory for Computer Science of Massachusetts Institute of Technology,
invited by Professor John Guttag.

September 1979 Docteur d’Etat.

1974-1980 Attach é de Recherche Agr ég é at CNRS.

1972-1974 Maı̂tre-Assistant at the University of Nancy 2.

1971-1972 Military duty.

1968-1971 Assistant professor at University of Nancy 1.

July 1969 Agr égation of mathematics

Domains of research

Formal Methods, Theoretical Computer Science, Logic.

Themes of research

– Automated Deduction, more precisely theorem proving in equational theories by rewriting techniques.
Implementation of the software REVE and of the software ORME.

– Higher order automated deduction and its applications to protocols and electronic commerce.
– Functional and object oriented programming and models of computation.

1

Publications

– co-author of 1 book
– 19 international publications in journals
– 30 communications at international conferences
– 14 communications at national conferences
– 2 softwares : REVE and ORME
– Member of the editorial board of the journal Applicable Algebra in Engineering, Communication and

Computation, published par Springer Verlag.

Awards, participations and membership

- Eureca was awarded of m édaille d’argent du CNRS in 1987,

- Nominator for the Kyoto Prize.

- Member of comit é national du Centre National de la Recherche scientifique (CNRS) 1983-1986,

- Member of the National Committee of Universities.

- Program committee member of European Symposium on Programming – Nancy F (1987), Copenhagen
DK (1990)–, Rewriting Techniques and Applications – Dijon F (1985), Bordeaux F (1987) chair-
man –, Logic and Algebraic Programming, Symposium of Theory of Computer Science – Gaussig
DDR (1988)–, Colloquium Current Concepts In Programming Languages in TAPSOFT – Barcelona
E (1989)–, Logic in Computer Science – Montreal USA (1993) –, RTA 96, TLCA’97, PPDP-99,
FOSSACS’01 (Genova (2002), RTA 2004.

- Organizer of the 2nd conference on Functional Programming and Computer Architecture (1985).

- Guest editor of Theoretical Computer Science and of Journal of Logic Programming,

- Member of the board of Association Française d’Informatique Th éorique,

- Member of comit é des projets of INRIA-Lorraine,

- Pr ésident of research committee of Soci ét é des Personnels Enseignants et Chercheurs d’Informatique de
France (SPECIF),

- Member of Association for Computing Machinery (ACM), European Association for Theoretical Com-
puter Science (EATCS) and Association for Automated Reasoning (AAR), Association Française
d’Informatique th éorique (AFIT) (member of the board).

- Referee for Transaction on Programming Languages and Systems , Information and Computation, Jour-
nal of the ACM, Journal of Computer and System Science, Acta Informatica, Theoretical Computer
Science, Techniques et Sciences de l’Informatique, Journal of Symbolic Computation etc.

Supervised PhD

Françoise Bellegarde Utilisation des systèmes de réécriture d’expressions fonctionnelles comme outil de
transformation de programmes itératifs, Thèse d’Etat (1985).

Fernand Reinig L’Ordre de Dcomposition : un Outil Incrmental pour Prouver la Terminaison Finie des
Systmes de Rcriture quationnels Thse de troisime cycle (1981)

Isabelle Gnaedig : Preuves de terminaison des systmes de rcriture associatifs commutatifs : une mthode
fonde sur la rcriture elle-même, Thse de troisime cycle. (1986).

2

Ahlem Ben Cherifa : Preuves de terminaison de systmes de rcriture bases sur des calculs lmentaires sur
des polynômes. Thse de l’Universit Nancy I (1986).

Azzedine Lazrek : tude et ralisation de mthodes de preuve par rcurrence en logique quationnelle. Thse
de l’Institut National Polytechnique de Lorraine (1988).

Jocelyne Rouyer : Calcul formel en gomtrie algbrique relle appliqu la terminaison des systmes de rcriture,
Thse de l’Universit Nancy I (1991).

Joseph Rouyer : Dveloppement d’algorithmes dans le calcul des constructions. Thse de l’Institut National
Polytechnique de Lorraine (1994).

Stefan Krischer : Mthodes de vrification de circuits digitaux. Thse de l’Institut National Polytechnique de
Lorraine (1994).

Boutheina Chetali Vérification formelle des systmes parallles décrits en UNITY l’aide d’un outil de
démonstration automatique Thse de l’Universit é Henri Poincar é Nancy I (1996),

Zine-el-Abidine Benaissa Les calculs de substitution explicites comme fondements des langages de pro-
grammation fonctionnels. Thse de l’Universit é Henri Poincar é Nancy I (1997).

François Briaud Unification d’ordre supérieur et substitutions explicites. Thse de l’Universit é Henri Poin-
car é Nancy I (1997).

Barbara Heyd Application de la théorie des types et du démonstrateur COQ la vérification de programmes
parallles. Thse de l’Universit é Henri Poincar é Nancy I (1997).

Frédéric Lang Modles de la β-réduction pour les implantations. Thse de l’ENS de Lyon (1998).

Frederic Prost Interpretation of staic analysis in type theory Thse de l’ENS de Lyon (1999)

Romain Kervarc Les substitutions explicites dans le cube de Barendregt et dans les squents. Second year.

3

MY FIVE MOST SIGNIFICATIVE
PAPERS

Let me first recall few facts. I defended my first thesis (thse de troisime cycle) in 1971 and I defended
my Thse d’Etat at the University of Nancy in 1979 both under the supervision of Professor Claude Pair.
After taking teaching positions at the University of Nancy, I entered CNRS in 1974, which I left in 1997 to
joint Ecole normale suprieure de Lyon. During the years 1980-1982, I staid at MIT in professor John Guttag
group. My main contribution during the period 1970-1980 was the textbook Theory of Programs [Liv78]1 (in
French) with co-authors, my main contribution was on fixed-point, verification and denotational semantics
including continuations. In Mathematical Reviews Jean Vuillemin wrote

This is an excellent book on the ”Theory of programming”. The author takes us, in a uni-
fied manner, through the various theories and lessons of the field. He introduces fixed-points
and program schemes ; from there we get to verification and construction of programs. The au-
thor then puts all this together, and constructs a programming language, together with various
expressions of its semantics. This book could serve as the basis for a graduate course on the
subject.

Below I present my most significative papers2 also the most cited papers of CiteSeer http://citeseer.
nj.nec.com/. The papers are on the Web at http://perso.ens-lyon.fr/pierre.lescanne/
5_most_significative.htm.

The presentation will be subdivided in three sections according to three main topics : computer environ-
ments for rewriting, disequations and explicit substitutions.

It should be noticed that in computer science some conferences have an impact equivalent to the best
journals [Pat04]. This is the case of the ACM Conference on Principles of Programming Languages nickna-
med POPL. This is also why two such communications at POPL appear in my top 5.

Computer environments for rewriting

In my career as a computer scientist I have worked on foundation of computer science, but I have also
implemented algorithms in software which have been reused by other persons. This was the case of REVE

an environment for proving property of term rewriting systems that I developed at MIT in 1980 and 1981 in
the group of Professor John Guttag.

Many mathematical theories are presented by identities (or equalities) as are also theories associated
with some abstract data types, which are tools used in the design of software. To prove that an equality
is a consequence of old ones, the best way is to orient the given equalities into simplifying rules (called

1Bibliographic references are given at the end of this chapter.
2‘(: −) I am talking about my scientific papers, since the note that made me known among the community of French young

scientists is probably my Web page “How to apply ?” [Les90c] which tells young researchers how to prepare an application for an
academic position.

4

rewrite rules) and to try to simplify the sides of the equality to be proved till one gets a trivial equality. But
usually orienting the given equalities into rules is not easy. First, one has to be sure that the simplifying
process terminates in all case, avoiding divergence and one has to be sure that the most simplified form of
an expression is unique. Donald Knuth [KB70] has designed a procedure that starts from a set of equalities
and provides a set of rules which is equivalent to the set of equalities, which terminates always and which
provides always a unique most simplified expression. The so called Knuth-Bendix procedure relies on a
method for proving that a set of rules terminates. Actually there is no universal method for proving that a
set of rules terminates, so several methods exist with each a specific domain of application.

Computer Experiments with the REVE Term Rewriting System Generator 10th ACM Symposium on
Principles of Programming Languages, January 24-26 1983, Austin Texas, pp 99-108. In this paper,
two appendices propose the full development of two examples : an equational specification of an abstract
data types for sets and an automatic proof of an inductive lemma about the Fibonacci numbers. The main
originality of REVE is its tool for automatically proving the uniform termination (also known as noethe-
rianity or strong normalization) of the rewriting systems being built. The method based on the recursive
decomposition ordering [Les90b] is incremental, which means REVE builds the proof of termination as it
discovers new rules. The status of an operator (introduced for the first time) tells how the ordering should
consider it and is also incrementally introduced. In this paper, I announce a very important result, namely
the first proof done by REVE of a non trivial mathematical result by a computer with no help (or almost no
help) from a human. This result says that the presentation by the unique equation

x/((((x/x)/y)/z)/(((x/x)/x)/z)) = y

proposed by Higman and Neuman [HN52] is actually this of group. In [Les84] I present a full description
of the proof with other results obtained in algebras. Whereas the proof of Higman and Neuman uses second
order argument i.e., makes quantifications over sets, REVE uses first order.

REVE was later developed by the MIT group and gave birth to a new tool called the LARCH PROVER

which was used to handle huge proofs related to the foundation of computer science, for instance a practical
concurrent garbage collector, a very sophisticated, subtle and error prone piece of software. Later I wrote a
new software called ORME [Les90a], based on a rigorous approach mostly for a didactic purpose.

Termination of Rewriting Systems by Polynomial Interpretations and its Implementation Science of
Computer Programming, vol. 9, n 2, (1987), pp 137-160. This work has been done with a Tunisian student,
named Ahlem Ben Cherifa who works now in a business company in her country3 . The paper describes an
automatic implementation of a method for proving termination of rewriting systems based on polynomial
interpretations. The key point is to fully automatically prove that a polynomial is positive for every value.
The proposed heuristics is simple and works well. It is the basis of many tools developed these days. Since
I extended this method to handle elementary interpretations (polynomials + exponentials) [Les95] and I
proposed a method based on transformation of rewrite systems [BL90].

Disequations

Solving problems containing only formal equations is fundamental in symbolic computation, in compu-
ter aided theorem proving and in constraint solving. It is also an important theoretical issue.

3Her first name Ahlem means dream (alias rve in French).

5

Equational problems and disunification J. of Symbolic Computation (1989), vol. 3 and 4, pp. 371-426.
This paper is a collaboration with my colleague Hubert Comon who is now professor at the ENS de Cachan.
In equational theories and in rewriting, one has often to solve equations. Working with one of my first
master students Jean-Jacques Thiel [Thi84, LLT90], we saw that one has also to solve disequations. Whereas
equations are questions of the form s ?

=t, disequations, a terminology that Hubert and I made popular, are
questions of the form s

?
6=t. In this paper we proposed a new algorithm for solving equational problems, i.e.,

problems where the only predicate is =, this means they contain equations, disequations and quantifications.
The algorithm is based on inference rules and we show that those rules form a complete procedure for finding
solutions of equational problems if they exist. As a by product we give a algorithm for deciding the validity
in the Herbrand universe of first order formulae that contain only =.

Explicit substitutions

λ-calculus was designed to formalize the concept of function. This description is intentional, that is that
roughly speaking it tells how a function yields a result when applied to a value. It relies on the concept of
substitutions which is defined in the epi-theory of the λ-calculus (επι is “around” in Greek).

From lambda-sigma to lambda-upsilon, a journey through calculi of explicit substitutions 21st ACM
Symposium on Principles of Programming Languages (POPL), 16-19 January 1994, Portland, Oregon,
pp 60-69. The fact that a main concept namely substitution was not defined in the λ-calculus stroke me.
In addition, with my first-order culture, I disliked the fact that the λ-calculus had to speak about bound
variables, capture avoiding and like (since I partly changed my mind). At the beginning of the nineties,
researchers proposed the concept of “explicit substitutions” which with de Bruijn indices internalizes the
substitution and moreover makes the calculus a true first order calculus. But I found this proposal too com-
plex and oriented toward one approach. Therefore I suggested many possible systems and eventually one
named λυ or lambda-upsilon. λυ is extremely simple as it is made of eight tiny and straightforward rewrite
rules. This paper with a rather provocative title contributed to open a new active and fecund field which sets
a new foundation of λ-calculus and logic and which applies to the understanding of functional program-
ming language implementation. Its impact was both among logicians and among specialists in semantics of
programming languages.

Lambda-upsilon, a calculus of explicit substitutions which preserves strong normalisation J of Func-
tional Programming, Vol. 6, n 5 (September 1996). This paper was written with my Nancy PhD students
Zine-El-Abidine Benaissa, and Daniel Briaud and my Nancy colleague Jocelyne Rouyer. In 1994 a question
was raised namely whether calculi of explicit substitution represent faithfully λ-calculus. Among others,
people wanted to know whether strong normalization was preserved, where strong normalization of a term
is the property that says that all reductions starting at that term terminates. In 1995 two main results were
announced

1. The calculus of explicit substitution λx (due to Roel Bloo and Kristoffer Rose [BR95], see also [DL03,
LDL+04]) and the calculus of explicit substitution λυ preserve strong normalization.

2. The calculi of explicit substitution λσ and λσ⇑ do not preserve strong normalization (Mellies [Mel95]).

Therefore, people realize that preservation of strong normalization is an important property of calculi of
explicit substitution which is not shared by all other formalisms. This started many researches for new
calculi which enjoy preservation of strong normalization and more properties in order to ensure that the
λ-calculus is faithfully extended of as mentioned above. The method proposed in the paper was the source
of many others.

6

Bibliography on the most significative
publications

[BL90] F. Bellegarde and P. Lescanne. Termination by completion. Applicable Algebra in Engineering,
Communication and Computation, 1(2) :79–96, 1990.

[BR95] Roel Bloo and Kristoffer Høgsbro Rose. Preservation of strong normalisation in named lambda
calculi with explicit substitution and garbage collection. In CSN ’95 – Computer Science in the
Netherlands, pages 62–72, November 1995.

[DL03] Daniel Dougherty and Pierre Lescanne. Reductions, intersection types, and explicit substitu-
tions. Mathematical Structures in Computer Science, 13(1) :55–85, 2003.

[HN52] G. Higman and B. H. Neuman. Groups as groupoids with one law. Publ. Math. Debrecen.,
2 :215–221, 1952.

[KB70] Donald E. Knuth and P. B. Bendix. Simple word problems in universal algebras. In J. Leech,
editor, Computational Problems in Abstract Algebra, pages 263–297. Pergamon Press, Oxford,
1970.

[LDL+04] St éphane Lengrand, Dan Dougherty, Pierre Lescanne, Mariangiola Dezani-Ciancaglini, and
Steffen van Bakel. Intersection types for explicit substitutions. 2004.

[Les84] P. Lescanne. Term rewriting systems and algebra. In R. Shostak, editor, Proceedings 7th Interna-
tional Conference on Automated Deduction, Napa Valley (Calif., USA), LNCS. Springer-Verlag,
1984.

[Les90a] P. Lescanne. Implementation of completion by transition rules + control : ORME. In H élène
Kirchner and W. Wechler, editors, Proceedings 2nd International Conference on Algebraic and
Logic Programming, Nancy (France), volume 463 of LNCS, pages 262–269. Springer-Verlag,
1990.

[Les90b] P. Lescanne. On the recursive decomposition ordering with lexicographical status and other
related orderings. Journal of Automated Reasoning, 6 :39–49, 1990.

[Les90c] Pierre Lescanne. Comment candidater ? http://perso.ens-lyon.fr/pierre.
lescanne/TEXTS/candidater.html, 1990.

[Les95] P. Lescanne. Elementary interpretations in proofs of termination. Formal Aspect of Computing,
7 :77–90, 1995.

[Liv78] C. Livercy. Théorie des programmes. Dunod, Paris, 1978. Livercy stands for Jean-Pierre Finance
and Monique Grandbastien and Pierre Lescanne and Pierre Marchand and Roger Mohr and
Alain Qu ér é and Jean-Luc R émy. Available at http://perso.ens-lyon.fr/pierre.
lescanne/publications.html.

[LLT90] A. Lazrek, P. Lescanne, and J.-J. Thiel. Tools for proving inductive equalities, relative comple-
teness and ω-completeness. Information and Computation, 84(1) :47–70, January 1990.

7

[Mel95] P.-A. Melliès. Typed λ-calculi with explicit substitution may not terminate. In M. Dezani and
G.Plotkin, editors, TLCA’95, volume 902 of LNCS, pages 328–334. Springer-Verlag, 1995.

[Pat04] David A. Patterson. The health of research conferences and the dearth of big idea papers.
Communications of the ACM, 47(12) :23 – 24, December 2004.

[Thi84] J.-J. Thiel. Stop losing sleep over incomplete data type specifications. In Proceeding 11th ACM
Symp. on Principles of Programming Languages, pages 76–82. ACM, 1984.

8

