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Abstract

We develop an intersection type system for the λµµ̃ calculus of Curien and Herbelin. This
calculus provides a symmetric computational interpretation of classical sequent style logic
and gives a simple account of call-by-name and call-by-value. The present system improves
on earlier type disciplines for λµµ̃: in addition to characterizing the λµµ̃ expressions that
are strongly normalizing under free (unrestricted) reduction, the system enjoys the Subject
Reduction and the Subject Expansion properties.

1 Introduction

Intersection type assignment systems, introduced into the lambda calculus in the
late 1970s by Coppo and Dezani [10,11], were devised in order to type more
lambda terms than the basic simply typed system. Indeed, these intersection types
systems can characterize exactly the strongly normalizing lambda terms, and are
suitable for analyzing λ-models and various normalization properties of λ-terms.
In this paper we are interested in the properties of reduction in the λµµ̃ calculus
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of Curien and Herbelin [14]. The λµµ̃ calculus is a term calculus embodying a
Curry-Howard propositions-as-types correspondence for classical logic. We define
a new type system featuring intersection types which serves to characterize strong
normalization in λµµ̃. In contrast to earlier work, including the current authors’
[19,20], we characterize SN for free, or unrestricted, reduction, rather than simply
the call-by-name or call-by-value subsystems.

Under the traditional Curry-Howard correspondence formulae provable in intuition-
istic logic coincide with types inhabited in simply typed λ calculus. Griffin extended
this correspondence to classical logic in his seminal 1990 POPL paper [24], by ob-
serving that classical tautologies suggest typings for certain control operators. This
initiated an active line of research; in particular the λµ calculus of Parigot [33]
embodies a Curry-Howard correspondence for classical logic based on natural de-
duction.

Meanwhile, Curien and Herbelin [14,27], building on earlier work in [26], defined
the system λµµ̃. In contrast to Parigot’s λµ-calculus, which bases its type system
on a natural deduction system for classical logic, expressions in λµµ̃ represent
derivations in a sequent calculus proof system and reduction reflects the process
of cut-elimination. As described in [14], the sequent calculus basis for λµµ̃
supports an interpretation of the reduction rules of the system as operations of an
abstract machine. In particular, the right- and left-hand sides of a sequent directly
represent the code and environment components of the machine. This perspective is
elaborated more fully in [13].

In this paper the type-system is presented in “one-sided” sequent style: negation on
types is an involution, in the sense that we identify a type with its double-negation.
Note that we are still in a sequent calculus rather than a natural deduction system
(a crucial aspect of λµµ̃, as emphasized by Curien and Herbelin) since our typing
rules are all introductions, with no elimination rules.

A useful perspective emerges if we compare the present project to the study
of types in the standard λ-calculus. Type systems have been used in order to
interpret λ-terms as defining set-theoretic functions (simple types) and later to
enforce data abstraction (dependent and polymorphic types). Roughly, this use
of types enables the λ-calculus to be used as an applied calculus. But in another
direction, type systems were developed to study the reduction behavior of λ-terms
and the structure of models. Intersection types, introduced into the λ-calculus by
Coppo and Dezani [10,11], Pottinger [37] and Sallé [40], play a central role
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in this analysis. Key results are the characterizations of terms that are solvable,
normalizing, and strongly normalizing in terms of their possible typings [12,37,15],
and the completeness results for set-theoretic semantics [4]. In a precise sense
the paradigms of types-as-propositions and types for operational and denotational
semantics are skew to each other: as pointed out by Hindley [28], there does not
seem to be any standard logical notion that corresponds to intersection.

Related work Curien and Herbelin [14] encode simply-typed call-by-name and
call-by-value λµµ̃ into the simply-typed λ-calculus via CPS translations: this im-
plies strong normalization for these reductions. Lengrand [30] and Polonovski [35]
consider the question of strong normalization for simply-typed terms under free
(unrestricted) reduction. The free reduction relation in λµµ̃ has a critical pair, a re-
flection of the inherent symmetry in the system, but it complicates reasoning about
reduction; indeed this system is not confluent. In [30] Lengrand shows how simply-
typed λµµ̃ and the calculus of Urban and Bierman [42] are mutually interpretable,
so that the strong normalization proof of the latter calculus yields a proof of strong
normalization for free simply-typed λµµ̃. Polonovski [35] presents a proof of SN for
the simply-typed free calculus with a method based on the “symmetric candidates”
idea of Barbanera and Berardi [1] (actually Polonovski treats a version of λµµ̃ with
explicit substitutions). David and Nour [16] present an arithmetic proof of SN for
Parigot’s λµ-calculus.

Prior to [14] several term-assignment systems for sequent calculus were proposed
as a tool for studying the process of cut-elimination [36,5,42]. In these systems —
with the exception of the one in [42] — expressions do not unambiguously encode
sequent derivations.

This paper is informed by our earlier work [19,20] on intersection and union types
in symmetric λ calculi. These papers characterized strong normalization for call-
by-name and call-by-value restrictions λµµ̃; the results of the present paper apply
to unrestricted reduction. General consideration of symmetry (cf. the discussion on
page 7) led us in this previous to consider union types together with intersection
types in our system. It is well-known [34,2] that the presence of union types
causes difficulties for the Subject Reduction property; unfortunately our attempt
to recover Subject Reduction in [19] was in error, as was pointed out to us by Hugo
Herbelin [25]. Details are presented in the discussion on page 11.

The larger context of related research includes a wealth of work in logic and
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programming languages. We described above the fundamental importance of
intersection types for λ-calculus. In the 1980’s and early 1990’s Reynolds explored
the role that intersection types can play in a practical programming language (see
for example the report [38] on the language Forsythe).

The paper is organized as follows. Section 2 deals with the untyped syntax of λµµ̃.
Section 3 presents an intersection type system M ∩. Basic structural properties of
the system are investigated in Section 4. Subject reduction is proved. In Section 5
we prove the typability of normal forms in this system and the typability of strongly
normalizing λµµ̃-expressions. In Section 6 we give a proof of strong normalization
under free reduction, for expressions typable in M ∩. Finally, in Section 7 we
discuss some open problems.

2 Syntax of the λµµ̃-calculus

The untyped syntax of λµµ̃-calculus [14] consists of three syntactic categories:
terms, coterms, and commands. Terms yield values, while coterms consume values.
A command is a cut of a term against a coterm. An expression is a term, a coterm,
or a command.

Formally, we fix two disjoints infinite sets Varr and Vare of variables and co-
variables respectively. In our concrete syntax lowercase Latin letters x,y, . . . range
over variables and lowercase Greek letters α,β, . . . range over covariables. It will
be convenient to use v to range over Varr∪Vare.

The syntax of λµµ̃ expressions is given as follows.

Term: r ::= x | λx.r| µα .c

Coterm: e ::= α | r • e| µ̃x .c

Command: c ::= 〈r ‖ e〉

In λx.r, mxc, and µα .c the indicated (co)variables are bound by λ, µ̃ or µ,
respectively. The sets of free and bound variables and covariables are defined as
usual, respecting Barendregt’s convention [3] that no variable (covariable) can be
both, bound and free, in the expression. The set Fv(t) denotes the set of all free
(co)variables of an expression t.
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The reduction rules of the calculus are

(λ) 〈λx.r′ ‖ r • e〉 // 〈r′[x← r] ‖ e〉

(µ-red) 〈µα.c ‖ e〉 // c[α← e]

(µ̃-red) 〈r ‖ µ̃x.c〉 // c[x← r]

Of course the substitutions above are defined so as to avoid variable capture. The
reflexive and transitive closure of the reduction relation will be denoted by ∗−→.

As a rewriting calculus λµµ̃ has an essential critical pair between the µ and the µ̃
redexes. That is to say, in an expression of the form 〈µα.c ‖ µ̃x.c〉 rules (µ) and (µ̃)
can be applied ambiguously. As Curien and Herbelin [14] observe,

• if one gives priority to (µ-red) over (µ̃-red) this corresponds to a call-by-value
discipline, while
• if one gives priority to (µ̃-red) over (µ-red) this corresponds to a call-by-name

discipline.

Wadler [45,46] also stresses this identification in his Dual Calculus, a system
closely related to λµµ̃. Indeed the calculus is inherently not confluent. As a simple
example observe that the command 〈µα.〈y ‖ β〉 ‖ µ̃x.〈z ‖ γ〉〉 reduces to each of
〈y ‖ β〉 and 〈z ‖ γ〉.

This is more than simply a reflection of the well-known fact that the equational
theories of call-by-name and call-by-value differ. It is a reflection of the great
expressive power of the language: a single expression containing several commands
can encompass several complete computational processes, and the µ and µ̃
reductions allow free transfer of control between them.

So the combinatorics of pure reduction is very complex. In this light it is perhaps
slightly surprising that the strongly normalizing computations can so readily be
characterized, via the type system we present later.

When reduction in λµµ̃ is constrained to commit to the call-by-name discipline or
to the call-by-value, the system is confluent. Confluence of λµµ̃ and of the Dual
calculus introduced by Wadler [45,46] has been proven in [31] and [21].

It is not hard to see that pure λµµ̃ is Turing-complete as a programming language,
since the untyped λ-calculus can be coded easily into it. Space does not permit a
formal development here.
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The following observation, analogous to the “promotion of head-reductions”
techniques from the λ-calculus, is straightforward but will be extremely useful in
the sequel.

Lemma 1 (Promotion of top-reductions)

• If 〈λx.r1 ‖ r • e〉 ∗−→ 〈λx.r′1 ‖ r′ • e′〉 −→ 〈r′1[x← r′] ‖ e′〉
then 〈λx.r1 ‖ r • e〉 −→ 〈r1[x← r] ‖ e〉 ∗−→ 〈r1[x← r′] ‖ e′〉.
• If 〈µα.c ‖ e〉 ∗−→ 〈µα.c′ ‖ e′〉 −→ c′[α← e′]

then 〈µα.c ‖ e〉 −→ c[α← e] ∗−→ c′[α← e′].
• If 〈r ‖ µ̃x.c〉 ∗−→ 〈r′ ‖ µ̃x.c′〉 −→ c′[x← r′]

then 〈r ‖ µ̃x.c〉 −→ c[x← r] ∗−→ c′[x← r′].

3 Intersection types in λµµ̃-calculus

The classical sequent calculus provides the framework for the definition of a type-
assignment system for λµµ̃ using simple types. This is precisely the type system of
Curien and Herbelin [14], which will be the foundation upon which we build our
intersection types.

Definition 2 The set T of raw types is generated from an infinite set TVar of type-
variables as follows.

T ::= TVar | T→T | T◦ | T∩T

A◦ is said to be the dual type of type A.

We consider raw types modulo the equality generated by saying that

• intersection is associative and commutative
• for all raw types A, A◦◦ = A,

A type is either a term-type or a coterm-type or the special constant ⊥, where the
term-types and coterm-types are defined as follows.

A raw type is a term-type if it is either a type variable, or of the form (A1 → A2)
or (A1 ∩ ·· · ∩Ak), i ≥ 2 for term-types Ai, or of the form D◦ for a coterm type D.
A raw type is a coterm-type if it is either a coterm variable, or of the form A◦ for a
term-type A or of the form (D1∩ ·· · ∩Dk), i ≥ 2 for coterm-types Di. Not all raw
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types fall into these categories: consider τ∩τ◦. Note that every coterm type is a type
of the form A◦, where A is a term-type, or an intersection of such types.

The following taxonomy of types will be used frequently; the proof is straightfor-
ward.

Lemma 3 Each type other than ⊥ is uniquely — up to the equivalences mentioned
above — of one of the forms in the table below. Furthermore, for each type T there
is a unique type which is T ◦. If T is a term-type [resp., coterm-type] then T ◦ is a
coterm-type [resp., term-type].

term-types coterm-types

τ τ◦

(A1→ A2) (A1→ A2)
◦

for n≥ 2 : (A1∩A2∩·· ·∩An) (A1∩A2∩·· ·∩An)
◦

for n≥ 2 : (A1
◦∩A2

◦∩·· ·∩An
◦)◦ (A1

◦∩A2
◦∩·· ·∩An

◦)

The characterization of the two columns as being “term-types” or “coterm-types”
holds under the convention that the A1 displayed are all term-types.

Notation. Sometimes it will be convenient to refer to types of the form (A→ B) and
(A1∩·· ·∩Ak)→ B uniformly. For such types we will use the notation (

T
Ai→ B),

with the understanding that the
T

Ai might refer to a single non-intersection type.

Definition 4 A basis Σ is a set of statements of the form (x : A) and (α : D) where
A is a term type, D is a coterm type, and all (co)variables are distinct.

In the presentation of the typing rules in Figure 1, v is any (co)variable.

Definition 5 (Typing rules of the system M ∩) The type assignment system M ∩is
given by the typing rules in Figure 1.

The normal form λx.µα.〈x ‖ x •α〉, which corresponds to the normal form λx.xx
in λ calculus, is not typable in λµµ̃ with simple types. It is typable in the currently
introduced system M ∩ by λx.µα.〈x ‖ x•α〉 : A∩ (A→ B)→ B.

Discussion In the system presented here there is no unrestricted ∩-introduction
rule. The significance of this will emerge during the treatments of Subject Reduction
(see page 11) and Type Soundness (see page 22). Our types are similar in spirit to
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(ax)
Σ, v : (T1∩·· ·∩Tk) ` v : Ti

Σ, x : A ` r : B
(→ r)

Σ ` λx.r : A→ B

Σ ` r : Ai i = 1, . . . ,k Σ ` e : B◦
(→ e)

Σ ` r • e : ((A1∩·· ·∩Ak)→ B)◦

Σ, α : A◦ ` c :⊥
(µ)

Σ ` µα.c : A

Σ, x : A ` c :⊥
(µ̃)

Σ ` µ̃x.c : A◦

Σ ` r : A Σ ` e : A◦
(cut)

Σ ` 〈r ‖ e〉 :⊥

Fig. 1. The typing system M ∩

the “strict” types of van Bakel [43,44]. But things are more subtle here due to the
µ and µ̃ expressions: we cannot completely avoid deriving expressions which have
an intersection type. Note that the pattern of the types of the derived typings in the
figure matches the table in Lemma 3.

As suggested in the Introduction the presence of intersection types in a symmetric
calculus like λµµ̃ tempts us to include union types as well. If a term has type A∩B,
meaning that it denotes values which inhabit both A and B, then it can interact with
any continuation that can receive an A-value or a B-value: such a continuation will
naturally be expected to have the type A∪B. But any type that can be the type of
a variable can be the type of a coterm (via the µ̃-construction) and any type that
can be the type of a covariable can be the type of a term (via the µ-construction).
This suggests having intersections and unions for terms and continuations. But in
light of the incompatibility between union types and Subject Reduction we resist
incorporating explicit union types. The use of an explicit involution operator allows
us to record the relationship between an intersection (A ∩ B) and its dual type
(A∩B)◦. The “classical” nature of the underlying logic is reflected in the “double-
negation elimination” type equality T ◦◦ = T . But there is no identification between
(A∩B)◦ and a union of A◦ and B◦.
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4 Properties of the type system

Definition 6 If Σ1 and Σ2 are bases, define Σ1uΣ2 to be

Σ1uΣ2 = {v : T | (v : T ) ∈ Σ1 and v 6∈ Σ2} ∪
{v : T | (v : T ) ∈ Σ2 and v 6∈ Σ2} ∪
{v : T1∩T2 | (v : T1) ∈ Σ1 and (v : T2) ∈ Σ2}

The following lemma is a straightforward induction over typing derivations.

Lemma 7 (Basis lemma)

(1) (Basis expansion) Let Σ⊆ Σ′. If Σ ` t : T then Σ′ ` t : T .
(2) (Basis restriction) If Σ ` t : T then Σ �Fv(t) ` t : T .
(3) (Basis intersection) Let Σ1 and Σ2 be bases. If Σ1 ` t : T then Σ1uΣ2 ` t : T .

A consequence of part 3 above is that if t and u are two typable expressions then
without loss of generality we may assume that there is a single basis Σ which types
each of them. Henceforth we will use this fact without explicit reference to the
lemma.

The following lemma is straightforward since the typing is syntax-directed.

Lemma 8 (Generation Lemma)

(1) If Σ ` (λx.r) : T then T ≡
T

Ai → B and Σ,x : ∩A j ` r : B for some
j = 1, . . . ,n.

(2) If Σ ` (r • e) : T ◦ then T ≡
T

Ai → B and Σ ` r : Ai for all i and
Σ ` e : B◦.

(3) If Σ ` (µα.c) : A then Σ,α : A◦ ` c :⊥.
(4) If Σ ` (µ̃x.c) : A◦ then Σ,x : A ` c :⊥.
(5) If Σ ` 〈r ‖ e〉 :⊥, then there exists a type A such that Σ ` r : A and

Σ ` e : A◦.

4.1 Subject reduction

The type assignment system M ∩ enjoys the Subject Reduction property. Although
this is a typical — and crucially important – property of types systems, it was
difficult to achieve in a system designed to characterize strong normalization in
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λµµ̃. In the discussion following the Subject Reduction Theorem below we point
out the problem with an earlier system [19] and explain how the present system
avoids it.

Lemma 9 (Substitution) Let t and s be arbitrary terms or coterms, let v be a
variable or covariable and let D = (D1 ∩ ·· · ∩Dk). If Σ,v : D ` t : T and
Σ ` s : Di for each i = 1, . . . ,k then Σ ` t[v← s] : T .

PROOF. By case on the structure of t. In what follows we assume Σ ` s : Di for all
i = 1, . . . ,k.

t is a variable w with w 6≡ v. Note that t[v := s] ≡ w. By assumption Σ,v : D `
w : T . Then by Basis restriction lemma 7(2) Σ ` w : T .

t is v. Note that t[v := s] ≡ s, T ≡ Di for all i = 1, . . . ,k. Then Σ,v : D ` v : Di for
all i holds by (ax). Hence the result is the second hypothesis.

t : T is λx.b :
T

Ai→ B. Note that by Generation Lemma T ≡
T

Ai → B. Let us
assume Σ,v : D ` λx.b :

T
Ai→ B. Then by Generation Lemma Σ,x : ∩A j,v : D `

b : B, for some j. By the induction hypothesis Σ,x : ∩A j ` b[v := s] : B for some
j. Then by Basis intersection Lemma Σ,x :

T
Ai ` b[v := s] : B and by (→ r) we

have Σ ` λx.b[v := s] :
T

Ai→ B. The result follows since t[v := s]≡ λx.b[v := s].
t : T is r • e : (

T
Ai→ B)◦. Let us assume Σ,v : D ` r • e : (

T
Ai→ B)◦. Then by

Generation Lemma Σ,v : D ` r : Ai, for all i, and Σ,v : D ` e : B◦. By induction
Σ ` r[v := s] : Ai, for all i, and Σ ` e[v := s] : B◦.
By (→ e), Σ ` r[v := s] • e[v := s] : (

T
Ai→ B)◦. The result follows since

t[v := s]≡ r[v := s]• e[v := s].
t : T is µα.c : A. By assumption and by Generation Lemma we have Σ,v : D,α :

A◦ ` c : ⊥. Then by induction Σ,α : A◦ ` c[v := s] :⊥. The result follows by (µ)
rule.

t : T is 〈r ‖ e〉 :⊥. We have T ≡ ⊥ and by hypothesis Σ,v : D ` r : A and
Σ,v : D ` e : A◦. By induction Σ ` r[v := s] : A and Σ ` e[v := s] : A◦. Hence
Σ ` 〈r ‖ e〉[v := s] :⊥.

Theorem 10 (Subject Reduction) Let s be any expression. If Σ ` s : S and
s→ s′ then Σ ` s′ : S.

PROOF. The proof is by induction on s. If the redex of the reduction is not s itself
then we may simply invoke the induction hypothesis. Otherwise s is a command
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c = 〈r1 ‖ e1〉 which undergoes a reduction by one of the rules (λ), (µ), or (µ̃).

By the Generation Lemma 8(5) we have, for some type T ,

Σ ` r1 : T and Σ ` e1 : T ◦

Case (λ) reduction: c ≡ 〈λx.r ‖ r′ • e〉 // 〈r[x← r′] ‖ e〉. By the Generation
Lemma 8(1) T ≡

T
Ai → B, i = 1, . . . ,n and Σ,x : ∩Al ` r : B for some l ∈

{1, . . . ,n}. Then by Basis intersection lemma Σ,x :
T

Ai ` r : B. On the other hand,
by the Generation Lemma 8(2), Σ ` r′ : Ai for all i = 1, . . . ,n and Σ ` e : B◦. By
Substitution Lemma 9 Σ ` r[x← r′] : B. The desired result Σ ` 〈r[x← r′] ‖ e〉 :⊥
follows by the cut rule.

Case (µ-red) reduction: c ≡ 〈µα.c′ ‖ e〉 // c′[α← e] and (µ̃) reduction: c ≡ 〈r ‖
µ̃x.c′〉 // c′[x← r]. Straightforward application of Generation and Substitution
Lemma.

Case (µ̃-red) reduction: similar to the previous case.

Discussion It is instructive to analyze the difficulty in proving Subject Reduction
for an intersection type system for λµµ̃ in the presence of the standard rule for
intersection-introduction:

Σ ` t : A Σ ` t : B
(` ∩)

Σ ` t : (A∩B)

specifically, its interaction with the (µ) and (µ̃) rules. Suppose that the judgment
Σ ` (µα.c) : (A∩B) is derived as follows

Σ, α : A◦ ` c :⊥
(µ)

Σ ` µα.c : A

Σ, α : B◦ ` c :⊥
(µ)

Σ ` µα.c : B
(` ∩)

Σ ` (µα.c) : (A∩B)

Now suppose that we derive the judgment Σ ` e : (A∩B)◦, and therefore derive the
judgment Σ ` 〈(µα.c) ‖ e〉 :⊥. If we try to argue that the result of a µ-reduction
is well-typed, by applying the Substitution Lemma, we are stuck. The proper sub-
derivations of the judgment Σ ` (µα.c) : (A∩B) do not support an argument that e
can be substituted for α. (It was this case that was overlooked in [19].)
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In the type system presented in this paper the above derivation is blocked:
intersection types can be generated for redexes by the (µ) or (µ̃) rules only. The
rationale behind the new type system is to accept the introduction of an intersection
only at specific positions and specific times when typing an expression, namely
when an arrow is introduced on the left; then a type intersection is only introduced
at the parameter position. Still, the new system still types exactly all the strongly
normalizing expressions (Section 5).

Interestingly, the absence of the traditional (` ∩) rule is crucial to our treatment
of the Strong Normalization Theorem in Section 6. See the remarks following
Theorem 28. The same kind of restriction on the introduction of intersection in
types has been used in [9,6] in work on developing type inference algorithms for
intersection types.

4.2 Subject expansion

The following can be viewed as a converse of the Substitution Lemma; it is the
essential ingredient in the Subject Expansion Theorem below.

Lemma 11 Let t and s be arbitrary terms or coterms and let v be a variable or
covariable. Suppose Σ ` t[v← s] : T and suppose that s is typable in context Σ.
Then there is a type D = (D1∩·· ·∩Dk), k ≥ 1, such that

Σ ` s : Di for each i and Σ,v : D ` t : T

PROOF. The proof is by induction on t. We examine the various cases for t and s.

• Suppose t is a command 〈r ‖ e〉, v is a variable x and s is a term. We have
〈r ‖ e〉[x← s]≡ 〈r[x← s] ‖ e[x← s]〉, hence the last typing rule applied is (cut).
Therefore for some B Σ ` r[x← s] : B and Σ ` e[x← s] : B◦ By the induction
hypothesis there exists a type D1 such that Σ ` s : D1 and Σ,x : D1 `
r : B and there exists a type D2 such that Σ ` s : D2 and Σ,x : D2 `
e : B◦ Applying Basis intersection lemma 7(3) twice, one gets on one side
Σ,x : D1∩D2 ` r : B and on the other side Σ,x : D1∩D2 ` e : B◦ and D1∩D2
is a type. Using (cut) we conclude Σ,x : D1∩D2 ` 〈r ‖ e〉 :⊥

• When t is a command 〈r ‖ e〉, v is a covariable α and s is a coterm, the proof is
similar.
• Suppose t is a term r, v is a variable x and s is a term. We examine cases for r.
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Suppose r ≡ x. Then r[x← s]≡ s and we simply take D to be B, and the result
follows.

Suppose r ≡ y 6≡ x. Then r[x← s] ≡ y and so Σ ` y : B by assumption. Take
D to be the assumed type for s under Σ and since we may expand contexts and
preserve typings the result follows.

Suppose r≡ λy.r′. Then (λy.r′)[x← s]≡ λy.(r′[x← s]), where we may assume
y is not free in s.

By assumption Σ ` λy.(r′[x← s]) : B According to Generation Lemma 8
B ≡

T
Ti→T and Σ,y : ∩Tj ` r′[x← s] : T . for some j. By the induction

hypothesis there is an D = (D1 ∩ . . . ∩Ds) such that Σ,y : ∩Tj ` s : Di and
Σ,x : D,y : ∩Tj ` r′ : T . Then by Basis restriction lemma Σ ` s : Di for all i,
since y is not free in s, and by Basis intersection lemma Σ,x : D,y :

T
Ti ` r′ : T

Therefore Σ,x : D ` λy.r′ :
T

Ti→ T as desired.
Suppose r ≡ µα.c. Then (µα.c)[x← s] ≡ µα.c[x← s], where α is not free in

s. We have Σ ` µα.(c[x← s]) : B The last inference in this derivation is an
application of (µ). Then the argument is analogous to the previous case.
• Suppose t is a coterm e, v is a variable α and s is a coterm. Therefore e ≡ α,

e≡ β 6≡ α and e≡ r • e′.
Suppose t ≡ r • e′. The applied rule is (→ e) and there exists an Σ and

Ai’s such that Σ ` r[v← s] : Ai, i = 1, . . . ,m. There exists also a B such that
Σ ` e′[v← s] : B◦. By induction, on the one hand for each i = 1, . . . ,m there
exists a type Di = (D1

i ∩ . . .∩Ds
i ) such that Σ ` s : D j

i and Σ,v : Di ` r : Ai and
on the other hand there exists a type E = (E1∩ . . .∩Ep) such that Σ ` s : El for
all l = 1, . . . p and Σ,v : E ` e′ : B. Setting D = (D1∩ . . .∩Dm∩E), we conclude
the proof by Lemma 7 (3).

2

5 Strongly normalizing expressions are typable

Theorem 12 Let t be an expression in normal form. Then there is a basis Σ and a
type T such that Σ ` t : T .

PROOF. The proof is by induction on expressions.
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Note that a normal form is one of the following:

x α λx.r r • e µβ.c µ̃y.c 〈r ‖ α〉 〈x ‖ e〉

where r and e are normal forms and in the latter two cases r is not µβ.c and e is not
µ̃y.c.

Of course variables x and α are immediately typable. If t is λx.r then by induction
we have Σ ` r : B Without loss of generality we may assume a binding x : D in Σ.
Then we have Σ\ x : D ` λx.r : D→ B

If t is r • e we have by induction Σ1 ` r : A and Σ2 ` e : B◦ By the Basis
intersection lemma

Σ1uΣ2 ` r : A and Σ1uΣ2 ` e : B◦

Then Σ1uΣ2 ` r • e : (A→ B)◦

If t is µα.c then by induction we have Σ ` c :⊥Without loss of generality we may
assume a binding α : D in Σ. Then Σ\α : D ` (µα.c) : D◦.

If t is µ̃x.c the argument is similar.

If t is 〈r ‖ α〉 then by induction we have, for some Σ and D, Σ ` r : D Let Σ∗ be
Σu{(α : D◦)}. Then Σ∗ ` r : D and Σ∗ ` α : D◦ So Σ∗ ` 〈r ‖ α〉 :⊥

The case of 〈x ‖ e〉 is similar.

Theorem 13 (SN implies typability) If t is strongly normalizing then t is typable.

PROOF. The proof is by induction over the length of the longest reduction
sequence out of t, with a sub-induction on the size of t.

If t is a normal form then t is typable by Theorem 12.

Next suppose that t is an expression which is not itself a redex. Given that t is not a
normal form, it is of one of the following forms

λx.r r • e 〈λx.r ‖ α〉 〈x ‖ r • e〉

By induction hypothesis each r and e above is typable; it is straightforward to build
a typing for t in each case.
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Finally suppose that t is a command c which is itself a redex.

If t is of the form 〈µα.c ‖ e〉 or 〈r ‖ µ̃x.r〉 then let t ′ be obtained by doing a top-
level reduction. Then either t ′ = c[α← e] or t ′ = c[x← r] and by induction t ′ is
typable under some context. Note that the expressions e and r are each strongly
normalizing and e has a lower induction measure than 〈µα.c ‖ e〉 and r has a lower
induction measure than 〈r ‖ µ̃x.c〉, so by induction e, respectively r, is typable under
some context. Then an application of Lemma 11 yields a typing for t.

If t is of the form 〈λx.r ‖ s• e〉 then let t ′ be 〈r[x← s] ‖ e〉. Note that t reduces to t ′

(in two steps).

By the induction hypothesis there is a Σ with Σ ` 〈r[x← s] ‖ e〉 :⊥ In this typing
we may assume, without loss of generality, that (cut) has been the last rule applied.
Therefore for some type B Σ ` r[x← s] : B and Σ ` e : B◦. Note also that by
induction s is typable. Without loss of generality we may suppose it is typable
under the same context Σ. Then by Lemma 11 there is a type D = (D1∩ . . .∩Dn)
such that

Σ ` s : Di and Σ,x : D ` r : B

From the typings Σ,x : D ` r : BandΣ ` s : DiandΣ ` e : B◦ it is easy to construct
a typing for 〈λx.r ‖ s• e〉.

6 Typable expressions are SN

Here we give a proof of strong normalization under free reduction, for typable
expressions. The difficulty in proving SN in λµµ̃ using a traditional reducibility (or
“candidates”) argument arises from the critical pairs 〈µα.c ‖ µ̃x.d〉. Since neither
of the expressions here can be identified as the preferred redex one cannot define
candidates by induction on the structure of types. This difficulty arises already in
the simply-(arrow)-typed case. The “symmetric candidates” technique in [1,35]
uses a fixed-point technique to define the candidates and suffices to prove strong
normalization for simply-typed λµµ̃.

The interaction between intersection types and symmetric candidates is technically
problematic (see [17] for a discussion about a related calculus). The discussion just
after the proof of Theorem 28 below explains how this problem is addressed in the
current type system.
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6.1 Pairs

Let Λr denote the set of all terms and Λe denote the set of all coterms.

Definition 14 A pair is given by two sets R and E with R⊆ Λr and E ⊆ Λe, each of
which is non-empty. The pair (R,E) is stable if for every r ∈ R and every e ∈ E, the
command 〈r ‖ e〉 is SN.

For example, the pair (Varr,Vare) is stable. Since the sets in a pair are non-empty,
any stable pair consists of SN expressions.

The following technical condition will be crucial to the use of pairs to interpret
types (it is this condition which makes the Type Soundness Theorem go through,
specifically the cases of typing a µ or a µ̃ expressions).

Definition 15 A pair (R,E) is saturated if

• whenever µα.c satisfies: ∀e ∈ E,c[α← e] is SN, then µα.c ∈ R, and
• whenever µ̃x.c satisfies: ∀r ∈ R,c[x← r] is SN, then µ̃x.c ∈ E.

We can always expand a pair to be saturated. It is more delicate to expand a
stable pair to be saturated and remain stable. The development below achieves
this. The technique is similar to the “symmetric candidates” technique as used by
Barbanera and Berardi [1] for the Symmetric Lambda Calculus and adapted by
Polonovski [35] in his proof of strong normalization for λµµ̃ calculus with explicit
substitutions.

Definition 16 An expression is simple if it is not of the form µα.c or µ̃x.c. A set
R ⊆ Λr is simple if each term in R is simple; a set E ⊆ Λe is simple if each coterm
in E is simple.

Definition 17 Define the maps Φr : 2Λe → 2Λr and Φe : 2Λr → 2Λe by

Φr(Y ) = {r | r is of the form µα.c and ∀e ∈ Y,c[α← e] is SN}
∪{r | r is simple and ∀e ∈ Y,〈r ‖ e〉 is SN}

Φe(X) = {e | e is of the form µ̃x.c and ∀r ∈ X ,c[x← r] is SN}
∪{e | e is simple and ∀r ∈ X ,〈r ‖ e〉 is SN}
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Note that if Y 6= /0 then Φr(Y )⊆ SN, and if X 6= /0 then Φe(X)⊆ SN. Also, if Y ⊆ SN
then all term variables are in Φr(Y ), and if X ⊆ SN then all coterm variables are in
Φe(X).

It is easy to see that each of Φe and Φr is antimonotone. So the maps (Φr ◦Φe) :
Λr→ Λr and (Φe ◦Φr) : Λe→ Λe are monotone. By the Knaster-Tarski fixed point
theorem [29,41] each of these maps has a complete lattice of fixed points, ordered
by set inclusion.

The following lemma is straightforward.

Lemma 18 Let (R,E) be a pair. The following are equivalent.

• Φe(R) = E and Φr(E) = R.
• R is a fixed point for (Φr ◦Φe) and E = Φe(R).
• E is a fixed point for (Φe ◦Φr) and R = Φr(E).

Definition 19 A pair (R,E) is a mutual fixed point for Φr and Φe if any of the
conditions of Lemma 18 hold.

Lemma 20 Suppose (R,E) is a mutual fixed point for Φr and Φe. Then (R,E) is
stable and saturated.

PROOF. Each of R and E is non-empty since, as images of Φr and Φe, they contain
all variables. It follows that each expression in R or E is SN.

Saturation follows immediately from the facts that Φe(R) = E and Φr(E) = R.

For stability: consider any command 〈r ‖ e〉 with r ∈ R and e ∈ E; we must
show that this command is SN. Since R and E is a set of SN expression, it
suffices, by Lemma 1, to show that the result of a top-level reduction is SN.
But such a reduction step can only be one of 〈r ‖ e〉 ≡ 〈µα.c ‖ e〉 // c[α← e]
or 〈r ‖ e〉 ≡ 〈r ‖ µ̃x.c〉 // c[x← r]. In the first case we have SN because of the
fact that r ∈ R = Φr(E). In the second case we have SN because of the fact that
e ∈ E = Φe(R).

So now our task is to show how to make mutual fixed points which have the right
structure for interpreting types. The strategy for defining saturated pairs for types
is slightly different depending on whether the type to be interpreted is (i) an arrow-
type or its dual or (ii) an intersection or its dual. In the former case we need to
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establish the that the operators (Φr ◦Φe) and (Φe ◦Φr) are inflationary on strongly
normalizing simple sets.

Lemma 21 If R is a simple set of SN terms then R⊆Φr(Φe(R)), and similarly for
simple coterms.

PROOF. We treat only the assertion about terms. Let r ∈ R; it suffices to show that
for all e ∈ Φe(R), 〈r ‖ e〉 is SN. Let e ∈ Φe(R): if e is simple then 〈r ‖ e〉 is SN by
definition of Φe(R). Otherwise e is µ̃x.d and we have d[x← r] is SN. We wish to
show that 〈r ‖ µ̃x.d〉 is SN. Since r and d are SN it suffices by Lemma 1 to show the
result of a top-level reduction is SN; but since r is simple this must be d[x← r].

As is well-known, when G is a monotone operator on a complete lattice of sets and
X satisfies X ⊆ G(X) then

f ixG
X =

\
{Y | X ⊆ Y ∧G(Y )⊆ Y}

is a fixed point of G with X ⊆ f ixG
X . This, in light of Lemma 21, justifies the

following definition.

Definition 22 If R is a simple set of SN terms let R↑ be the least fixed point of
(Φr ◦Φe) with the property that R⊆ R↑.

If E is a simple set of SN coterms let E↑ be the least fixed point of (Φe ◦Φr) with
the property that E ⊆ E↑.

The following is an immediate consequence of Lemma 18.

Lemma 23 If R is a simple set of SN terms then (R↑,Φe(R↑)) is a mutual fixed point
of Φr and Φe, with R⊆ R↑.

Similarly, if E is a simple set of SN coterms then (Φr(E↑),E↑) is a mutual fixed
point of Φr and Φe, with E ⊆ E↑.

In Definition 25 we will use the above construction to interpret types which are not
intersections (or their duals). When the types we want to interpret are intersections,
or types of the form (T1∩·· ·∩Tk)

◦ the above construction does not work. The
essential problem is that the intersection of saturated pairs does not in general yield
a saturated pair. This means that the interpretation of an intersection type (A∩B)
will not be the intersection of the interpretations of A and B. But the collection of
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fixed points of (Φr ◦Φe) (and that of (Φe ◦Φr)) carries its own lattice structure
under inclusion, and this is all we require to interpret intersection types.

Definition 24 Let Fix(Φr◦Φe) be the set of fixed points of the operator (Φr ◦Φe). If
R1, . . . ,Rk are fixed points of (Φr ◦Φe), let (R1 f . . .fRk) denote the meet of these
elements in the lattice Fix(Φr◦Φe).

Let Fix(Φe◦Φr) be the set of fixed points of the operator (Φe ◦Φr). Let (E1 f . . .fEk)
denote the meet of fixed points of (Φe ◦Φr).

The set of objects of the lattice Fix(Φr◦Φe) is a subset of the set 2Λr . Since each of
these lattices is ordered by set inclusion, we have (R1 f . . .f Rk) ⊆ Ri for each i.
Since ∩ is the greatest lower bound operator in 2Λr ,

(R1 f . . .fRk)⊆ (R1∩·· ·∩Rk).

Similarly for the meet in Fix(Φe◦Φr).

We stress that (R1 f . . .fRk) is a fixed point of (Φr ◦Φe) and so the pair

((R1 f . . .fRk), Φe(R1 f . . .fRk))

is a mutual fixed point of Φr and Φe.

6.2 Pairs and types

For each type T we define the set JT K; when T is a term (respectively, coterm) type
then JT K will be a set of terms (respectively, coterms).

Guided by Lemma 3 we will define JT K and JT ◦K simultaneously.

Definition 25 (Interpretation of types) For each type T we define the set JT K,
maintaining the invariant that when T is a term type then JT K is a fixed point of
(Φr ◦Φe) and when T is a coterm type then JT K is a fixed point of (Φe ◦Φr).

• When T is ⊥ then JT K is the set of SN commands.
• When T is a type variable we set R to be the set of term variables, then construct

the pair (R↑,Φe(R↑). We then take JT K to be R↑ and JT ◦K to be Φe(R↑).
• Suppose T is (

T
Ai → B). Set E to be {r • e | ∀i,r ∈ JAiK and e ∈ JB◦K} then

construct the pair (Φr(E↑),E↑). We then take JT K to be Φr(E↑) and JT ◦K to
be (E↑).
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• When T is (A1∩A2 · · · ∩An), n ≥ 2, we take JT K to be (JA1Kf . . .f JAnK) and
then take JT ◦K to be Φe(JT K).
• When T is (A1

◦∩A2
◦ · · ·∩An

◦)◦, n≥ 2, we take JT ◦K to be (JA1
◦Kf . . .fJAn

◦K)
and then take JT K to be Φr(JT ◦K).

Note that by definition, for each type T the pair (JT K,JT ◦K) is a mutual fixed point
of Φr and Φe and so constitutes a stable saturated pair.

The following collects the information we need to prove Type Soundness.

Lemma 26

(1) For each type T , JT K is a set of SN (co)terms.
(2) J(

T
Ai→ B)◦K⊇ {r • e | ∀i,r ∈ JAiK and e ∈ JB◦K}

(3) (λx.b) ∈ J(
T

Ai→ B)K if for all r such that ∀i,r ∈ JAiK we have b[x← r] ∈ JBK
(4) (µα.c) ∈ JAK if for all e ∈ JA◦K we have c[α← e] SN.

Similarly, (µ̃x.c) ∈ JA◦K if for all r ∈ JAK we have c[x← r] SN.
(5) J(T1∩·· ·∩Tk)K⊆ (JTiK∩·· ·∩ JTkK)

PROOF.

(1) The pair (JT K,JT ◦K) is stable.
(2) Letting E denote to the right-hand side of the inclusion, we note that

J(
T

Ai→ B)◦K is precisely E↑. Lemma 23 yields the result.
(3) Let E = {r • e | ∀i,r ∈ JAiK and e ∈ JB◦K}. We first claim that (λx.b) ∈Φr(E).

By Lemma 21 it suffices to show that for all (r•e)∈ E 〈(λx.b ‖ r•e〉 is SN. By
the previous part, each such (r•e) is in J(

T
Ai→ B)◦K. The result then follows

from the fact that the pair (J(
T

Ai→ B)K,J(
T

Ai→ B)◦K) is stable.
(4) By the fact that the pair (JAK, JA◦K) is saturated.
(5) This holds simply because J(T1∩·· ·∩Tk)K = (JT1K f . . . f JTkK) (cf. the

observation following Definition 24).

6.3 Soundness and strong normalization

Since each JT K consists of SN expressions the following theorem will imply that all
typable expressions are SN.

Theorem 27 (Type Soundness) If expression t is typable with type T then t is in
JT K.
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PROOF. Let us say that a substitution θ satisfies Σ if the following holds for each
statement (v : T ) of Σ: if T is of the form (T1 ∩ ·· · ∩Tk) , k ≥ 1, then for each i,
θv ∈ JTiK.

Then to prove the theorem it is convenient to prove the following stronger statement:

If Σ ` t : T and θ satisfies Σ then θt ∈ JT K.

This implies the theorem since the identity substitution satisfies every Σ (since
each JT K contains all variables and covariables). We prove the statement above by
induction on typing derivations.

Choose a typing Σ ` t : T and a substitution θ that satisfies Σ; we wish to show that
θt ∈ JT K. We consider the possible forms of the given typing.

Case: (ax) of M ∩ Immediate from the fact that θ satisfies Σ,v : (T1∩·· ·∩Tk).

Case: (→ e) of M ∩ We wish to show that θ(r • e) = (θr • θe) ∈ J(
T

Ai→ B)◦K.
By Lemma 26 part 2 it suffices to show that θr ∈ JAiK for each i and θe ∈ JBK, and
these hold by induction hypothesis.

Case: (→ r) of M ∩ Allowing for the fact that A might be an intersection, write
(A→ B) as (

T
Ai→ B). We wish to show that θ(λx.b) = (λx.θb) ∈ J

T
Ai→ BK. By

Lemma 26 part 3 it suffices to consider an r such that for every i, r ∈ JAiK, and show
that θb[x← a] is SN. Let θ′ be the substitution which adds the binding x 7→ r to θ;
it suffices to show that θ′(b) ∈ JBK. By Lemma 26 part 5 the substitution θ′ satisfies
Σ. So θ′(b) ∈ JBK by induction.

Case: (µ) of M ∩ We wish to show that (µα.c) ∈ JAK.

By Lemma 26 part 4 it suffices to consider an arbitrary e ∈ JA◦K and show that
θc[α← e] is SN. Let θ′ be the substitution which adds the binding α 7→ e to θ; it
suffices to show that θ′(c) is SN. The substitution θ′ satisfies Σ, invoking Lemma 26
part 5 in case A◦ is an intersection. So θ′(c) is SN by induction. Case: (µ) of M ∩

Similar to the case of (µ).

Case: (cut) of M ∩ We need to show that 〈θr ‖ θe〉 is SN. By induction θr ∈ JBK
and θe ∈ JBK, so the result follows from the stability of JBK.

This completes the proof.

Now we can prove the converse of Theorem13.
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Theorem 28 (Typability implies SN) Every typable expression is SN.

PROOF. By Theorem 27 and the fact that every JT K consists of SN expressions.

By Theorems 13 and 28 we obtain the main result that the introduced typing system
M ∩ completely characterizes all strongly normalising λµµ̃ terms.

Corollary 29 A λµµ̃ term is strongly normalising if and only if it is typable in λµµ̃.

Discussion From a semantical perspective, the (` ∩) rule (see page 11) asserts
that the interpretation of an intersection (A∩B) must contain the interpretations
of A and of B. In contrast, the form of the (ax) rule in our system (equivalent to
an intersection-elimination rule) asserts that the interpretation of an intersection
(A∩B) must be contained in the interpretations of A and of B. We have seen that
the absence of the (` ∩) rule was key to establishing the Subject Reduction result.
It is very interesting to note that relaxing the semantic requirement embodied in
the (` ∩) rule is crucial in the Soundness Theorem above as well. If one wants to
interpret the type (A∩B) by a saturated set built from the interpretations JAK and
JBK of A and B one must confront the fact that the intersection of two saturated
sets will not itself be saturated. It is illuminating to explore the problem of trying
to build a suitable saturated set from JAK and JBK. The crucial point is that one
can build such a set containing the simple expressions in JAK∩ JBK and altogether
contained in JAK∩ JBK. Since our type system has abandoned the (` ∩) rule, this is
sufficient.

7 Open problems and conclusion

We defined intersection for λµµ̃-calculus extending the Dezani-Coppo heritage
from λ-calculus to λµµ̃-calculus. Our system, M ∩ has the properties that the
typable expressions are precisely the strongly normalizing expressions under
free (unrestricted) reduction in untyped λµµ̃-calculus. The system enjoys type
preservation under reduction (subject reduction).

22



There are several open problems related to: logical meaning of intersection in λµµ̃
characterization of termination properties of λµµ̃-expressions, extending the type
system with union types to mention just a few.

Intersection types as logical connectives. It is well known that traditional λ-
calculus with intersection types does not fit into the Curry-Howard (proofs-as-
terms) correspondence. This makes the intersection a proof-theoretical and not a
truth-functional connective [28]. There have been several attempts to develop a
typed system (à la Church) with intersection types by Dezani et al. [18], Ronchi
Della Rocca and Roversi [39], Capitani et al. [8] and recently by Wells and
Haack [48]. This direction of research in the framework of λµ-calculus merits
attention.

Termination properties. Intersection types have proven to be an invaluable tool for
studying reduction properties in the traditional λ-calculus, and in future work we
expect to use suitable variants on the system presented here to characterize weak
normalization and head-normalization in λµµ̃.

Union types. Buneman and Pierce [7], have shown how union types can play a key
role in the design of query languages for semistructured data union types. Union
and intersection types have recently been used by Palsberg and Pavlopoulou [32]
and subsequently by Wells, Dimock, Muller, and Turbak [47] in a type system
involving flow types for encoding control and data flow information in typed
program representations. The system in [47] obeys the Subject Reduction for a
certain call-by-value version of the β-rule (in which variables are not considered
values). In two papers [22,23] Dunfield and Pfenning investigate a type system
incorporating–among others–union types. Their language is specifically a call-
by-value language, and their type system and type assignment algorithms exploit
this aspect in interesting ways. Union types in the framework of computational
interpretations of classical logic will be another direction of our future research.
Since this framework is especially noticeable for its account of call-by-value and
call-by-name, an interesting research perspective could be to study how union and
intersection types connected with a type directed reduction can actually implement
dynamic strategies of functional program evaluation.

Acknowledgments We are grateful for a particularly careful reading of a first
version of this paper by an anonymous referee, which led to a simplification of our
type system and a resulting strengthening of our results.
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[29] B. Knaster. Un théorème sur les fonctions d’ensembles. Annales de la Societé
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