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Abstract

Inductive theorems are properties valid in the initial algebra. A now
popular tool for proving them in equational theories or abstract data types
is based on proof by consistency. This method uses a completion procedure
and requires two essential properties of the specification, namely relative
completeness and w-completeness. This paper investigates ways of proving
them. For the first one, the complement algorithm is presented. It is based
on unification and computation of coverings and complements. For the sec-
ond one, a technique based on discrimination of pairs of normal forms is
explained and illustrated through examples.

KEYWORDS: specification, abstract data types, initial algebra, term rewrit-
ing, critical pairs, completion procedure, theorem proving, induction.

1 INTRODUCTION

Rewriting systems have many applications to computer science. They are used as a base
for algebraic specifications of abstract data types [5, 13, 28]. They also provide a nice
mechanism for functional programming languages. Their basic feature is a call by matching
and they are included in actual languages like HOPE [1], ML [4, 29, 6], MIRANDA [40],
OBJ [7, 9]. In this paper, our main concern is proofs of properties of operators or functions,
expressed as equalities and usually based on some kind of induction [30, 10, 17, 25, 36, 32,
35, 21, 23, 18]. For example, consider the type List, where the constructors are [ |, \z.[z], a, b
and @. [] is the empty list, [z] is a list with one element z, a and b are two constants and
@ is the append operator. These constructors satisfy the relations,

[J[@z — =z
zQ[] — =z
(z@Qy)Qz — zQ(yQz)

defined by rewrite rules. Let us define a function flatten by:

flatten([]) — []



flatten([z]) — flatten(x)
flatten(a) — a
flatten(b) — b
flatten(a@z) — a@flatten(z)
flatten(b@Qz) — bQflatten(z)
flatten([z]@Qy) — flatten(z)@flatten(y).

We may want to prove that flatten is an involution, in other words,
flatten(flatten(z)) = flatten(z)
or flatten is a morphism for @, that is
flatten(zQy) = flatten(z)Q flatten(y).

The method, we are interested in, does not use an inference rule explicitly, but a proof
by absence of contradiction or a proof by consistency [19]. Basically this requires two
kinds of properties on the specification. The relative or sufficient completeness checks
that the operations are completely defined. The w-completeness asserts that all inductive
theorems can be proved equationally. The first property has to be proved for all parts of
the specification and we provide a new presentation of an algorithm based on a calculus of
complements [38]. The second one is usually satisfied for one part called relations among
constructors, and we investigate a method for proving it in some specific cases.

The paper is divided into three parts. In Section 2, we describe the completion-based
induction principle or proof by consistency, which relies on the w-completeness of the rela-
tions among constructors and the relative completeness of the specifications. A procedure
for checking the relative completeness is described and proved in Section 3. In Section 4,
w-completeness of term rewriting systems is investigated through examples.

2 PROOF BY CONSISTENCY

2.1 Notations

Let F be a set of operators or functions, X a set of variables. Suppose that F' is divided
into a set C of constructors, and a set D of defined operators, therefore F' = D & C. We
assume that C' is not empty and that X, C' and D are disjoint. Constructors are supposed
to describe each object of the type. Defined operators are functions defined on the abstract
data type and are supposed to disappear in the computation of the values of the function
on objects of the type. In addition, we suppose that there exists only one sort. Actually,
this is not a restriction, and the result of this paper can be extended to many-sorted data

types.
Notations used in this paper are summarized in Figure 1.

2.2 Definitions

Let u and v be two terms of T'(F, X) and let us define two congruences over T(F, X) as
follows [15].



= disjoint union of sets.

set difference.

set of terms with operators in F and variables in X.
set of ground terms on F, i.e., without variables.
set of substitutions on T'(F, X).

= set of ground substitutions on T'(F).

set of terms built with only constructors in C.

set of ground terms built on C.

set of axioms i.e., pair of equivalent terms.

a specification with operators F' and axioms A.
M(F,A) = class of models of (F, A) or of F-algebras that satisfy A.
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T(F,X,A) = free algebra of M(F,A) on X.

T(F,A) = initial algebra of M(F, A).

Var(t) = set of variables which have at least one occurrence in .

G(t,C) = set of ground instances of ¢t by o € £(C), i.e., {o(t)|oc € £(C)}.
G(T,0) = Uter G(t,C).

R = a term rewrite system.

L(f,R) = set of left-hand sides of rules of R with root f.

Figure 1: Notations used in this paper

Definition 1 (Equational equality) u =4 v or u = v is an equational theorem in the
theory genmerated by A if and only if u = v is valid in M(F,A) i.e., valid in every algebra
that satisfies A. From the completeness theorem for equational deduction, this is equivalent
to u = v is a consequence of A, written At u =wv. It is also equivalent to u = v being valid
in the free algebra T(F, X, A) written T'(F,X,A) = u = v, where X 2 Var(u) UVar(v).

Definition 2 (Inductive equality) u =;,44) v or v = v is an inductive theorem if and
only if u = v is valid in T(F, A), written T(F, A) = u = v. This is equivalent to o(u) =4
o(v) for all ground substitution o € L(F).

Generally, to prove the validity of an equation in T'(F, A), we need inductive reasoning,
whereas equational reasoning is sufficient in T'(F, X, A).

Example 1 Peano natural numbers. Let C = {0,S} , D = {+} and suppose the set NAT
of azioms 1is,
O+z = =z
Sx)+y = Sk+y)
The equation
(S(z) +y) +2=5(z+y) +2)

is an equational theorem of NAT, and the following equations are inductive theorems that
are not equational:

r+0 = =z



z+Sky) = Sz+y)
rt+y = y+z
z+@y+z2) = (z+y) +=z

In a simple view of a structured specification of an abstract data type, the set A of
axioms is divided into two subsets, Ap and A, as follows:

Ap = specification of defined operators.
Ac = set of constructor relations, possibly empty.

From a functional programming point of view, Ac defines the data structure one works
on and Ap is the definition of a set of functions i.e., a functional program. The following
relations are satisfied Ac C T(C, X) x T(C,X) and A = Ac ® Ap. In what follows we are
interested by axioms such that

Apy C | o(f(@1,...,20)) x T(F, X)
ocd

where @ is a finite subset of £(C, X).

Ap = U Ap. ¢
fep

In other words, the left-hand sides of the axioms have root f for f € D and otherwise
contain only constructors. This strong restriction on the specifications are necessary for the
complement method to work. Usually two important concepts are attached to structured
algebraic specifications defined as follows.

Definition 3 (Relative completeness) The specification (F, A) is complete w.r.t. (C, Ac)
iff for every u € T(F) there is av € T(C) s.t. u =4 v.

Example 2 The equational specification of flatten

flatten([]) = T[]
flatten(a) = a
flatten(b) = b
flatten(a@Qz) = aQflatten(x)
flatten(b@Qz) = bQflatten(x)
flatten([z]Qy) = flatten(z)Qflatten(y)

is relatively complete w.r.t. List. Indeed all the expressions containing flatten can be sim-
plified, except those of the form flatten([z]). However,

flatten([z]) = flatten([z]Q[ ]) = flatten([z])Qflatten([ ])
= flatten(z)Qflatten([ ]) = flatten(z)Q[ | = flatten(z)

Definition 4 (Relative consistency) The specification (F, A) is consistent w.r.t. (C, A¢c)
iff for every u and v in T(C) u =4 v implies u =4, v.



If (F, A) is a specification relatively complete and consistent w.r.t. (C, A¢), then T'(C)/ =4,
is isomorphic to T'(F')/ =4, i.e., the algebra on the classes of ground terms modulo A¢ is
the algebra on the classes of ground terms modulo A. Relative completeness is called suf-
ficient completeness by J. V. Guttag and J. J. Horning [12] and the principle of definition
by G. Huet and J. M. Hullot [17].

Often one would like to be able to “decide” i.e., to prove or disprove, inductive theorems.
As it will be seen later on, this is especially useful in the theory (C, A¢) of the relations
among the constructors. This is possible if the inductive theory coincides with the equational
theory and the latter is decidable because, for instance, it is associated with a convergent
term rewriting system. This is called the inductive completeness by E. Paul [32]. This
concept was studied first by A. Tarski and presented among others by J. Heering under the
name of w-completeness [14], by L. Henkin [15] from a logician’s viewpoint, by W. Taylor [37]
from a universal algebra viewpoint and by G. D. Plotkin [34] who shows that the Axfn-
calculus is not w-complete.

Definition 5 (w-completeness) The specification (F, A) is w- complete iff every inductive
theorem is an equational theorem.

Example 3 The following specifications (F, A) are w-complete:

F = {0, succ,pred} A = {succ(pred(z)) = z,pred(succ(z)) = =} (1)
F={0,1,+} A={0+r=z,24+y=y+r,2+@y+2)=(z+y)+2} (2)
F = {0,0pp,succ} A= {opp(0) = 0,0pp(opp(z)) = x, succ(opp(succ(z))) = opp(x)} 3)
F={0,qa,b,.} A={0.z =z,2.0 = z,z.(y.2) = (z.y).2} (4)
F ={0,[],Q} A ={0Qz = z,zQ0 = z,zQ(yQz) = (zQy)Qz} (5)
F={0,1,4,0pp} A={0+z=z,z+y=y+z,2+y+2) =(@+y)+z,

opp(0) = 0, opp(opp(x)) = z, opp(x + y) = opp(x) + opp(y)} (6)
F={0,s,eq} A ={eq(0,5(x)) = 0, eq(z,x) = 5(0), eq(s(x), s(y)) = eq(x,y),eq(z,y) = eq(y, )} (7)

proof of (1) is easy using the method shown in Section 4, Proof of (2) is from [32], Proof
of (3), (4), (6) and, (7) are from Section 4 and (5) is a generalization of (4). The following
specification (A, F') is not w-complete:

F={0,1,+} A={0+z=z,2+0=z,2+ (y+2)=(z+y)+ 2z}

because T(F,A) Fzxz+y =y + z.

2.3 The intuitive idea behind proof by consistency

Relative completeness induces a very nice method for proving inductive theorems. Indeed F
is a “consequence” of a relatively complete set of axioms A if and only if £ ® A is relatively
consistent w.r.t. A. This kind of theory is sometimes called mazimally consistent [8] or
Hilbert-Post complete. In this case “consequence” is w.r.t. replacement of equals by equals
and induction. So inductive proofs are decomposed into two parts, a proof of relative
completeness which is usually made once for all, and a proof of relative consistency. Methods
for checking relative completeness are presented in Section 3. The proof of consistency is
based on the existence of a ground confluent set of rules. Most of the time, ground confluence
is obtained by a completion procedure, which generates rules from equations and checks
their confluence. If these equations contain defined functions, this is like proving lemmas
by induction. Otherwise they contain only constructors and they are proved equationally
by the means of the inductive completeness. Recently, methods based on or related to
inductive reducibility [18], were proposed to prove equations valid in T'(F, A).



3 RELATIVE COMPLETENESS

In this section, we suppose that the specification is associated with a confluent and noethe-
rian term rewriting system R [16]. This system is usually produced from A by a com-
pletion procedure. We use the notation (F,R) or (C @ D, Rc @ Rp) instead of (F, A) or
(C@® D,Ac ® Ap) and we use this system R to check the completeness of A. Obviously
(F, R) is relatively complete w.r.t. (C, R¢) if the R-normal form of any ground term of T'(F)
belongs to T'(C'). This will be checked using the following concepts:

Definition 6 (Convertibility) (F,R) is convertible to C if and only if for all ground term
t in T(F), there exists a term u in T(C) such that t g u. If D = {f} we say that f is
convertible.

This is a particular case of a more general concept.

Definition 7 (Inductive reducibility) A term t is inductively reducible or ground re-
ducible w.r.t. a specification (F, R) if o(t) is R-reducible for all ground substitution o € (F).

The convertibility is equivalent to the inductive reducibility of the terms f(z1,...,z,) for
each f € D. Convertibility implies relative completeness.

Lemma 1 Given a specification (F, R) associated with a confluent and noetherian rewrite
system, it is convertible to C if and only if it is relatively complete w.r.t. (C, R¢).

Proof: See [23]. O

However if the rewrite system is not confluent and noetherian, relative completeness does
not imply convertibility as shown by the following example.

Example 4 The specification

flatten([]) — T[]
flatten(a) — a
flatten(b) — b
flatten(a@Qz) — a@Qflatten(z)
flatten(b@Qz) — bQ flatten(x)
flatten([z]Qy) —  flatten(x)Q flatten(y)

is relatively complete as mentioned in Ezample 2, but since, for instance, flatten([a]) is not
reducible, it is not convertible. Indeed, the system is not confluent, but the rule

flatten([z]) — flatten(x)
is obtained by completion.

Lemma 2 f is convertible to C by Rp if and only if all terms of G(f(z1,...,zy),C) ©
G(L(f,Rp),C) are Rc-reducible.

Proof: G(f(z1,...,z,),C) is the set of all ground terms with f at the root and
constructors elsewhere. If every term with root f, which is not reducible by a
rule in Rp, is Ro-reducible, then all ground terms with root f are R-reducible
and f is convertible. O



Example 5 Let C = {0, 0pp, succ}, D = {+} and suppose the set Rc of azioms is

opp(0) — O
opp(opp(z)) — =
succ(opp(succ(x))) —  opp(z)

and Rp is

0O+ — =
succ(z) +y — succ(z +y)
opp(succ(z)) +y —  opp(succ(z + opp(y)))-

+ 1is convertible, indeed
G(z1 + 72,C) © G(L(+, Rp), C) = G(opp(opp(z)) +y) ® G(opp(0) +y,C)
contains only Rc-reducible terms.
In order to use the previous lemma in practice, we introduce the following concepts.

Definition 8 (Covering) Let M and N be two subsets of T(F, X). We say that M covers
N iff G(N,C) is a subset of G(M,C), i.e., each instance of a term in N is an instance of
a term in M.

Example 6 : Let C = {0,S,P}. {S(z) + y,P(z) + y} does not cover {z + y} but
{0+y,5(x) +y, P(z) + y} covers {z +y}.

The goal of the cover is to find the part K of G(f(z1,...,z,)) which is not covered by
G(L(f,Rp),C) and to check that the terms of K are Rco-reducible. In practice, we cannot
use this technique directly because it would induce manipulations of infinite sets of terms,
so we introduce the following concept.

Definition 9 (Complement of a term) Let t be a term of T(C,X). We call any finite
set K of terms s.t. T(C) = G(t,C) & G(K,C) a complement of t.

Ift € X, K is empty, since G(t,C) = T(C). The following proposition gives a constructive
definition of a complement of a linear term in T(C, X) which is a term with at most one
occurrence of each variable.

Proposition 1 If t is a linear term of T(C,X) s.t. t = cj(t1,---,tn;), C = {c1,---,¢m}
where ny, s the arity of ¢; and

Ot) = {e@rr. .. an)lmrr. . on € X &1 <i <m&i# ]}
@{Cj(tl,... s Uk—1sUy Tht1y- - - ,.Z‘nj)ll <k< ’I’Lj&.’Ek_H,. <y T € X&v € C(tk)}

then C(t) is a complement of t, which means T(C) = G(t,C) ® G(C(t),C).
N.B. The variables in t1,...,tk—1,0,Tk+1,.-.,Tn,; are supposed different.



Proof: G(t,C)NG(C(t),C) = ( is obvious. Let us prove G(t, C)UG(C(t),C) =
T(C). Suppose u is a term of T(C) and ¢ = ¢;(t1,...,1,,;). If the root of u is
¢; with ¢ # 7, then u € G(C(t),C), because u is an instance of ¢;(z1,...,Zp,)-
Otherwise u is of the form c¢;(uy,...,uy,,;). If there exists o, s.t. o(t) = u, then
u € G(t,C). If no such o exists, we build a substitution € in the following way,
let & € [1..nj] s.t. (Vh < k)(364)0n(th) = up and there is no substitution that
matches t; with ug, therefore there exists 6y and v € C(t) with Ox(v) = uy.
Since the term ¢ is linear, it is possible to define the substitution 8 as follows:

e if x occurs in t;, with h < k, then 0(z) = 6,(x)

e if z occurs in v, then 6(z) = i (x)

o if z = zj, with h > k, then 0(z) = up,.

It is now obvious that 6(c;(t1,. ..tk 1, Tk41,-- -, 2Zn;)) = wand u € G(C(t),C).
a

Note that the definition of C(t) given by Proposition 1 is a finite set of terms {¢1,. .., t,} such
that G(t,C),G(t1,C),...,G(t,, C) is a partition of T'(C), which means that the G(t;,C)’s
and G(t,C) are disjoint. Other definitions of complements are possible for other pur-
poses [27].

Example 7 With the conventions of the previous example.
C(0) = {S(=), P(x)},
C(5(0)) = {0, P(z), S(5(=)), S(P(z))}.

Definition 10 (Linear Substitution) A substitution o with domain Dom(o) is linear if
it satisfies the following property

(Vz € Dom(o))o(z) is linear and (Vy € Dom(o)) x # y = Var(o(z)) N Var(o(y)) = 0.

Lemma 3 A linear substitution transforms any linear term into a linear term. If there is at
least one operator with an arity larger than 2 this property characterizes linear substitutions.

Definition 11 (Complement of a Substitution) Let o be a linear substitution in T(C, X)
and Dom(o) be its domain. The complement of o is the set C(o) of all linear substitutions
p such that:

(i) p#o.

(ii) Dom(p) = Dom(o).

(iii) (Vo € Dom(p))p(z) € C(o(x)) or p(x) = o().
Example 8 Let 0 = {z < 0,y < S(¥'),z < 2}

Clo)= {{z++0,y+ 0,z 2'},{z 0,y P(y),z + 7'},
{z + S(z'),y < S(),z + 2'},{z < S(z),y « 0,z «+ 2'},
{z < S(@'),y < P(y),z < '}, {z « P(2'),y + S(¥),z + #'},
{z + P(2'),y < 0,2 < 2'},{z + P(2),y « P(y'),z < 2'}}.



When ¢t € T(C, X) the complement of a substitution provides a nice way to compute
a basis for the set G(t,C) © G(o(t),C). The next proposition gives an easy method for
computing the complement of a term ¢ € T'(C, X).

Proposition 2 Let t be a term and o be a linear substitution
G(t,C) = yu J Gl
peC(0)
and
(Vp € C(0))[G(p(t),C) N G(a(t),C) =DV p(t) = o(t)].

Proof: By definition of the complement of a linear substitution. O

From Proposition 2 we get
G(t,C) =G(o(1),C) @ U G(p(1),C)-
peC(0)&p(t)#0(t)
Usually Dom(o) C Var(t), but if Dom(o) = Var(t) then one gets a simpler equality
G(t,C)=G(e(t),C)® |J Glp
pEC(0)
Notice that the restriction is about the linearity of the substitution not about the linearity

of t or o(t). For example, if C = {0, S} and 0 = {y < S(z)}, then

G(f(y,9),C)©Go(f(y,9),C) = G(f(y,v),C) ©G(f(S(x),5(x)),C)
= G(f(0,0),C).

This can be computed although f(y,y) and o(f(y,y)) are not linear. The following theorem
gives a sufficient condition for testing covering.

Theorem 1 Let M and N be two finite subsets of {o(f(z1,...,2pn))|lc € B(C,X)}, M
covers N if one of the following conditions are satisfied:

(i) N is empty.

(ii) There ezists two terms m € M and n € N s.t. m and n are unified by a linear
substitution o and M — {m} U {p(m)|p € C(o)&p(m) # o(m)} covers N — {n} U
{p(m)lp € C(o)&p(n) # o(n)}.

Proof: Let M' = — {m} U {p(m)|p € C(o)&p(m) # o(m)} and N’ =
N —{n}U{p(n)|p € C( )&p(n) # o(n)}. By the previous proposition:
GM,C) =G(M —{m},C)UG(m,C)

= G(M {m} C) ( (U( ) ) D UpEC’(U)&p(m);éa(m) G(p(m), C))
= G(M',C)UG(a(m),0)

similarly,
G(N,C) =G(N —{n},C)UG(n,C)
= G(N — {n},C) U(G(o(n), C) & U,cc(o)tpm)zom) Glp(n), C))
=G(N',C)UG(a(n),C)
Thus, since o(m) = o(n), G(M,C) contains G(N,C) if G(M',C) contains

G(N',C). O



Now we may state the theorem for testing the convertibility of an operator to a set of
constructors [38]. One starts with My = {L(f, Rp)} and Ny which is such that G(Ny, C) =
G(f(z1,...,2,),C), and repeat the operations described in part (ii) of the theorem until
N is empty or M is empty or no m € M and no n € N can be unified by a linear
substitution. This will eventually happen since all the terms are of the form f(¢1,...,%,).
They are produced by unification and computation of complements and therefore are always
different and are never deeper than the terms in My and Ny. Let us call My, and Ny
the final results. The third statement of the following theorem assumes that Ny has no
superposition.

Theorem 2 (Complement Algorithm) If the algorithm described above starts with an
My which is the set of left-hand sides of the definition of f in Ap ; and an Ny which is
such that f is convertible to C by Ny, then

o if Myust and Nigs are empty, f is convertible to C without ambiguity.

o if Myst is not empty and Nygg is empty, f is convertible to C but all terms in M,s;
are defined more than once.

o if Nyust is not empty and Ny without superposition, f is not defined on the patterns
that are not inductively (C, Rc)-reducible. Especially, f is convertible to C if and only
if all the terms in Nygg are inductively (C, R¢)-reducible.

Proof: The first two statements are easy. Let us proof only the third one
and assume that Ny, is not empty and Ny has no superposition. Therefore
M, is empty. Since, when computing complements, one creates terms without
superposition, each N; has no superposition for 0 < ¢ < last. If a term ¢ is
an instance of a term n € Njug, it cannot be an instance of any o;(n;), where
o; is the linear substitution and n; the chosen term in N; computed at the i
step, with 0 < i < last. Therefore, ¢ cannot be an instance of an m € M; for
0 < j <last. Thust = o(n) for n € Njs and o € X(C) if and only if, for
no 7 € ¥(C) and no m € My, t = 7(m). Therefore f is C-convertible if and
only if all the instances by a ground substitution into 3(C) of terms in Ny, are
(C, R¢)-reducible. O

The content of Ny, is interesting, since it gives the patterns where the function has to
be defined. This feature makes our algorithm really handy in a environment for functional
programming or abstract data types, since these patterns are obtained by unification they
are in some sense the most general ones and operationally they seem to be better than
methods based on unfolding a tree as proposed by E. Kounalis [22], D. Plaisted [33] and
D. Kapur, P. Narendran and H. Zhang [20]. The concept of covering appeared first in [38],
but was presented independently and more recently by Comon [2] and Kucherov [24] in the
context of sufficient completeness, by Lassez and Marriott in the context of programming
logic and automated learning [26] and by Laville in pattern matching algorithms [27].
Remark: Note that if M contains only linear terms, this procedure is a decision procedure
for convertibility [31], but it is worthwhile to emphasize that this method can handle nonlin-
ear term-rewriting systems. In general, one takes Ny = {f(z1,...,zy)}, but the algorithm
may fail because all the substitutions that unify the terms are not linear, usually another
complete and non ambiguous set Ny could lead to a success. This is the case in Example 12
due to E. Kounalis [22].
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Example 9 Consider the aziomatization of Example 5. Here
My = {0 + z, succ(z) + y, opp(succ(z)) + y}

and let us take Nog = {z + w}. If one takes the terms in My in their order, one gets

M, = {succ(z)+ y,opp(succ(z) +y)}
N1 = {succ(z) +w,opp(z) + w}

M; = {opp(succ(z) +y)}

Ny = {opp(z) +w}

M; = 0

N3 = {opp(0) + w, opp(opp(2)) + w}-

In the first two steps, the unifier is trivially the identity and in the third one, the substitution
is {z < succ(z)}. N3 contains only C-reducible terms then the definition of + is relatively
complete.

Example 10 Consider the example flatten proposed in the introduction and suppose that
the rules
flatten(b) — b
flatten(a@z) — aQflatten(z)
flatten(b@z) — bQ flatten(z)

are not given. Let us take

My = {flatten[ ], flatten([z]), flatten(a), flatten([z]Qy)}
and Ny = {flatten(z)}. One gets

)
M, = {flatten([z]), flatten(a), flatten([z]Qy)}
N; = {flatten([z]), flatten(a), flatten(b), flatten(z@Qy)}
My = {flatten(a), flatten([z]Qy)}
Ny = {flatten(a), flatten(b), flatten(zQy)}
M; = {flatten([z]Qy)}

N3 = {flatten(b), flatten(zQy)}

My = 0

Ny = {flatten(b), flatten([ |Qy), flatten(aQy), flatten(bQy), flatten((zQy)Qz)}

Since flatten([ |Qy) and flatten((xz@Qy)@z) are C-reducible, the algorithm says that flatten
is not defined on flatten(b), flatten(aQy) and flatten(bQz), therefore the definition, given
in the introduction, that contains these lacking patterns is relatively complete.

Example 11 If the left-hand sides of the definition of eq are
{eq(z,z),eq(0, s(x)), eq(s(z),0), eq(s(z), s(y))}

the procedure can prove it is convertible to {0, s} although eq(z,z) is not linear.

11



Example 12 This function computes the digit to carry in a binary adder. It is also the
function magjority in a fault tolerant system, see also [39]. Let C = {1,0} , D = {f} and
the set of axioms:

flz,z,y) —
flz,y,z) —
_>

fly,z,x)

8 8 8

To test the completeness of this specification we take

MO = {f(l'axay)af(xayax)af(yaxax)}

and we can take
NO = {f(zaw’ 1),f(z,w,0)}

which is without superposition and covers { f(z1,z2,x3)}. This can be shown by running the
algorithm on Ny = {f(z1,z2,z3)}. Let us prove that My covers Ny. If one starts by unifying
f(z,z,y) and f(z,w,1) one finds the most general unifier o = {z < z,w < z,y < 1} which
is not linear. However f(z,y,z) and f(z,w,1) are unified by 0 = {z <+ 1,y + w,z + 1}
which is linear and

CO)={{z+ 0y« w,z+ 1},{z+ Ly w,z+ 0}, {x + 0,y < w,z < 0}}
In My, f(z,y,x) is replaced by f(0,w,0) and in Ny, f(z,w,1) is replaced by f(0,w,1).
Ml = {f(xaway)af(OawaO)af(y’:Bax)}

has to cover
Nl = {f(07w7 1),f(z,'w,0)}
fly,z,z) and f(z,w,0) are unified by ( = {y + z,z < 0,w + 0}

Cl)={{y+ z,z+ 0, w1}, {y+ z,z < 1,w+ 0}, {y < z,z + 1,w < 1}}.
Then in My, f(y,z,x) is replaced by f(z,1,1), in N1, f(z,w,0) is replaced by f(z,1,0) and
M, = {f(m,a:,y),f(O,w,O),f(z, 1, 1)}

has to cover
N2 = {f(Oawa 1)7f(z7 1,0)}
f(z,z,y) and f(0,w,1) are unified by n = {z < 0,w < 0,y + 1}.

C(n) = {{z + LLw+ 0,y + 1}, {z + 0,w < 1,y « 0},
{z + 1Lw+ 1Ly« 1}, {z + 1,w + 0,y + 0},
{z+ Lw+ 1y« 0}, {z + 0,w+ 1,y 1},{z < 0,w < 0,y < 0}}.

In My, f(z,z,y) is replaced by f(1,1,1), f(1,1,0), £(0,0,0), in N2, f(0,w,1) is replaced
by £(0,1,1) and

M3 = {f(17 ]" ]‘)’f(]" ]"0)’f(0’ 07 0)’f(07 w’ 0)7f(Z’ ]" 1)}

12



has to cover
N3 = {f(oa 1, 1),f(z, 150)}
f(0,w,0) and f(z,1,0) are unified by p = {w < 1,z < 0}.

Clp) ={{w + 0,z «+ 0},{w + 0,z + 1}, {w « 1,2 «+ 1}}.
In M3, f(0,w,0) is replaced f(0,0,0), in N3, f(z,1,0) is replaced by f(1,1,0) and

M4 = {f(]-a ]-a 1)af(17 1’O)af(07070)af(oaoao)af(z7 17 1)}

has to cover
N4 = {f(oa 17 1)7f(17 170)}
f(z,1,1) and f(0,1,1) are unified by 7 = {z + 0} and

C(r) ={z + 1}.
In My, f(z,1,1) is replaced by f(1,1,1), in N4, £(0,1,1) disappears and

M5 = {f(la L, 1)7f(1, 170)7f(0,07 0),f(05050)7f(17 1,1)}

has to cover
N5 = {f(]-a]-a())}

f(1,1,0) and f(1,1,0) are unified by the identity substitution and both disappear from Ms
and Nj.

Mg = {f(l, 1, 1)7f(0,070)7f(O,O,O)af(la L, 1)}

covers trivially
Neg=0

hence f is convertible to C and the two terms f(1,1,1) and f(0,0,0) are defined more than
once, exactly three times because of the two occurrences in M.

The previous example suggests that the method does not fail often. Actually Kounalis
has shown that if the set of relations among constructors is empty then the method is
complete. Actually the failure of Example 12 is due to the finiteness of T'(C). In the case
of an infinite 7(C) a non linear term always exists.

Theorem 3 (Kounalis [23]) If C is empty, the complement algorithm is complete, which
means that it does not fail.

Sketch of the proof: Two cases have to be considered. If T'(C) is finite one
takes No = {f(t1,...,t5)|ti € T(C)} and the method cannot fail.

If T(C) is infinite, the completeness relies on a result due to Lassez and
Marriott [26] that says that for a linear term ¢, G(¢,C) cannot be covered by
disjoint sets of instances of non linear terms. Thus at each step, one can always
choose a non linear term in IV;.

13



Relative completeness and equational rewriting

The algorithm we have presented does not require use of the most general unifier when
computing the complements. Any unifier may work, provided it is linear, but with non
most general unifiers the termination is not guaranteed. For instance, in Example 11,
if in the definition of eq we unify, eg(z,z) and eq(y,z) with {z < 0,y < 0,z < 0},
the complement of eq(0,0) in eq(y, z) is {eq(s(y), z),eq(0,s(z))}. Then eq(s(z),s(z)) and
eq(s(y), z) can be unified by {z < 0,y < 0,z < s(0)}, this may continue forever with
{z 0,y + 0,2 + s2(0)}, {z < 0,y < 0,2 < 83(0)}, ... {z+ 0,y 0,2+« s*(0)}, ...

In many specific situations, one works modulo a set of equations, for instance modulo
commutativity or modulo commutativity and associativity that are equalities that cannot
be oriented into rewrite rules. Examples of this kind are given in the next section. In
this case, the system returns a complete set of unifiers which may contains more than one
substitution and usually this set is not minimal. The complement algorithm still works and
uses all the substitutions yielded by the equational unification algorithm. We have to give
up on results on the emptyness of Ny, that are based on the minimality (or the generality)
of the unifiers. Moreover the argument for the termination of the algorithm cannot be used
because most of time the unifier increases the depth of the term, especially by adding
variables. Therefore a specific method has to be adapted to each specific equational theory.

4 w-COMPLETENESS

In this section, we give a general method for proving w-completeness in the case of specifi-
cations described by term rewriting systems and we illustrate its application on examples.
This method is based on discrimination by ground terms of pairs of non equal non ground
terms.

By definition, a specification (F, A) is w-complete iff for every terms u and v in T'(F, X):

U =ipga) ¥ = U =4 0. (1)

Let ul denote the R-normal form of u, where R is a convergent rewriting system associated
with A. Obviously,

U Zipd(a) V¥ = Ud=ind(a) Vs

and
U=4v—ul=0vl

i.e., ul is syntactically the same term as v]. Thus (1) is equivalent to
UL=ina(a) v+ = ul=vl. (2)
In other words,
(Vo € 5(F)) o(ul)l=o(wi) = ul=v].
By contraposition, the inductive completeness can be expressed as

ul# vl= (30 € X(F)) o(ud)# o(vl) .

This means that, if v ] and v | are two different normal forms, their exists a ground sub-
stitution o that produces two different normal forms after instanciation and normalization.
We say that o discriminates v and v.

14



Example 13 Let F = {0, 0pp, succ} and suppose the set of axioms is:

opp(0) — 0
opp(opp(z)) — =
succ(opp(suce(z))) — opp(x)

The normal forms of the ground terms are one of the following:

0
succ"(0) forn >0
opp(succ™(0)) forn >0

The normal forms of the terms of the free algebra T(F,{z},A) are one of the following:

succ™(z) forn >0
succ™(opp(x)) forn >0
opp(succ™(z)) forn >0
opp(succ™ (opp(z))) forn >0

where succ®(z) is x and succ(z) = suc(... (succ(z))...), n times.

If two normal forms have two different variables they can be discriminated. Let ul and
vl be two terms of T(F,{z}, A) s.t. ul# v]. In what follows, some cases are skipped by
symmetry.

o if ul= succ™(x) then

— if vl= succ™(opp(z)) then
* if n = m then let 0 = {z <+ succ(0)},0(ul) = succ®1(0) and o(v )=
succ™ 1(0) thus o(ul)l# o(vl)l
x if n # m then let 0 = {z < 0},0(ul) = succ™(0) and o(vl) = succ™(0)
thus o(ul)l# o(vi){
— if vl= opp(succ™(x)), let 0 = {x < 0}
then o(ul)l= succ™(0) and o(vl)l= opp(succ™(0)) thus o(ul)l# o(vl)l
— if v]= opp(succ™(opp(x))), let o = {z + 0}
then o(ul) = succ™(0) and o(vl)l= opp(succ™(0)) thus o(ul)l# o(vl)l]

e ul= succ™(opp(x)) then

— if vl= opp(succ™(x)) let 0 = {x < 0}
then o(ul)l= succ™(0) and o(vl)l= opp(succ™(0)) thus o(ul)l# o(vl)]

— if v= opp(succ™(opp(z)))
then o = {z « 0}, o(u ) }= succ™(0) and o(v |) l= opp(succ™(0)) thus
o(ul){# o(v 1)

e ul= opp(succ™(z)) then vl= opp(succ™(opp(x)))

—ifn=m let 0 = {x < succ(0)}
then o(ul) = opp(succ™1(0)) and o(v]) = opp(succ® 1(0)) thus o(ul)l# o(vl)l

15



—ifn#m let 0 = {z < 0},
then o(ul)l= opp(succ™(0)) and o(vl)l= opp(succ™(0)) thus o(ul)l# o(vl)l

Example 14 Let F = {0,a,b,.} and suppose the set of axioms is:

z.0 — =z
0x — =z

(z.y).z — z.(y.2)

the initial algebra T(F,A) is the free monoid ({a,b})* and the free algebra T(F,X,A) is
equivalent to ({a,b} U X)*. Let ul and v two terms of T(F,X,A) s.t. ul# vl therefore
there exist ¢,d € {a,b} UX s.t. c#d , ul=t.ct' and vl=t.d.t".

e Ifce {a,b} and d € {a,b} then for all o, o(ul)l# o(vl)l

e ifce€{a,b} andd =z then ifc = a (resp. c=1b ) then let 0 = {z < b}(resp.{z < a})
thus o(ul)l# o(vi){

e ifc=x and d =y then let 0 = {x < a,y < b} thus o(ul)l# o(vl)]

Example 15 Let F' = {0,1,0pp,+} and suppose the set of azioms is

O+z — =«
opp(z)+z — 0
opp(0) — O
opp(opp(z)) —
opp(z +y) — opp(z) + opp(y)
r+y = y+tzx
(z+y)+z = z+(y+2)

The normal forms are u = p1.¢1 + ... + Pm-Tm + q1.0pp(y1) + - . . + qn.0pp(yn). Note that
xi # y; for all i and j. Let u # v, without loss of generality, one may suppose that a
variable z occurs in the first part of u with coefficient p and either in the first part of u' with
coefficient p' and p' # p or in the second part of u' with coefficient ¢'. In both case, define
the substitution o, s.t. 0(z) = 1 and o(v) =0 for v # z. In the first case, we get o(u) = p.1
and o(u') = p'.1 and, in the second case, we get o(u) = p.1 and o(u') = ¢'.opp(1).

Example 16 Let F' = {0, s,eq} and consider the following set of azioms:

eq(0,s(z)) = 0
eq(z,z) = s(0)
eq(s(z),s(y)) = eq(z,y)

eq(z,y) = eq(y,z)

The normal forms are equivalence classes of terms modulo the commutativity of eq, namely
the class that contains just 0, the classes that contain just s™(0) for each n, the classes

{eq(s™(z),y),eq(y,s™(x))} for each n, the classes {eq(s™(0),y),eq(y,s™(0))} for each n and
the classes {eq(s"(x),0),eq(0,s™(x))} for each n. Theses classes are easily discriminated.
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5

Conclusion

This method for checking relative completeness based on calculus of complements is practical
since it can handle most of the specification we know and return useful information on where
the functions have to be defined. It was implemented in the rewrite rule laboratory REVE.
Namely this lead to study a new kind of equational problems called disunification [3]. The
problem of the w-completeness is harder and one may expect to find methods by generalizing
the one which is given in Section 4.

The authors had many discussions with many people on these issues and among them

they remember the fruitful ones they had with Irina Bercovici and Alain Laville. They
would like to thank everyone.
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