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1 Introduction

In the introduction of [7], Curry writes that substitution is the main issue in logic
and that λ-calculus does not properly answer the problem because substitutions
are outside the calculus. He pleads in favor of combinatory logic which offers a
full treatment to substitutions through its use of a first order rewrite system in
which substitution is cleanly handled. However, one may object that this formal
system is not as natural as λ-calculus for describing the concept of function. In
1972, de Bruijn [8] proposed two notations he calls indices and levels that avoid
α-conversion, i.e., renaming in terms, and later in 1978 [9, 10], he described a
calculus based on his indices which nowadays we would call explicit substitutions
and which proposes a full and correct treatment of substitution. Since that time,
most of the formalisms for describing λ-calculus and explicit substitutions are
based on de Bruijn’s indices. Unlike our predecessors, in this paper we want to
use de Bruijn’s levels.

Calculus of explicit substitutions is a λ-calculus in which substitution is not
external but is fully integrated at the same level as β reduction. This internal-
isation of the substitution calculus is achieved by rewrite rules which allow a
full and easy mechanism for describing β reduction. The original goal of explicit
substitutions is to provide the implementor of Automath (and later of func-
tional programming languages) with a finer granularity in the description of the
process of substitutions, as substitutions play the central role in the implemen-
tation of those systems and languages. This way, controls that postpone costly
operations may be adopted and operations that will turn out to be unnecessary
will never be performed (lazy evaluation).

Except for a sketched attempt in [1] (λσ-calculus with names), all the pro-
posed calculi use De Bruijn indices. That notation has two drawbacks. First,
terms are hard to read due to the use of numbers instead of names and due to
the fact that the “same” variable is designated by different numbers according
to the context. Second the association between variables and their values, the
so-called environment, keeps changing whenever one leaves or enters an abstrac-
tion. To our knowledge “levels” were only mentioned twice in the literature,
first by de Bruijn [8] and later by Crégut [4], but never in the framework of ex-
plicit substitutions. Both authors suggest a canonical indexing of the variables;



Crégut calls it “reversed De Bruijn indexing”. To make formulas as readable as
in the classical λ-calculus, we give each variable a name made from its index and
that name is the same everywhere in a pure term, i.e., a term without closure
(see below) unlike classical De Bruijn index. Two important features of λχ are
the absence of variables of type substitution and the absence of composition of
substitutions. Of course, the λ-calculus describes variables, but they are seen
as constants by the rewrite system λχ and they will be called names in what
follows. The only variables of λχ (those which play an actual role in the rewrite
system) are of type Term and of type Nat.

To illustrate our approach and to allow the reader to make comparisons,
Figure 1 gives a few examples in different notations. The first line is in the usual
notation, the second is in λχ notation, the third is in notation with de Bruijn’s
indices and the fourth is in level indices.

Yg

Classical: (λf · (λx · f(xx))(λx · f(xx))) g
Lambda Chi: (λx0 · (λx1 · x0(x1x1)) (λx1 · x0(x1x1))) x−1

De Bruijn indices: (λ(λ(1(0 0)) λ(1(0 0)))) g
level indices: (λ(λ0(1 1)) (λ0(1 1))) g

Succ

Classical: λx · x(λy · x y)
Lambda Chi: λx0 · x0(λx1 · x0 x1)
De Bruijn indices: λ0(λ1 0)
level indices: λ0(λ0 1)

Fig. 1. A few examples making notations explicit

Restrictions are imposed on names. In each term, each λ receives a level. λ’s at
the highest level (level 0) are associated with x0 and λ’s at level i are associated
with xi. Free variables, those that are not bound to any λ receive negative
subscripts. In this framework, we can describe substitution and β reduction.

2 χ-terms, rules and examples

Let us call χ-terms, terms with explicit canonical variables and DB-terms, terms
with De Bruijn’s indices. The key to the correctness of λχ is a translation from
the first to the second. This translation relies on two operators σj and τ j

i in-
troduced for describing β reduction in DB-terms [4]. First let us introduce the
important concept of level in χ-terms. In what follows Termi (i ≥ 0) is the set of
subterms of χ-terms at level i. A term at level i lies under i symbols λ and can
contain only variables with indices up to i − 1. The set of all χ-terms is Term0.



xi : Termi+j+1

a : Termi b : Termi

a b : Termi

a : Termi+1

λxi · a : Termi

a : Termi+j+1 b : Termi

a[b/xi]j : Termi+j

Fig. 2. The level system: a description of χ-terms

The grammar of χ-terms is described by a set of inference rules, which we call
the level system.

Before giving the rules, let us look at the reduction of terms in this calculus.

Y ≡ λx0 · (λx1 · x0(x1x1)) (λx1 · x0(x1x1)) (1)

B

// λx0 · (x0(x1x1))[λx1 · x0(x1x1)/x1]0 (2)

+

χ
// λx0 · x0[λx1 · x0(x1x1)/x1]0 (x1[λx1 · x0(x1x1)/x1]0 x1[λx1 · x0(x1x1)/x1]0)(3)

χ
// λx0 · x0 (x1[λx1 · x0(x1x1)/x1]0 x1[λx1 · x0(x1x1)/x1]0) (4)

+

χ
// λx0 · x0 (λx1 · x0(x1x1)) (λx1 · x0(x1x1)) (5)

Rewrite (2) creates an explicit substitution which when distributed through
the whole term x0(x1x1) implements the β reduction. Rewrites (3) distribute
the substitution through the term. Rewrite (4) performs the substitution on
subterm x0, i.e., leaves x0 unchanged. Rewrites (5) perform the substitutions on
subterm x1.

Y Y ≡ (λx0 · (λx1 · x0(x1x1)) (λx1 · x0(x1x1))) Y (6)

B

// ((λx1 · x0(x1x1)) (λx1 · x0(x1x1)))[Y/x0]0 (7)

χ
// (λx1 · x0(x1x1))[Y/x0]0 (λx1 · x0(x1x1))[Y/x0]0 (8)

χ
// (λx0 · (x0(x1x1))[Y/x0]1) (λx1 · x0(x1x1))[Y/x0]0 (9)

+

χ
// (λx0 · (x0[Y/x0]1 (x1[Y/x0]1 x1[Y/x0]1))) (λx1 · x0(x1x1))[Y/x0]0(10)

+

χ
// (λx0 · (x0[Y/x0]1 (x0 x0))) (λx1 · x0(x1x1))[Y/x0]0 (11)

Rewrite (9) pushes the substitution under λ and so increments by 1 the index
of the substitution and changes the names associated with this λ. Rewrite (10)
distributes that substitution and rewrite (11) performs the substitutions on the
x1’s which renames them to x0.

In what a follows terms of the form a[b/xi]j are called closures, terms of the
form a b are called applications, terms of the form λxi ·a are called abstractions.



From the above examples, we notice a few facts. Each substitution carries an
index which we call the depth of the substitution. When a substitution [a/xi]j
goes through a λ, its index grows and the name associated with that λ decreases.
When one actually performs a substitution, i.e., when one reduces a term of the
form xi[a/xk]j , if i > k the index i of xi is decremented, if i < k the name is left
unchanged. An actual replacement takes place only when a reduction of a term
of the form xi[a/xi]j is performed. For instance, let us consider a reduction of
the term λx0 · (x0[Y/x0]1 (x0 x0))). Performing the substitution [Y/x0]1 requires
replacement of the names x0 by Y, in which names are modified. Its λx0 will
become a λx1 and its λx1 will become a λx2 and its bound variables have to be
modified accordingly. Therefore

λx0 · (x0[Y/x0]1 (x0 x0))
≡ λx0 · (x0[λx0 · (λx1 · x0(x1x1)) (λx1 · x0(x1x1))/x0]1) (x0 x0)

χ
// λx0·(rename(λx0·(λx1·x0(x1x1)) (λx1·x0(x1x1)), 0, 1) (x0 x0))

+

χ
// λx0 · (λx1 · (λx2 · x1(x2x2)) (λx2 · x1(x2x2)))(x0 x0).

A function rename is introduced and in rename(a, i, j), a is the term to be
renamed, i is the level of the variable that created the renaming and j is the
distance between a and the level where the substitution was created. In the pre-
vious case, we have

rename(λx0 · (λx1 · x0(x1x1)) (λx1 · x0(x1x1)), 0, 1)
+

χ
//

λx1 · (λx2 · x1(x2x2)) (λx2 · x1(x2x2)).
Rename can be seen as an “explicit” α conversion. Its behaviour is easily de-
scribed by rewrite rules as well as the rest of the calculus (Fig. 3). The following
rule needs to be added to the level system

a : Termi+k

rename(a, i, j) : Termi+k+j

to deal with rename. The system without the rule B, i.e., the system λχ \ {B}
that deals only with substitution removal, is called χ. The normal form of a is

written χ(a), but we also use the notation a
!

χ
// to say that b is the nomal

form of a. λχ preserves levels (a kind of subject reduction). In rule Var>, one has
0 ≤ k < j; that condition is naturally enforced by the level system. Moreover, λχ
uses the operator + which is associative and commutative, such rewrite systems
with associativity and commutativity are well known [2, 11] and allow us to avoid
conditional rules. More precisely, we prefer to write

xi+k+1[a/xi]j → xi+k

rather than

k > i
xk[a/xi]j → xk−1



although in some proofs we prefer the equivalent second view. χ is not left-linear,
but variables of sort Termi (denoted by a, b and c) occur always once in left-hand
sides (we will take advantage of this property) and the system has no critical
pairs. In the next section we show that it correctly implements β reduction.
χ does not contain composition of substitutions. There is a debate on its intro-
duction. For some people it is a feature to have and for other it is a feature not to
have. For us, the most natural way to handle this operation is by “concatenation”
of substitutions getting expressions like a[c1/xi1 ]j1 . . . [cp/xip

]jp
. Anyway calculi

of explicit substitutions which contain composition are not strongly normalising
on typed terms and we feel this feature is important.

(B) (λxi · a)b → a[b/xi]0

(App) (a b)[c/xi]j → a[c/xi]j b[c/xi]j
(Lambda) (λxi+j+1 · a)[b/xi]j → λxi+j · (a[b/xi]j+1)

(Var>) xi+k+1[a/xi]j → xi+k

(Var<) xi[a/xi+k+1]j → xi

(Var=) xi[a/xi]j → rename(a, i, j)

(RenApp) rename(a b, i, j) → rename(a, i, j) rename(b, i, j)
(RenLambda) rename(λxi+k · a, i, j) → λxi+k+j · rename(a, i, j)
(RenVar≥) rename(xi+k, i, j) → xi+k+j

(RenVar<) rename(xi, i + k + 1, j) → xi

Fig. 3. The calculus of explicit substitutions with levels λχ

3 Termination of χ

Consider the morphism:

κ : λxi · a 7→ Λ(κ(a))
a b 7→ App(κ(a), κ(b))

a[b/xi]j 7→ C(κ(a), κ(b))
rename(a, i, j) 7→ ren(κ(a))

xi 7→ x

and the system χ1 of Fig.4. If a
χ

// b then κ(a)
χ1

// κ(b).

Termination (or strong normalisation) of χ1 implies this of χ and is proved
by the recursive path ordering >rpo derived from the precedence C > ren > Λ >
App > x. Remember that x is considered as a “constant”.

Let us define rewsub an ordering based on
χ

// and used in forthcoming

proofs.



(App’) C(App(a, b), c) → App(C(a, c), C(b, c))
(Lambda’) C(Λa, b) → Λ(C(a, b))

(Var>’) C(x, a) → x
(Var<’) C(x, a) → x
(Var=’) C(x, a) → ren(a)

(RenApp’) ren(a b) → ren(a) ren(b)
(RenLambda’) ren(Λa) → Λ(ren(a))
(RenVar≥’) ren(x) → x
(RenVar<’) ren(x) → x

Fig. 4. The rewrite system χ1 for the proof of termination of χ

Definition 1 (The rewsub ordering). The rewsub ordering is the ordering

(
χ

// ∪ =)+,

where = is the subterm relation.

Rewsub is a well-founded ordering since
χ

// is simply terminating [15], i.e.,

its termination is proved by a simplification ordering. Rewsub is actually the
smallest simplification ordering that contains

χ
// .

4 Translation and correctness

As we have seen in the previous examples, β reduction is described by a
β

// b

if and only if a
B

// b′ and b = χ(b′) where is χ(b′) is the normal form of b′ by

the rewrite system χ. In this section, we prove the correctness of this definition.
For this, we connect it with a definition known to be correct, namely a definition
given in terms of De Bruijn indices [4, 5] and based on the two basic functions
σn and τn

i .

σn(ac, b) = σn(a, b)σn(c, b)
σn(λa, b) = λ(σn+1(a, b))

σn(m, b) =







m − 1 if m > n + 1
τn
0 (b) if m = n + 1

m if m ≤ n

where:

τn
i (ab) = τn

i (a)τn
i (b)

τn
i (λa) = λ(τn

i+1(a))
τn
i (m) =

{

m + n if m > i
m if m ≤ i

T ( , i) is a translation of χ-terms of level i to DB-terms.

T (a b, i) = T (a, i) T (b, i)
T (λxi · a, i) = λT (a, i + 1)

T (xi, i + k + 1) = k + 1
T (a[b/xi]j , i + j) = σj(T (a, i + j + 1), T (b, i))

T (rename(a, i, j), i + j + k) = τ j
k(T (a, i + k))



The main proposition says that χ preserves T .

Proposition 1. 1. If a
χ

// b then if a exists at level i, then b exists at

level i and T (a, i) = T (b, i).
2. T ((λxi · a)b, i)

β
// T (a[b/xi]0, i) = T (χ(a[b/xi]0), i).

Proof. We have to check the first assertion for each of the nine rules of χ at the
correct level. The following equalities can be verified without difficulty using the
definitions and the properties of T , σn and τn

i .

App

T ((a b)[c/xi]j , i + j) = σj(T (a, i + j + 1), T (c, i)) σj(T (b, i + j + 1), T (c, i))

= T (a[c/xi]jb[c/xi]j , i + j)

Lambda

T ((λxi+j+1 · a)[c/xi]j , i + j) = λ(σj+1(T (a, i + j + 2), T (c, i)))

= T (λxi+j · (a[c/xi]j+1), i + j)

Var>

T (xi+k+1[a/xi]j , i + j) = j − k

= T (xi+k, i + j) for k < j

Var<

T (xi[a/xi+k+1]j , i + k + 1 + j) = k + j + 1

= T (xi, i + k + 1 + j)

Var=

T (xi[a/xi]j , i + j) = τ j
0 (T (a, i))

= T (rename(a, i, j), i + j)

RenApp

T (rename(a b, i, j), i + j + k) = τ j
k (T (a, i + k)) τ j

k (T (b, i + k))

= T (rename(a, i, j) rename(b, i, j), i + j + k)

RenLambda

T (rename(λxi+k·, i, j), i + k + j) = λ(τ j
k+1

(T (a, i + k + 1)))

= T (λxi+k+j · rename(a, i, j), i + k + j)

RenVar≤

T (rename(xi+k, i, j), i + k + l + 1 + j) = l + 1

= T (xi+k+j , i + k + j + l + 1)



RenVar<

T (rename(xi, i + k + 1, j), i + k + l + 1 + j) = k + 1 + l + j

= T (xi, i + k + 1 + l + j)

For proving assertion 2, we use assertion 1.

T ((λxi · a) b, i) = T (λxi · a, i) T (b, i)

= λ(T (a, i + 1) T (b, i))

β
// σ0(T (a, i + 1), T (b, i))

= T (a[b/xi]0, i)

by definition of T

= T (χ(a[b/xi]0, i))

by assertion 1.

5 Confluence of λχ

The goal of this section is to prove the confluence of λχ over closed terms (terms
without variables). The confluence theorem is based on a lemma classical when
using Hardin’s interpretation method which we call the projection lemma. It
itself requires the λχ version of an important classical lemma the substitution
lemma. Before proving the substitution lemma, we state routine lemmas on
rename expressions, namely Lemma 1 to Lemma 5, whose proofs by induction
are straightforward providing Lemma 5 is invoked after Lemma 4.

The relation oooo

χ
// // is χ-convertibility. Since χ is confluent, it is defined

by a oooo

χ
// // b if there exists c such that a

∗

χ
// c and b

∗

χ
// c. In every

proof of convertibility below, we will only examine terms where variables stand
for terms in χ-normal form, i.e., terms without substitutions or rename. Indeed
this will not change the generality of the result.

Lemma 1.

rename(rename(b, i + k, p), i, j) oooo

χ
// // rename(rename(b, i, j), i + k + j, p)

Lemma 2. rename(a[b/xi+k]p, i, j) oooo

χ
// // rename(a, i, j)[rename(b, i, j)/xi+k+j]p.

Lemma 3. rename(c, p, i + j) oooo

χ
// // rename(c, p, i + j + 1)[d/xi+p]j+q .

Lemma 4. rename(c, p, i+k+j) oooo

χ
// // rename(rename(c, p, i+k), p+ i, j).

Lemma 5. rename(b, i + p + 1, j)[c/xp]i+k+j
oooo

χ
// // rename(b[c/xp]i+k, i +

p, j).



Lemma 6. (Substitution lemma)

a[b/xi+p+1]j [c/xp]i+j
oooo

χ
// // a[c/xp]i+j+1[b[c/xp]i/xi+p]j .

Proof. This lemma is proved by structural induction on a. The level of a is
i + p + j + 2.

– a ≡ λxi+p+j+2 · a′.
(λxi+p+j+2 · a′)[b/xi+p+1]j [c/xp]i+j

∗

χ
// λxi+p+j · (a

′[b/xi+p+1]j+1[c/xp]i+j+1)

oooo

χ
// // λxi+p+j · (a

′[c/xp]i+j+2[b[c/xp]i/xi+p]j+1)

∗

λχ
// (λxi+p+j+2 · a′)[c/xp]i+j+1[b[c/xp]i/xi+p]j

– a ≡ a′ b′

(a′ b′)[b/xi+p+1]j [c/xp]i+j

χ
// a′[b/xi+p+1]j [c/xp]i+j b′[b/xi+p+1]j [c/xp]i+j

oooo

χ
// // a′[c/xp]i+j+1[b[c/xp]i/xi+p]j b′[c/xp]i+j+1[b[c/xp]i/xi+p]j

λχ
// (a′ b′)[c/xp]i+j+1[b[c/xp]i/xi+p]j

– a ≡ xk with k < i + p + 2.
We have to rewrite xk[b/xi+p+1]j [c/xp]j+1 and xk[c/xp]i+j+1[b[c/xp]i/xi+p]j .
Only rules Var are applied and three cases have to be considered. Both terms
rewrite in two steps to the same terms. Those terms are:

• xk for k < p,
• xk−1 for p < k < i + p + 1,
• xk−2 for k > i + p + 1.

The other cases need lemmas. For k = p, we have

xk[b/xi+p+1]j [c/xp]j+1
∗

χ
// rename(c, p, i + j)

and

xk[c/xp]i+j+1[b[c/xp]i/xi+p]j
∗

χ
// rename(c, p, i + j + 1).

and the result comes from Lemma 3.
The last case k = i + p + 1 gives us

xk[b/xi+p+1]j [c/xp]i+j χ
// rename(b, i + p + 1, j)[c/xp]i+j

and

xk[c/xp]i+j+1[b[c/xp]i/xi+p]j
∗

χ
// rename(b, [c/xp]i, i + p, j)

the result is a consequence of Lemma 5.



Lemma 7 (Projection Lemma). If a
B

// b then χ(a)
∗

β

// χ(b).

Proof. The proof is very similar to that of [1] and [17]. The terms can be supposed
of the form a ≡ a′[c1/xi1 ]j1 . . . [cp/xip

]jp
and b ≡ b′[d1/xi1 ]j1 . . . [dp/xip

]jp
where

a′ is not a closure. We proceed by rewsub induction on a and we distinguish
cases according to the structure of a′.

– a ≡ (a1a2)[c1/xi1 ]j1 . . . [cp/xip
]jp

and b ≡ (b1a2)[c1/xi1 ]j1 . . . [cp/xip
]jp

and
the B redex occurs inside a1 with a1

B
// b1, then

a1[c1/xi1 ]j1 . . . [cp/xip
]jp B

// b1[c1/xi1 ]j1 . . . [cp/xip
]jp

.

By induction,

χ(a1[c1/xi1 ]j1 . . . [cp/xip
]jp

)
∗

β
// χ(b1[c1/xi1 ]j1 . . . [cp/xip

]jp
)

and

χ(a) = χ((a1a2)[c1/xi1 ]j1 . . . [cp/xip
]jp

)

= χ(a1[c1/xi1 ]j1 . . . [cp/xip
]jp

)χ(a2[c1/xi1 ]j1 . . . [cp/xip
]jp

)

∗

β
// χ(b1[c1/xi1 ]j1 . . . [cp/xip

]jp
)χ(a2[c1/xi1 ]j1 . . . [cp/xip

]jp
)

= χ((b1a2)[c1/xi1 ]j1 . . . [cp/xip
]jp

)

= χ(b).

The case a2
B

// b2 works similarly.

– If a′ is the B redex, that is a ≡ ((λxi0+p · a′
1)a2)[c1/xi1 ]j1 . . . [cp/xip

]jp
then

b′ is a closure, that is b ≡ a′
1[a2/xi0+p]0[c1/xi1 ]j1 . . . [cp/xip

]jp
.

χ(a) = χ(((λxi0+p · a
′
1)a2)[c1/xi1 ]j1 . . . [cp/xip

]jp
)

= λxi0 · (χ(a′
1[c1/xi1 ]j1+1 . . . [cp/xip

]jp+1)) χ(a2[c1/xi1 ]j1 . . . [cp/xip
]jp

)

∗

β
// χ(χ(a′

1[c1/xi1 ]j1+1 . . . [cp/xip
]jp+1)[χ(a2[c1/xi1 ]j1 . . . [cp/xip

]jp
)/xi0 ]0)

= χ(a′
1[c1/xi1 ]j1+1 . . . [cp/xip

]jp+1[a2[c1/xi1 ]j1 . . . [cp/xip
]jp

/xi0 ]0)

and by repeating p times (zero times if p = 0) the Substitution Lemma

= χ(a′
1[a2/xi0+p]0[c1/xi1 ]j1 . . . [cp/xip

]jp
) = χ(b)

– If a ≡ (λxi0 ·a1)[c1/xi1 ]j1 . . . [cp/xip
]jp

, then a1
B

// b1 or ci
B

// di,

a1[c1/xi1 ]j1+1 . . . [cp/xip
]jp+1

B
// b1[d1/xi1 ]j1+1 . . . [dp/xip

]jp+1

and

λxi0 ·(a1[c1/xi1 ]j1+1 . . . [cp/xip
]jp+1)

B
// λxi0 ·(b1[d1/xi1 ]j1+1 . . . [dp/xip

]jp+1)

and we can apply the induction hypothesis, since the left-hand side is a
χ rewrite of a.



– If a ≡ xi0 [c1/xi1 ]j1 . . . [cp/xip
]jp

, then the B redex is in the substitution part,
say in ck.

xi0 [c1/xi1 ]j1 . . . [ck/xik
] . . . [cp/xip

]jp B
// xi0 [c1/xi1 ]j1 . . . [dk/xik

] . . . [cp/xip
]jp

.

If k > 1 and xi0 [c1/xi1 ]j1 χ
// f then

f [c2/xi2 ] . . . [ck/xik
] . . . [cp/xip

]jp B
// f [c2/xi2 ] . . . [dk/xik

] . . . [cp/xip
]jp

and the result follows by induction. If k = 1 and i0 = i1 then

xi0 [c1/xi1 ]j1 . . . [cp/xip
]jp χ

// rename(c1, i0, j1)[c2/xi2 ]j2 . . . [cp/xip
]jp+1

xi0 [d1/xi1 ]j1 . . . [cp/xip
]jp χ

// rename(d1, i0, j1)[c2/xi2 ]j2 . . . [cp/xip
]jp+1.

Clearly, if c1
B

// d1, then rename(c1, i0, j1)
B

// rename(d1, i0, j1)

and the result follows by induction. If k = 1 and i0 < i1 then

xi0 [c1/xi1 ]j1 . . . [cp/xip
]jp χ

// xi0 [c2/xi2 ]j2 . . . [cp/xip
]jp+1

xi0 [d1/xi1 ]j1 . . . [cp/xip
]jp χ

// xi0 [c2/xi2 ]j2 . . . [cp/xip
]jp+1

and both normal forms by χ are equal and the results holds trivially, the
same if k = 1 and i0 > i1 except that xi0 becomes xi0−1.

– If a ≡ rename(a′′, i, j)[c1/xi1 ]j1 . . . [cp/xip
]jp

, then the B redex is either in
a′′ or in one of the ci’s. Two cases may occur, one rewrite of rename(a′′, i, j)
preserves the B redex: a′′ = a1 a2 and the B redex occurs in a1 or in a2

or a′′ = λxia1, then one proceeds by induction. The second case is when
a′′ = (λxi+ka1) a2, then b′ ≡ rename(a1[a2/xi+k]0, i, j),

χ(a) = χ(rename((λxi+k · a1) a2, i, j)[c1/xi1 ]j1 . . . [cp/xip
]jp

)

= χ((λxi+k+j · rename(a1, i, j))rename(a2, i, j)[c1/xi1 ]j1 . . . [cp/xip
]jp

)

B
// χ(rename(a1, i, j)[rename(a2, i, j)/xi+k+j ]0[c1/xi1 ]j1 . . . [cp/xip

]jp
)

= χ(rename(a1[a2/xi+k]0, i, j)[c1/xi1 ]j1 . . . [cp/xip
]jp

)

≡ χ(b).

The last equality follows from Lemma 2.

Theorem 1 (Confluence). λχ is confluent.

Proof. One uses the projection lemma and Hardin’s interpretation method [14]
illustrated by the following picture.
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6 λχ preserves strong normalisation

Not all calculi of explicit substitutions preserve strong β normalisation. For
instance, Paul-André Mellies [18] has exhibited strongly β normalisable terms
that are not strongly λσ normalisable or strongly λσ⇑ normalisable. On the other
hand, in [17, 3], we have proved that the calculus of substitutions λυ preserves
strong normalisation. A similar proof can be used for proving that λχ preserves
strong normalisation. This requires a few definitions an lemmas.

Definition 2 (External position). A position p is internal in a term a, if the
subterm a|p is a subterm of c where d[c/xi]j is a subterm of a. A position is
external if it is not an internal position.

Lemma 8. If p is an external position and if a
B,p

// b, then χ(a)
+

β
// χ(b).

In particular, if χ(a) is strongly normalisable, then χ(a) 6= χ(b).

We are going only to sketch the proof which is similar to this described in [3].
It is by contradiction based on a minimal counter-example. More precisely if we
suppose that λχ does not preserve strong normalisation, there exists a pure term
a which is strongly β normalisable and which is not strongly λχ normalisable,
in other words there exists infinite λχ derivations starting from a. Among those
infinite derivations there exists at least one which is minimal in the following
sense (see Fig. 5). At each rewrite position in the derivation one rewrites at
the lowest possible position that keeps the derivation infinite, that is one may
rewrite at a lower position, but the derivations which continue that rewrite are
finite. The proof relies on two important lemmas.

Lemma 9 (Commutation Lemma). If χ(a) is strongly β normalisable, χ(a) =

χ(b) and a
λχ,p

// int ·
χ,q

// ext b then a
+

χ
//

ext

·
∗

λχ

//

int

b.
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Fig. 5. A minimal λχ derivation, a1, . . . , an, an+1



Lemma 10. Let a1 be a strongly β normalisable term. In each infinite λχ
derivation of terms

a1
λχ

// a2 . . . an
λχ

// an+1 . . .

there exists an N such that for i ≥ N all the λχ rewrites are internal.

Theorem 2. Each strongly β normalisable term is strongly λχ normalisable.

Proof. The proof works as follows. If there exists an infinite λχ derivation start-
ing with a β normalisable term, one considers a minimal such derivation D and
one uses Lemmas 8-10 to show that a B rewrite which takes place after N (see
Lemma 10) can be “lifted” at J ≤ N . The lifted rewrite on aJ is at position q
lower than pJ where pJ is the position of the J th λχ rewrite in D. That rewrite
is continued into an infinite derivation, which contradicts the minimality of D.

Corollary 1. λχ is strongly normalising on typed terms.

7 Conclusion and related works

In this paper we have presented a calculus of explicit substitutions with levels.
We have proved three important properties.

– λχ correctly implements β conversion in the standard λ calculus.
– λχ is confluent on closed (ground) χ terms, i.e., terms without variables.
– λχ is preserves strong β normalisation.

Since the first presentation by de Bruijn [10], all the other calculi proposed in
the literature [1, 6, 12, 13, 16, 17, 19, 20] use De Bruijn indices (except one attempt
in [1] already mentioned). Our approach is therefore original by its use of levels
which improves readability. We attach much importance to confluence on ground
terms and to strong normalisation on typed terms. The non confluence on open
terms seems to us less fundamental because of the apparent impossibility of
getting both properties, e.g., confluence on open terms and preservation of strong
normalisation in the same system and the inability shown by Field [13, 12] to
get optimality.

Our calculus raises interesting open issues on implementation and on higher
order unification. We feel indeed that due to the non superposition of left-hand
sides, our λχ should entail a nice description of implementations, for instance,
of graph reduction based implementations. In parallel, tools for higher order
theorem provers like strong normalisation and higher unification should be easily
described through λχ.
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