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Abstract

This paper presents experiments on common knowledge logic, conducted with the help of
the proof assistant COQ. The main feature of common knowledge logic is the eponymous
modality that says that a group of agents shares a knowledge about a certain proposition in a
inductive way. This modality is specified by using a fixpoint approach. Furthermore, from
these experiments, we discuss and compare the structure of theorems that can be proved in
specific theories that use common knowledge logic. Those structures manifests the inter-
play between the theory (as implemented in the proof assistant COQ) and the metatheory.

1 Introduction

In a previous paper [12], I have presented an implementation of the common knowl-
edge logic in COQ. There I have shown how this applies to prove mechanically
popular (and less popular) puzzles as prolegomenon of other potential applications.
In these experiments I have shown in particular that in the literature (mostly devoted
to studymodel theoryof common knowledge logic) some concepts of proof theory
are not clearly brought out and statements made at the meta-level, i.e., in the meta-
theory, are not sorted out from statements made at the level of the language, i.e.,
in the theory. In the deep embedding in a proof assistant (where the logic is fully
implemented into the meta-language,) the distinction between meta-theory and the-
ory is made explicit, by construction. The proof assistant cannot accept ill-formed
expressions and forces the user to specify the level of statements he makes, namely
insidethe theory oroutsidethe theory. Thus the kind of implication or quantifica-
tion or even statement, e.g., axiom or premise of a logical implication, has to be
made precise. On the opposite, in the handwritten treatments of the puzzles, it is
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not clear whether a statement is made an axiom stated as such in the meta-theory
or a proposition stated as the premise of a logical implication. This confusion is
especially present in the literature on economic games [20,8]. Using a quantifica-
tion in the meta-theory vs a quantification in the theory can change dramatically
the strength of a statement and its scope.

In this paper, my approach is this of a proof theorist with inclination to experi-
ments. I will present first common knowledge logic, then I will discuss the problem
of distinguishing facts stated as axioms from facts stated as premises of an impli-
cation. This discussion will be made through examples and at this exploratory state
no meta-theorem is proved. There are two approaches when solving a puzzle. In
the first approach, a statement is made an axiom, say` ϕ, this axiom leads to the
proof of`ψ, proving the correction of the derived rulèϕ`ψ . In the second approach,
one proves̀ CG(ϕ)⇒ ψ, whereCG is thecommon knowledgemodality. In most
cases, these two approaches seem to be equivalent and show the interplay between
the theory and the meta-theory. An interesting meta-theorem could be to prove that
equivalence, possibly under some conditions. I callaxioms vs common knowledge
equivalencethe equivalence of̀ ϕ

`ψ with `CG(ϕ)⇒ ψ. In this paper all the discus-
sion is based on experiments made in the proof assistant COQ and the paper can be
seen as the description of those experiments. At time of submission, I discovered
in [5] that the correspondence between`ϕ

`ψ and`CG(ϕ)⇒CG(ψ) was known. For
more on this, see the conclusion of this paper. In what follows, the typewriter font is
for code taken from the COQ implementation. Most of the development in COQ is
available on the WEB athttp://perso.ens-lyon.fr/pierre.lescanne/COQ/
epistemic_logic.v8. The rest can be found in [18].

2 Presentation of common knowledge logic

Historical facts

The concept of common knowledge has been introduced by the philosopher Lewis [13]
and since used in several context namely distributed systems [11,17], artifical intel-
ligence [15] and game theory [1].

Epistemic logic

The basis of common knowledge logic is epistemic logic. In my experiments in
COQ [4], epistemic logic is presented by a Hilbert-style system of rules and ax-
ioms. The only two rules areModus PonensandKnowledge Generalization. This
requires a “deep embedding”. The main reason is that modal logic cannot be eas-
ily implemented with natural deduction without changing its basic philosophy1 .
See [12] for a discussion. Epistemic logic is based on modal logic and in this paper

1 Generalizationrule requires boxing the context, like in theof courserule in linear logic [10].
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`K ϕ
Tautologies

` ϕ
K

` (Kiϕ∧Ki(ϕ ⇒ ψ))⇒ Kiψ
T

` Kiϕ ⇒ ϕ

` ϕ ` ϕ ⇒ ψ
Modus ponens

` ψ

` ϕ
Knowledge Generalization

` Kiϕ

Fig. 1. The basic rules of epistemic logic: the systemT

Definition of E
` EG(ϕ)⇔

^
i∈G

Kiϕ

Fig. 2. Shared knowledge

only the systemT (see Figure 1) is considered. Since there is much flexibility in
the terminology, I decided to stick to this of [5]. Epistemic logic introduces one
modality for each agent: it expresses that that agent “knows” the proposition that
follows the modality. More specifically, ifϕ is a proposition,Ki(ϕ) is the proposi-
tion ϕ modified by the modalityKi which means“Agent i knowsϕ” . In Figure 1,
the statement̀ K ϕ means thatϕ is a theorem in classical propositional logic (this
time,K stands for the German adjective “klassisch” [9]). Knowing whether classi-
cal logic is relevant is a topics of research with René Vestergaard.

Common knowledge logic

Now let us suppose that we have a groupG of agents. The knowledge of a factϕ
can be shared by the groupG, i. e., “each agent in G knowsϕ” . We writeEG(ϕ)
and the meaning ofEG is easily axiomatized by the equivalence given in Figure 2
which can also be seen as the definition ofEG; it is calledshared knowledge.

In common knowledge logic, there is another modality, calledcommon knowl-
edgewhich is much stronger than shared knowledge. It is also associated with a
groupG of agents and is writtenCG. Givenϕ, CG(ϕ) is the least solution of the
equation

x⇔ϕ∧EG(x).

“Least” should be taken w.r.t. the order induced by⇒. A propositionψ is less than
a propositionρ if ρ⇒ψ. As well known in the fixed point theory, the least solution
of the above equation is also the least solution of the inequation:

x⇒ϕ∧EG(x).

The axiomatization of Figure 3 characterizesCG(ϕ) by two properties. Together
with the systemT and the definition ofEG it forms the systemCKG. It asserts two
things.
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Fixpoint
`CG(ϕ)⇒ ϕ∧EG(CG(ϕ))
` ρ ⇒ ϕ∧EG(ρ)

Least Fixpoint
` ρ ⇒CG(ϕ)

Fig. 3. The rules for common knowledge

(i) CG(ϕ) is a solution of the inequationx⇒ ϕ∧EG(x), axiomFixpoint,

(ii) If ρ is another solution of the inequation, thenρ impliesCG(ϕ), rule Least
Fixpoint.

One can prove thatCG satisfies axioms and rules ofT, whereKi is replaced byCG

even whenG = /0. Thus we prove

KC
` (CGϕ∧CG(ϕ ⇒ ψ))⇒CGψ

TC
`CGϕ ⇒ ϕ

` ϕ

`CGϕ
Let us callCommon Knowledge Generalizationthe last rule. Notice thatTC

and `ϕ
`ϕ on one side and̀ CGϕ ⇒ CGϕ andCommon Knowledge Generalization

on the other side form the two first instances ofaxioms vs common knowledge
equivalence.

Two presentations of common knowledge logic

This presentation should be compared with this given by Meyer and van der Hoek
on page 46 of [16] (see Figure 4). The systemT∪{A7,A8,A9,A10,R3}, together
with the definition ofEG, is calledTECG. One notices that axioms(A7) and(A8)
are just a splitting of axiomFixpoint, i.e., one splits the conclusionϕ∧EG(CG(ϕ)).
Axiom (A9) is the instance of axiomKC mentioned above and(R3) is the instance
of Knowledge Generalizationfor CG also mentioned above. As said, both(A9) and
(R3) can be proved as theorems inCKG. (A10) is more interesting and requires
specific consideration. Figure 5 sketches a proof of(A10) as a theorem inCKG.
ThereforeCKG impliesTECG.

TECG impliesCKG.
Indeed axiomFixpoint is an obvious consequence ofTECG and we prove that rule
Least Fixpointis a consequence ofTECG as follows.

ρ ⇒ ϕ∧EG(ρ)

ρ ⇒ EG(ρ)
(R3)

CG(ρ ⇒ EG(ρ))
(A10+MP)

ρ ⇒CG(ρ)

ρ ⇒ ϕ∧EG(ρ)

ρ ⇒ ϕ
(R3)

CG(ρ ⇒ ϕ))
(A9+MP)

CG(ρ)⇒CG(ϕ)
(Transitivityo f⇒)

ρ ⇒CG(ϕ)
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(A7) CG(ϕ) ⇒ ϕ

(A8) CG(ϕ) ⇒ EG(CG(ϕ))

(A9) CG(ϕ)∧CG(ϕ ⇒ ψ) ⇒ CG(ψ)

(A10) CG(ϕ ⇒ EG(ϕ)) ⇒ ϕ ⇒CG(ϕ)

(R3)
ϕ

CG(ϕ)

Fig. 4. Meyer and van der Hoek axiomsTECG

CG(ϕ ⇒ EG(ϕ))∧ϕ ⇒ ϕ

CG(ϕ ⇒ EG(ϕ))⇒ EG(CG(ϕ ⇒ EG(ϕ)))

�� ��A8

CG(ϕ ⇒ EG(ϕ))⇒ (ϕ ⇒ EG(ϕ))

�� ��A7

CG(ϕ ⇒ EG(ϕ))∧ϕ ⇒ EG(ϕ)

CG(ϕ ⇒ EG(ϕ))∧ϕ ⇒ EG(CG(ϕ ⇒ EG(ϕ)))∧EG(ϕ)

CG(ϕ ⇒ EG(ϕ))∧ϕ ⇒ EG(CG(ϕ ⇒ EG(ϕ))∧ϕ)

CG(ϕ ⇒ EG(ϕ))∧ϕ ⇒ ϕ∧EG(CG(ϕ ⇒ EG(ϕ))∧ϕ)
Least Fixpoint

CG(ϕ ⇒ EG(ϕ))∧ϕ ⇒CG(ϕ)

CG(ϕ ⇒ EG(ϕ))⇒ ϕ ⇒CG(ϕ)

Fig. 5. A proof of Meyer and van der Hoek’s axiom(A10)

(R10) implies(A10).
In the above proof, we should notice that instead of axiom(A10), we use the rule

CG(ϕ ⇒ EG(ϕ))

ϕ ⇒CG(ϕ)
which is a direct consequence of(A10) by modus ponens. By analogy with(A10),
let us call that rule(R10). A closer look shows that we use the derived rule

ϕ ⇒ EG(ϕ)
(R10′)

ϕ ⇒CG(ϕ)
which is the above rule combined with(R3). See sectionDiscussionbelow to
understand why we are interested in that rule. Let us come back to(R10) and let us
call TEC′

G the systemT∪{A7,A8,A9,R10,R3}. Since we have a proof ofCKG in
TEC′

G and a proof ofTECG, in particular of(A10), in CKG, we have an indirect
proof of TECG in TEC′

G or, in short, of(R10) implies (A10). Here is a direct
proof.

Let us stateA ≡ CG(ϕ ⇒ EG(ϕ)) in this proof. First, let us proveA∧ϕ ⇒
CG(A∧ϕ).
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CG(ϕ ⇒ EG(ϕ))⇒ EG(CG(ϕ ⇒ EG(ϕ)))

�
�

�
�(A8)

A∧ϕ ⇒ EG(A)

CG(ϕ ⇒ EG(ϕ))⇒ (ϕ ⇒ EG(ϕ))

�
�

�
�(A7)

CG(ϕ ⇒ EG(ϕ))∧ϕ ⇒ (ϕ ⇒ EG(ϕ))∧ϕ (ϕ ⇒ EG(ϕ))∧ϕ ⇒ EG(ϕ)

CG(ϕ ⇒ EG(ϕ))∧ϕ ⇒ EG(ϕ)

A∧ϕ ⇒ EG(A∧ϕ)
(R10)

A∧ϕ ⇒CG(A∧ϕ)

The rest is easy. First, we notice that we haveCG(A∧ϕ)⇒CG(ϕ).
A∧ϕ ⇒ ϕ

(R3)
CG(A∧ϕ ⇒ ϕ)

(A9)+MP
CG(A∧ϕ)⇒CG(ϕ)

By transitivity of ⇒, we getA∧ϕ ⇒ CG(ϕ). But clearlyA∧ϕ ⇒ CG(ϕ) is
equivalent toA⇒ ϕ⇒CG(ϕ) which isCG(ϕ⇒EG(ϕ))⇒ ϕ⇒CG(ϕ), e.g.,(A10).

Discussion

The equivalence between(A10) and(R10′) is a third instance ofaxioms vs common
knowledge equivalence. Indeed, we have shown that a proposition of the form
`CG(ρ)⇒ ψ is equivalent to a rule of the form̀ρ

`ψ .

3 The three wise men

The first example we address is the well-known example of the three wise men. It
is stated usually as follows ([5], Exercise 1.3):“There are three wise men. It is
common knowledge that there are three red hats and two white hats. The king puts
a hat on the head of each of the three wise men and asks them (sequentially) if they
know the color of the hat on their head. The first wise man says that he does not
know; the second wise man says that he does not know; then the third man says that
he knows”. Let us call the three wise personsAlice, Bob andCarol. Let us write
white Alice for “Alice wears a white hat”andred Alice for “Alice wears a
red hat”. The puzzle is based on a function which says whether an agent knows the
color of her (his) hat:

Definition Kh := fun i => (K i (white i)) V (K i (red i)).

Clearly one has to prove thatKh Carol holds under some assumptions. To make
clear theses assumptions, we define in addition a few propositions namely

Definition One_hat := \-/(fun i:nat => white i | red i).

which says that every agent wears a red hat or a white hat. IfP is a predicate,
\-/P is the logical quantification, i.e., the quantification in the theory not this in the
meta-theory.

Definition Two_white_hats := white Bob & white Carol ==> red Alice.
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which says that there are two white hats. Notice that this is stated in a weak form,
indeed it is only whenBob andCarol wear white hats that one can deduce thatAlice
wears a red hat. Moreover there are three concepts which say that each agent sees
the hat of the other agents and therefore knows the color of the hat.

Definition K_Alice_white_Bob := white Bob ==> K Alice (white Bob).
Definition K_Alice_white_Carol := white Carol ==> K Alice (white Carol).
Definition K_Bob_white_Carol := white Carol ==> K Bob (white Carol).

A first result

In a first attempt [12], the five above propositions were stated as axioms and I was
able to prove:

|- K Carol (K Bob (¬ Kh Alice) & ¬ Kh Bob)
==> K Carol (red Carol).

In COQ this would give a statement like

|- One_hat &
K_Alice_white_Bob &
K_Alice_white_Carol &
K_Bob_white_Carol &
Two_white_hats ->

|- K Carol (K Bob (¬ Kh Alice) & ¬ Kh Bob)
==> K Carol (red Carol).

where-> is the meta-implication, i.e., this of COQ and as usual|−ϕ says that
propositionϕ is a theorem.

A second result

In the second attempt one proves:

|- K Carol (K Bob (One_hat &
K_Bob_white_Carol &
K_Alice_white_Bob &
K_Alice_white_Carol &
(K Alice Two_white_hats) &
¬ Kh Alice) &

¬ Kh Bob)
==> Kh Carol.

This tells exactly the amount of knowledge whichCarol requires to deduce that she
knows the color of her hat, actually red. Let us callAlice Bob Carol the group
made ofAlice, Bob andCarol. From the above statement, one derives the corollary:
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|- C Alice_Bob_Carol (Two_white_hats &
One_hat &
K_Bob_white_Carol &
K_Alice_white_Bob &
K_Alice_white_Carol)

==> K Carol (K Bob (¬ Kh Alice) & ¬ Kh Bob) ==> Kh Carol.

which is weaker. But if we state

ϕ ≡ Two_white_hats &
One_hat &
K_Bob_white_Carol &
K_Alice_white_Bob &
K_Alice_white_Carol

and

ψ ≡ K Carol (K Bob (¬ Kh Alice) & ¬ Kh Bob) ==> Kh Carol

we notice that we have exhibited a fourth instance ofaxioms vs common knowledge
equivalencesince`CG(ϕ)⇒ ψ and `ϕ

`ψ are equivalent.

4 The muddy children

This problem had many variants [14,7,6,8]. It is a typical example of how a com-
munity of agents acquires knowledge. In its politically correct version [5,16], a
group of children have mud on their head after playing during a birthday party. The
kids do not know they have mud on their head. The father of the kid who organized
the party asked the children to come around him in a circle for the kids to see each
other and he tells them that there is at least one child who has mud on his face so
that they clearly all hear him. Then Father asks the kids who have mud to step
forward. He repeats this last sentence until all the kids step forward.

Philosophers have been puzzled by the fact that the first sentence of Father
namely“There is at least one child with mud on his face”is absolutely necessary.
This fact is known by the children, but by doing so, Father makes it a common
knowledge. In [12], we have identified that the key lemma is

Lemma Progress :
forall n p : nat,
|- C ([:n+1:]) (At_least (n+1) p) &

E ([:n+1:]) (¬ Exactly (n+1) p)
==> C ([:n+1:]) (At_least (n+1) (p+1)).

In other words, if the fact that there is at leastp muddy children is a common
knowledge and all the children know that there is not exactlyp muddy children,
then the fact that there is at leastp+ 1 muddy children is a common knowledge.
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Together with the first statement of Father:

Axiom First_Father_Statement :
|- C ([:nb_children:]) (At_least n 1).

we are able to prove aftern stepsC ([:n:]) (At least n n) which means that
the fact that there is at least n muddy children is common knowledge. This is the
final result. Common knowledge is important here because one can “progress” in
common knowledge and not in shared knowledge. Thus the first statement that
provides a first common knowledge allows initialization. The proof ofProgress
relies on a statement

Knowledge_Diffusion :
forall n p i : nat,

|- E ([:n:]) (At_least n p) ==>
E ([:n:]) (¬ Exactly n p) ==>
K i (E ([:n:]) (¬ Exactly n p)).

This statement is here to translate what children see after Father has asked the
muddy ones to step forward and none did. They all know that there is at least
p muddy children and they all know that there is not exactlyp muddy children
otherwise those with muddy face would have stepped forward, but now each one
knows that all the others know that there is not exactlyp muddy children.

KnowledgeDiffusion as an axiom

In a first experiment, we madeKnowledge Diffusion an axiom and we were able
to proveProgress in its above form.

KnowledgeDiffusion as a common knowledge

In the second experiment, we consider that propositionKnowledge Diffusion
should not be made an axiom, i.e., an immutable principle, but it should be made
just a rule of a game upon everyone agrees. Therefore the rules of the game are
common knowledge that everyone accepts; agreeing on these rules makes every-
one to act and reason according to them, i.e., “rationally”. In this versionProgress
becomes:

Lemma Progress :
forall n p : nat,
|- C ([:n+1:])(Knowledge_Diffusion) ==>

(C ([:n+1:]) (At_least (n+1) p) &
E ([:n+1:]) (¬ Exactly (n+1) p))
==> C ([:n+1:]) (At_least (n+1) (p+1)).
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Discussion

Again we show that we can change an statement of the form`ϕ
`ψ into a statement of

the form`CG(ϕ)⇒ ψ. Here

ϕ ≡ C ([:n+1:]) (At_least (n+1) p) &
E ([:n+1:]) (¬ Exactly (n+1) p))

and

ψ ≡ C ([:n+1:]) (At_least (n+1) (p+1)).

This is a fifth instance ofaxioms vs common knowledge equivalence.

5 Conclusion and future work

At the time of submission, exercise 3.29 in [5] showed me that an equivalence to be
studied could be betweeǹϕ`ψ and`CG(ϕ)⇒CG(ψ). In that exercise it is asked to

prove that`ϕ
`ψ implies`CG(ϕ)⇒CG(ψ). This last proposition is slightly stronger,

byTC, i.e.,`CG(ρ)⇒ ρ, than`CG(ϕ)⇒ ψ. The reverse meta-implication, namely
`CG(ϕ)⇒CG(ψ) implies `ϕ

`ψ is obvious. One has even easily`CG(ϕ)⇒ ψ im-

plies `ϕ
`ψ . I am currently examining how the proof of these meta-theorems of equiv-

alence can be actually mechanized in COQ. This is not an easy task since this
requires a deeper embedding of the theory. In short, in order to mechanize that
proof, one needs not only internalize the arrow==>, but also the arrow->, since a
meta-proof of the equivalence requires an induction on the proof of`ϕ

`ψ , i.e., on the
proof` ϕ -> `ψ. In a first step, one can prove in COQ that all the rules of common
knowledge logic, namelyModus Ponens, GeneralizationandLeast Fixpointhave
their equivalent in the form̀ CG(ϕ)⇒CG(ψ), namely:

`CG((ϕ ⇒ ψ)∧ϕ)⇒CG(ψ) `CG(ϕ)⇒CG(Ki(ϕ))

`CG(ρ ⇒ ϕ∧EG(ρ))⇒CG(ρ ⇒CG(ϕ))

The first one is a variant, by the means of`CG(χ∧ρ)⇔CG(χ)∧CG(ρ), of KC or
(A9). The second one is a basic result of common knowledge logic. Note that4C,
that is`CG(ϕ)⇒CG(CG(ϕ)), holds inCKG, hence in its equivalentTECG. It is
a variant for common knowledge logic of the axiom̀Ki(ϕ)⇒ Ki(Ki(ϕ)) of epis-
temic logic known asPositive Introspectionor 4K. The proof of4C does not re-
quires this of4K. The third theorem has no equivalent in the literature and has been
proved in COQ for that purpose. Then we get the following interesting result:

`CG(ϕ)⇒CG(ψ) // `CG(ϕ)⇒ ψ // ` ϕ -> ` ψ
dd

The back arrow is proved by induction of the length of the deduction` ϕ -> ` ψ.
Therefore, one notices three levels of implications: the implication⇒ in the the-
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ory, the implication-> in the metatheory and the implication // in the meta-
metatheory. For that diagram one gets

`CG(ϕ)⇒ ψ // `CG(ϕ)⇒CG(ψ)

which gives in the logic with one agent:

`2ϕ ⇒ ψ // `2ϕ ⇒2ψ

On another hand, it is worth to mention the study on combining common knowl-
edge logic and dynamic logic we have done with Jérôme Puisśegur [19]. The
dynamic logic is used to describe changes in the world, but those changes are
purely epistemic(an idea we borrow from Baltag, Moss and Solecki [3,2]). This
means that they affect only knowledge of the agents and nothing else. The muddy
children puzzle has been axiomatized in this framework and a proof of its re-
sults has been fully mechanized in COQ. We can draw already two lessons form
those experiences. First when merging two modal logics it seems that internal-
izing common knowledge is more appropriate. In other words, an approach like
`CG(ϕ)⇒ ψ should be preferred to setting the axiom̀ϕ to prove` ψ, as one
does not know which metatheory a specific statement belongs to: dynamic logic
or common knowledge logic? Second a formalization of predicate logic, allows
expressing easily arbitrary depth of shared logic according to the number of agents.
More precisely, common knowledge is not a priori necessary in the muddy children
example and just a specific number of imbricated shared knowledge modalities cor-
responding to the number of children. This fact was already noticed by authors [8].
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