
ABS’TRACT

COMPUTER EXPERIMENTS WITH

THE REVE TERM REWRITING SYSTEM GENERATOR

Pierre LESCANNE

Centre de Recherche en Informatique de Nancy

Campus scientifique – B.P. 239

54506 Vandoeuvre les Nancy Cedex, France

A term rewriting system generator called REVE

is described. REVE builds confluent and uniformly

terminating term rewriting systems from sets of

equations. Particular emphasis is placed on mecha-
nization of termination proof. Indeed, REVE is one
of the few such systems which can actually be

called automatic because termination is fully inte-
grated into the algorithms. REVE uses an incremen-

tal termination method based on recursive decompn–
sition ordering which constructs the termination

proof step by step from the presentation of the set
of equations and which requires little knowledge of

termination methods from the user. All examples

from this paper are taken from abstract data type

specifications.

KEY-WORDS

Equational Theories, Term Rewriting Systems,
Abstract Data Types , Termination, Word Problem,

Induction, Theorem Prover, Program Verifier.

1. THE MAIN CONCEPTS

The specification of an abstract data type

can be regarded as a set of equations describing

the operations of the type and their relations to

one another. Sets of such equations are special
cases of elementary and universal equational

theories ; i.e., universally quantified equalities
between expressions. Theorems about abstract data
types are usually proven to check that a specifi-
cation has an expected property. Proofs of theo-
rems in equational theories can also be of use

to progrsm verifiers when verifying programs

that incorporate abstract data types. Therefore,

efficient and highly automated theorem provers are

needed for such theories. That is the aspect of

equational theories that concerns us here.

Permksion to copy without fee all or part of this material k granted
provided that the copies are not made or dktributed for direct
commercial advantage, the ACM copyright notice and the title of the

publication and ifs date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy

otherwise, or to republish, requires a fee and/or specific permission.

The statements and theorems under considera–

tion are equalities between well-formed expressions.

Theorems in equational theories are divided into

two categories depending on the way they are proven
or, what is strongly related, on the family of

models in which they are true. Theorems of the
first kind are called equational theorems; they

are proven by replacing expressions by equal
expressions with respect to the equations. Accor-
ding to the Birkhoff Theorem, these statements are

provable if and only if they are valid equalities;

i.e., they are true in any model of the equations.
The theorems in the second category are called

inductive theorems; their proofs require an induc-

tion rule in addition to equational reasoning
because they are statements that are valid in the
family of models generated by the operations and

the constants. These models are variously called
standard, prime algebras or finitely generated

algebras.

1.1. Proofs of equational theorems

The fundamental decision problem for equa-

tional theories is the word problem. It consists

of finding a decision procedure for proving and

disproving identities from a set E of equations.

Although the word problem is generally unsolvable,

e.g-, when E contains the equations of certain
semigroups (Post [181) or groups (Novikov (16)),

recent studies and experiments have shown that
many of the word problems for abstract data types

in particular and abstract algebras in general are

solvable (not only theoretically, but practically)
by a uniform methodology based upon term rewriting
methods. In the past, some apparent intractability

and/or inefficiency has frequently been due to

ignorance of how to use the equations or generalize

them appropriately.

This work was done while the author was visi-

ting the laboratory for Computer Science of
the Massachusetts Institute of Technology.
During this period he was supportedby the Natio-
nal Science Foundation grant 811 9846, by DARPA

(NOOO14-75-C 0661), by the Centre National de
la Recherche Scientifique, and by the Greco
Progranmration.

@ 1983 ACM 0-89791-090-7/83/001/0099 $00.75

Permission to make digital or hard copies of part or all of this work or
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers, or to redistribute to lists, requires prior
specific permission and/or a fee.
© 1983 ACM 0-89791-090-7…$5.00

A term rwwr~t~ng sgstem is a set of oriented

equations or rewrite rules that are always used
from left to right. In this framework, the method
of proving an equational theorem like A=B is to
rewrite A and B using the rewrite rules until one

gets irreducible terms A* and B::. If A* and B~c are

the same then A=B is valid (see [8) for more
details). The following question naturally arises:

Is this method a decision procedure? ‘lo answer that,

two problems must be addressed.

1. Is the irreducible expression A*, asso-
ciated with A , unique?

2. Does the process of rewriting an expres–

sion A always terminate?

1.2. Proving confluence of term rewriting systems

A positive answer to the second question
follows from the confhence of the term rewriting

system (also called the Church-Rosser property or

diamond lemma property). That means that if A

rewrites to B and C, there exists an expression D
such that B and C rewrite to D (using the relation
of the term rewriting system zero or more times).

A computer program checking for confluence was

developed by Knuth and Bendix (111 based upon the
work of Evans [2]. A term rewriting system is

locally confluent if for any A which rewrites to B
and C by using a rewriting relation once in each
case, there exists a D such that B and C rewrite

to D, We can deduce confluence from local conflu–
ence if we have uniform termination. A term rewri–

ting system is uniformly terminating if there

exists no infinite chain AO–>A1–> . ..–>An–> . . . where

-> is the rewriting relation. Therefore, uniform

termination is a central issue in term rewriting

systems and in proof systems for equational theo-
ries, not only because of the first question

above, but also because of its necessity in gua-
ranteeing that confluence follows from local

confluence. We says that a term rewriting system
is eonve~gent if it is uniformly terminating and
confluent. A finite convergent term rewriting

system is the basis of a decision procedure for
its associated equational theory.

Given a set of equations, the corresponding

set of rules is not always convergent . For ins-

tance, the set of equations
x*e = Z,
x$i (x) z e,

(Z*y)*Z = z*(y*z), and
z/y = c*i (y),

which defines the class of all groups with right

division, may be converted into the term rewriting
system

X.%e –> z

.r*i(z) –> e
(G.+y) %3 + &.(y..z)

x/y –> x*i (y)
which is not convergent, as are none of the systems
obtained by orienting these four equations in

various ways . For example e and z*(y*i (x*y)) are
two irreducible terms obtained by rewriting the

term (z*g) *i(x*y). The Knuth–Bendix algorithm
attemps to transform a set of equations into an
equivalent convergent term rewriting system.
Equivalent means that the reduction method based

on the convergent term rewriting system proves the

same equational theorems as the method based on the
original set of equations. In other words, the
resulting term rewriting system is a decision pro–

cedure for the original equational theory. The
Knuth–Bendix algorithm generates new equations

which are oriented to make new rules . The orienta–
tion of an equation is done by a specific algorithm

which checks that the rule preserves the uniform

termination of the entire system. By using these

new rules some old rules may be modified or even

collapse and disappear. For example, with the

above group equations, the algorithm generates the
rule z*(y*i(x*y)) –> e which will disappear when
the rule i(z*y) –>i(y) ai(x) is generated. It turns

out that we can generate two distinct but equiva–
lent convergent term rewriting systems from the
above example depending on which operation, + or /,

plays the main role (see Fig.1, Fig. 2and Appendix II
for a proof of termination). The second one is new

and was generated by REVE.

x+e –> x
e*s –>z

xtii(z) –>e

i (x) .+x –> e

(z*y) *Z -> Z*(y*z)
z.+(i(x)~y) –> y

i(x)*(x*y) –>y

i(e) +e
i(i(x)) +x
i(x~y) –> i(y) *i(z)

x/Y + x+i (Y)

Fig. 1. The Knuth–Bendix Convergent System for

Group Theory with Right Division.

Fig. 2.

x/e +x

e/z + i (x)

x/x –> e

x/(.y/a’) + (x/i(Y))/’z
(x/y) /i (y) -> x
(x/i (y))/y -> x
i(e) –> e
i(i(x)) +x

‘i(x/y) –>y/x
x*y –> x/i (y)

A New Convergent System for Group Theory

Based Upon Right Division.

1.3. Proving uniform termination of term rewriting
systems

The uniform termination problem for term
rewriting systems is an undecidable problem
(Huet and Lankford [6) , Lipton and Snyder [14]),

but we want REVE to provide powerful and mechanized

tools that can be used in most practical situations,
and which do not require that the user know much
about how termination algorithms work. In most

cases, REVE does the proof automatically without

intervention from the user. The method is based on

simplification orderings. A partial ordering on
terms is a simplification ordering if it satisfies

the following two properties, for all A, Al, A2:

,!hbtmm Property: A < f(. ..,A) ...).

100

CompatLb~l~ty Property:

A1<A2*f(. ... A1,,)<)< f(, ... A2,. ..).

Dershowitz [1] proved the following theorem:

A term rewriting system X = {li ‘>rili 61}

with a finite number of symbols is uniformly

terminating if there exists a simplification
ordering < such that for all i in 1 and for

all substitutions o of ground terms for va–

riables, O(li) > o(ri).

In REVE there are actually two uniform ter–

mination algorithms. One is based on the ~~ecursive
path o~~deving (written ~ here) derived from the

work of Plaisted (17), Dershowitz [11, and Kamin &

L6vy (10), and the other on a recursive deeomposi–

t;on ordering (written ~ here) developed by

Jou2nnaud, Lescanne and Reinig (91. Let us now give

an informal description of them. Both are exten-
sions of a precedence that is an ordering on the

basic symbols. In addition, the recursive path
ordering requires knowledge of the status of the

operator symbols. The status can be “multiset”,
“left-to-right” or “righkto-left”. Typically with

a “left-to-right” symbol we first look at the left-
most direct subterrss, so we consider a “right-
leaning” term to be less than another with the same

s~bOls and variables. Thus, if + has a left-to-
right status, ,then for the associative equation we

have (cc+y)+z ~ x+(y+z). The right–to–left status is

symmetric: if + has a right–to–left status we have
X+(y+!zj) j (X+y)+z. With a multiset status we look

at all the direct subterms in any order to find
those to be compared. For example, with a multiset

status for +, (tr+u)+~ and &+(y+z) are not ordered
with respect to ~, but we do have c+(y+z) j Z+C.
The recursive path ordering compares the terms by
first examining their root symbols and then recur–
sively comparing terms and their direct subterms
according to a strategy determined by the value of

that comparison. The decomposition ordering works
in a different manner. It first processes the

terms in order to build their decompositions. A

decomposition records the results of a careful

analysis of a term; it determines which symbols,

called Zeaders, play significant roles with res–
pect to their positions in the term and to a given

precedence. Then it compares the decompositions

following a specific strategy.

In general, the recursive decomposition
ordering and the recursive path ordering yield

similar results when comparing two terms. However,
there exist some pairs of terms that can be com–

pared with ~ and not ~ when all symbols have multi–
set status (as in the original Dershowitz defini–

tion); the reverse is true when right–to–left and
left-to-right status is permitted. However, the

main advantage of the recursive decomposition

ordering over the recursive path ordering lies in
a property that the authors call incrementa~ity.

Indeed, when the recursive decomposition method
fails to orient terms, it suggests enlargements of
the precedence. These enlargements are a set of
ordered pairs of symbols, which are extracted from

the leaders of both terms. In many cases, REVE

decides to add all the suggestions to the prece-
dence; in others, it asks the user to indicate
which one it must keep. Thus, the precedence is

built up step by step by REVE and in general requi-
res no intervention from the user. The orderings

~ and ~ are monotonic with respect to the prece-

dence; i.e., when a new pair is added to the pre-

cedence, new pairs of terms may be added to ~ and

~, but none are removed or changed. Because of

this monotonicity, the enlarged ordering is consis-

tent with the previous ordering, and so the final

decomposition ordering can be built incrementally.

In our experiments with abstract data types, user

help is only needed before starting the Knuth-

Bendix completion algorithm (except for changing
the status of an operator). He or she is asked to
give:

1. a presentation of the equations in the direc–

tion that should yield a uniformy terminating term

rewriting system of rule, (the user just follows

his or her intuition in doing this), and

2. a declaration of the constructors of the data

types REVE can then initialize a precedence by
assuming that each constructor is less than each

non–constructor.

Intuitively an operation ~ is less than
another operation g with respect to the precedence
if f is computationally less complex than g. In
this hierarchy the constructors are at the bottom

because they are not defined in terms of other

operations.

k its current formulation, the recursivedecom–

position ordering cannot be used to prove the uniform
termination when some equations describe the asso–

ciativity of an operation or a related property.
Onthe other hand because of its incremental property

it can construct the precedence which will prove
the uniform termination of the rules. In REVE it is
possible to combine the recursive decomposition
ordering and the recursive path ordering in such

a way that the recursive path ordering is used to

orient the equations and the recursive decomposition

ordering is called for help; i.e., for enlarging the
precedence when the recursive path ordering fails.

The recursive decomposition ordering then provides

the suggestions that the recursive path ordering

needs .

1.4. Proof of inductive theorems

Huet and Hullot (7) developed a method to

prove inductive theorems without explicitly invo-
king induction that simplifies the work of Musser

(15] and Goguen (3). They used a modified version

of the Knuth-Bendix completion algorithm. Their
inductionless induction works as follows: To prove
an inductive theorem, you add the statement to a

given convergent set and try to generate a new

convergent set while checking that a few simple
form conditions are satisfied. If the algorithm

succeeds, your statement is a theorem. If it fails

by generating a forbidden equation (like a relation
between the constructors) your statement is not a
theorem. If it runs forever you can say nothing;

perhaps by presenting your theorem in a different
way or adding lemmas you could succeed. A justifi-
cation of this method is based on the assumption

that the non-constructors are “well defined”.
Intuitively, that means that the equations comple-

tely define these operations without ambiguities.
The easiest way to check this “well definition” is

101

based onthe uniform termination associated with
confluence and some syntactical properties of the
left-hand side of the rules. These ideas are gene–

ralized by Lanlcford (131 to congruence class term
rewriting systems whose congruence classes are all
finite. He also says, “In our opinion, proving the

finite termination property for a set of reductions

claimed to be complete may turn out to be the most

difficult part of the inductionless induction

approach. (It is obviously the part that many term
rewriting researchers continue to neglect in their
experiments.)”. In REVE we have given special atten–

tion to the uniform termination problem.

2. OTHER ASPECTS OF REVE AND CONCLUSION

1. REVE was used to prove results in algebra

that were never before done by computer; e.g. ,that

the equation

z/((((z/x)/y)/z)/(((x/x)/z)/z)) = y
determines groups (Higman and Neuman (4)). The
proof provided by REVE is conceptually simpler than

that of Higman and Neuman, but could not be done by

hand.

REVE was also able to solve a problem posed
by Knuth and Bendix [111, about Taussky ’s axioms
for groups (191. Indeed it generated the con–
fluent rewriting system of Figure 1 from these

axioms.

2. Other unification algorithms will be im-
plemented, for example, to handle equational theo-

ries with commutative or associative and commuta–

tive operators, and more generally unification that
can be described by rewriting systems and sets of

equations as proposed by J.P. Jouannaud, C.Kirchner

and H. Kirchner (20].

3. REVE is written in CLU, so it consti-
tutes an interesting application for object–
oriented languages based on abstract data types and

modularity. Advantages for reliability, readability
and maintenance will be described in a forthcoming

report.

As we have emphasized the uniform termination

is an important and often neglected aspect of deci–

sion and proof methods based on rewriting. Among
softwares that manipulate rewriting systems, the
originality of REVE lies in its ability to easily
prove uniform termination. Especially, the incre–

mental increase of the operator precedence derived
from properties of the recursive decomposition
ordering needs little intervention from the user,

and requires little knowledge about how the temi–
nation algorithm works. The examples that follow

in Appendix I partially illustrate REVE’S ease and
flexibility in proving and disproving properties of

abstract data types. .

Acknowledgements: I would like to thank
Dallas Lankford and Randy Forgaard who read care–

fully a preliminary version of this paper and pro-
vided useful comments. John Guttag welcomed me at

MIT Laboratory for Computer Science and without him
this work would never be done. I am grateful to
Paul Johnson, Jean-Pierre Jouannaud, Bob Sheifler
and Jeannette Wing for their friendly help and also

to Nachum Dershowitz, Samuel Kamin, Jean-Jacques
L6vy and Fernand Reinig for discussions about
their algorithms.

3. REFERENCES

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

11.

12.

13.

14.

Dershowitz N., “Orderings for Term Rewriting
Systems,” Proc. 20th Symposium on Foundations

of Computer Science, (1979), 123-131. Also,
Theoretical Computer Science 17 (1982), 279-

301.

Evans T., “On Multiplicative Systems Defined
by Generators and Relations, I. Normal Form
Theorems,” Proc. Cambridge Philos. Sot. 47

(1951), 637-649.

Goguen J.A., “How to Prove Algebraic Inductive

Hypotheses Without Induct ion,” 5th Conf. On
Automated Deduction, Lectu?e Notes in ComputeY

Science, 87 (1980), 356-373.

Higman G., Neumann B. H., “Groups as Groupoids
with One Law,” Publ. Math. Debreeen. 2 (1952),

215-221.

Huet G., “A Complete Proof of Correctness of
the Knuth-Bendix Completion Algorithm, ” J. Comp.
S$S. SC. , 23 (1981), 11-21.

Huet G., Lankford D., “On the Uniform Halting

Problem for Term Rewriting Systems,” RCZPPOYZ

Laboria 283 (mars 1978).

Huet G., Hullot J., “Proofs by Induction in

Equational Theories with Constructors,” PPoe.

21st Symposium on Foundations of Compute?

Science (1980).

Huet G., Oppen D.C., “Equations and Rewrite
Rules: A Survey,” in Formal Languagee: Pe?
speetives and Open Problems, Ed, Book R.,

Academic Press (1980). Also, Technical Report
CSL–11, SRI International (Jan. 1980).

Jouannaud J.P., Lescanne P., Reinig F., ‘precur-
sive Decomposition Ordering,” Conf. on Formzl
Description of Pi?ograiwning Concepts, Garmisch,

(1 982).

Kamin S., L&y J.J., “Attempts for Generalizing
the Recursive Path Ordering,” (Feb. 1980).

Knuth D. E., Bendix P. B., “Simple Word Problems

in Universal Algebras,” in Computational PTO–

blems in Abstract Algebra, Ed. Leech J., Perga-
mon Press (1969), 263-297.

Lankford D., “Research in Applied Equational
Logic,” Louisiana Tech. Univ., Math. Dept.,

repOrt MTP-15, (Dec. 1980).

Lankford D., “A Simple Explanation of Induction-
less Induction,” Louisiana Tech. Univ., Math.
Dept. , report MTP-14, (August 1981).

Lipton R., Snyder L., “On the Halting Problem
for Term Replacement Systems, ” Proe. Conf. on
Theoretical Comp. Sci. , Univ. of Waterloo,

102

15.

16.

17.

18.

19.

20.

(ju’ly 1977), 43-46,

Musser D.L., “On Proving Inductive Properties
of Abstract Data Types, ” P?~oc. 7th ACW Sympo–
sium on PYi?leipl@ of Programming Languages

(1980), 154-162.

Novikov P., “The Algorithm Unsolvability of the

World Problem for Group Theory, ” Tr. Mut. Inst.
Steklov. 44 (AMS Translations Se~’ies 2 9 (1955)

1-124).

Plaisted D., “A Recursively Defined Ordering
for Proving Termination of Term Rewriting
Systems,” Dept. of Computer Science, Report
78-943, Univ. of Illinois at Urbana-Champaign,

(sept. 1978).

Post E., “Recursive Unsolvability of a Problem
of Thue, ” J. Symb. Logic 12 (1947), 1-11.

Taussky O., “Zur Axiomatik der Gruppen”,

Ergebnisse eines Math. Ko~~oquiums Wien 4

(1963), 2-3.

Jouannaud J.P., Kirchner C., Kirchner H.,

“Incremental Unification in Equational Theo-

ries. ” Proc. Z@h Allerton Conf. on Communi-

cation, Control and Computing, (oct.

WpENDIX I - TWO EXAMPLES

Italic comments are added by the author.
parts are commands entered by the user.

EXAMPLE 1—--------

1982)

Under’ ined

reve

Hello! My name is REVE (dream in french). I am a

rewriting system laboratory.

What do you want to do now? (Type ? for help)
read

Which one?
set

A specification of sets of natzcral numbers
uith “has” and < (’subset).

Your system is now:

1
2

3

L

5
6

7*
8

9

10

11
12

if(tt, x,y) == x
if(ff,x,y) == y

if(x,y,y) == y 3 and 4 are inductive theorems

if(x,tt,ff) == x of boo2eans.

(0=0) == tt “o” is the operator correspon–

(O=s(x))== ff ding to zero.

(S(x)=o) == ff “s” is the operator successor.

(s(x)=s(y))==(x=y) llquations 5,6,7 and 8 define
has(empty set,x)==ff an operator = used in the—

Equation 10.

has((u+x),y)==if((x=y),tt,has (u,y)) + is inse~t.
72as(21, z) means “u has 2:” or
“x belongs to aft.

(empty_set<v)==tt < is for subset.
((u+x)<v)==if(has(v,x) ,(u<v),ff)

REVE initializes the precedence and deela~es
the eonstnctors, REVE will use this in
proofs of induction theo~ems.

The constructors are ff, tt, o, s empty set, +.—

What do you want to do now? (Type ? for help)

cons

~ me a list of symbols
ff tt 0 s empty_set-+

What do you want to do now? (Type ? for help)

kb i Knutlz–Bendi.c uith incremental decomposition
ordej~ing is used.

In a first part REVE orients the equations
into rules.

New rule added
if(tt,x,y) ->x

New rule added

if(ff,x,y) ‘>y

New rule added

if(x,y,y) ->y

New rule added
if(x, tt, ff) –>x

New rule added
(0=0) ->tt

New rule added

(O=s(x)) ->ff

New rule added

(S(x)=o) ->ff

New rule added

(s(x)=S(y)) ->(X=Y)

New rule added
has(empty_set,x) ->ff

New rule added

(empty_set <v) ‘>tt

REVE adds tuo nou pairw.

I suggest that the following ordered pairs beaddect

if < has REVE’S suggestions.

= < has
to validate the rule

has((u+x),y) -> if((x=y),tt,has(u,y))

New rule added

has((u+x),y) -> if((x=y),tt,has(u,y))

REVE adds again two neu pairs.

I suggest that the following ordered pairs bealded:

if<<

has < < .
to validate the rule

((u+x) <v) -> if(has(v,x), (u<v),ff)

New rule added

((u+x) <v) -> if(has(v,x),(u<v),ff)

In a second part REVE looks for er-ztieal
pairs and it does not find any.

I am computing the critical pairs with
(0=0) ->tt

I am computing the critical pairs with
has(empty set,x) –>ff—

I am computing the critical pairs with
(empty_set <v) ->tt

I am computing the critical pairs with
if(tt, x,y) ‘>x

I am computing the critical pairs with
if(ff, x,y) ‘>Y

103

I am computing the critical pairs with

if(x,y,y) ‘>y

I am computing the critical pairs with

if(x,tt,ff) ->x

I am computing the critical pairs with
(O=s(x)) ->ff

I am computing the critical pairs with
(S(x)=o) ->ff

I am computing the critical pairs with

(s(x) =S(Y)) ->(x=y)

I am computing the critical pairs with
has((u+x),y) -> if((x=y),tt,has(u,y))

I am computing the critical pairs with

((u+x) < v) ->if(has (v, x), (u<v), ff)

The system is “consistent” and the Knutlz–

Bendix algorithm has transformed tlze previous

set of equations into a confluent and noethe
rian (convergent) set of rwles.

Your convergent system is now :

1
2

3

4
5
6

7
8

9
10

11
12

if(tt,x,y) ->x
if(ff, x,y) -> y

if(x, y,y) ->Y
if(x,tt,ff) ->x
(0=0) ->tt
(O=s(x)) ->ff

(S(x)=o) ->ff

(s(x) =S(y)) -> (X=y)
has(empty set,x) –>ff

(empty_se~ <v) ->tt
has((u+x), y) ->if((x=y), tt, has(u, y))

((u+x) <v) ->if(has (v, x), (u<v), ff)

PROOF OF A THEORRM—-----------------

What do you want to do now? (Type ? for help)
a The user adds the identity to be proved.

cf. $ 1.3
Type your new rules or equations. It or they must

be terminated by a “,”
has((u+x) ,x) == tt.

Your system is now:

1
2

3
4
5
6

7
8

9
10
11
12
13

if(tt,x,y) –>x

if(ff;x,y) –>y

if(x,y,y) –>y
if(x,tt,ff) –>x
(0=0) ->tt
(O=s(x)) ->ff
(S(x)=o) ->ff
(s(x) =S(y)) ->(x=y)
has(empty set, x) ->ff
(empty se~<v) ->tt
has((u~x),y) -> if((x=y),tt,has(u,y))

((u+x) <v) -> if(has(v,x), (u<v),ff)
has((u+x) ,x) == tt

What do you want to do now? (Type ? for help)
kb i— The Left-hznd side of the gi~len equation is

?educed and the neu created equation is
transformed. into a rule.

New rule added
if((x=x), tt,has(u,x)) ->tt

I am computing the critical pairs with
if((x=x),tt,has(u,x)) ->tt

New rule added
if((x=x),tt,has(y,s(x))) –>tt

New rule added
(x=x) ->tt is an inductive theorem of the

natural numbaw.

The left hand–side of the following rule is

now reducible

(0=0) ->tt

The left hand-side of the following rule is

now reducible

if((x=x),tt,has (u,x)) –>tt
The left hand-side of the following rule is

now reducible
if((x=x),tt,has(y,s(x))) ->tt

I am computing the critical pairs with

(x=x) -~tt

Your convergent system is now:

1
2

3
4

5
6
7

8
9

10

11

12

if(tt,x,y) –>x
if(ff, x,y) –>y

if(x,y,y) ->y
if(x,tt,ff) –>x
(O=s(x)) ->ff

(S(x)=o) ->ff

(s(x)=S(Y)) ->(x=y)
has(empty_set,x) ->ff
(empty_set <v) ->tt

has((u+x),y) -> if((x=y),tt,has(u,y))

((u+x) <v) -> if(has(v,x), (u<v),ff)
(x=x) ->tt

PROVING THAT A STATEMENT IS NOT A THEOREM——-————--——--—--—-—----——-———-——----——--—

What do you want to do now? (Type ? for help)
a The user adds tha identity to be proved—

(OY disproved!).
Type your new rules or equations. It or they must

be terminated by a “.”
((u+x) < (v+x)) == (u < v),

Your system is now:

1 if(tt,x,y) –>x
2 if(ff,x,y) ->y

3 if(x,y,y) ->y
4 if(x,tt,ff) ->x
5 (o=.(x)) ->ff
6 (S(X)=O) ->ff

7 (s(x)=S(y)) ->(x=y)
8 has(empty set,x) ->ff
9 (empty se; < v) ->tt
10 has((u~x),y) -> if((x=y),tt,has(u,y))
11 ((u+x) <v) -> if(has(v,x), (u<v),ff)
1~ (x=x) ->tt

13 ((u+x) <(v+x)) == (u<v)

What do you want to do now? (Type ? for help)
kbi

New rule added
(u < (v+x)) -> (u < v) The left–hand side of equa–

tion 13 is reduced by 11, 10, 12, 1 and is

transformed into a rule.

I am computing the critical pairs with
(u<(v+x)) ->(u<v)

104

New rule added
if(if((y=z),tt,has (x, z)), (u<x),ff) -> if(has(x,z),

(U<x),ff)

I am computing the critical pairs with
if(if((y=z),tt,has(x,z)),(u<x),ff) –>

if(has(x,z),(u <x),ff)

New rule added
if(if((x=y),tt,has(z,s (y))), (u<z),ff) ->

if(has(z,s(y)),(u<z),ff)

New rule added

if((x=y), (z<empty_set) ,ff) ->ff

New rule added
if((x=y),tt,has(z,y)) ->has(z,y)

The left hand-side of the’following rule

now reducible
if(if((y=z),tt,has(x,z)),(u<x),ff) –>

if(has(x, z), (u<x), ff)

New rule added
if(has(x,y), (z<x),ff) ->(z<x)

I am computing the critical pairs with
if((x=y),(z <empty set),ff) ->ff—

New rule added
(X=y) ->ff

The left hand–side of the following rule
now reducible

(O=s(x)) ->ff
The left hand-side of the fo

now reducible
(S(x)=o) ->ff

The left hand–side of the fo

now reducible

(s(x) =S(Y)) ->(X=Y)

lowing rule

lowing rule

The left hand-side of the following rule

now reducible
(x=x) ->tt

The left hand-side of the following rule

now reducible

if(if((x=y),tt,has(z,s (y))), (u<z),ff) >

(u<z)

The left hand–side of the following rule

now reducible

if((x=y),(z <empty set),ff) –>ff
The left hand-side–of the following rule

now reducible

if((x=y),tt,has(z,y)) –>has(z,y)

is

is

is

is

is

is

is

is

The rule (z=y) ->ff is incompatible uitk
the rule (x=x) ->tt.

**Your theorem is false, or your specification is

not consistent**

I deduced the following equation
ff == tt

A PROOF RUNNING FOREVER--------—--——-—-.-———-—

what do you want to do now? (Type ? for help)

a
Type your new rules or equations. It or they must
be terminated by a “.”

(u<(u+x)) == tt.

Your system is now:

1 if(tt,x,y) –>x
2 if(ff,x,y) ->y

3 if(x,y,y) ->y

4

5
6

7

8

9
10

11
12

13

if(x,tt,ff) –>x

(O=s(x)) ->ff
(S(x)=o) ->ff

(s(x) =S(Y)) ->(X=Y)
has(empty set,x) ->ff
(empty se~<v) ->tt
has((u~x),y) -> if((x=y),tt,has(u,y))

((u+x) <v) -> if(has(v,x), (u<v),ff)
(x=x) ->tt

(u<(u+x)) == tt

What do you want to do now? (Type ? for help)
kbi

New rule added

(u<(u+x)) ->tt

I am computing the crit
(u< (u+x)) ->tt

New rule added
(X<((x+y)+z)) ->tt

I am computing the crit
(X<((x+y)+z)) ->tt

New rule added

(X<(((x+y)+z)+u)) ->tt

cal pairs with

cal pairs with

I am computing the critical pairs with

(x< (((x+y)+z)+u)) ->tt

New rule added
(X< (((x+y)+z)+u)+v)) ->tt

I am computing the critical pairs with
(X<((((x+y) +z)+u)+v)) ->tt

EXAMPLE 2-—-—-———-

reve

Hello! My name is REVE (dream in french). I am a

rewriting system laboratory.

What do you want to do now? (Type ? for help)
read

Which one?
fib

A specification of the natural nurnbezw and

two definitions of the Fibonaeci function.

Your system is now:

1 (0+x) == x 11011is the operator correspon–

ding to zero.

2 (S(x)+y) == S((x+y))

3 ((x+Y)+z) == (x+(y+z)) czssociatiivitg is an
i.nductiue theorem.

4 fib(o) == o

5 fib(s(o)) == s(o)
6 fib(s(s(x))) == (fib(x) +fib(s(x))) the classi–

cal definition of the Fibonacci
function.

7 dfib(o,y) == y
8 dfib(s(o),y) == s(y)

9 dfib(s(s(x)),y) == dfib(s(x),dfib(x,y)) another
definition of the Fibonacci
function @ithout reference to

addition.

%eonstrueto~~s of the natural numbers
are o and s.

105

What do you want to do now? (Type ? for help)

cons

Give me a list of symbols
0s

What do you want to do now? (Type ? for help)
libri

Knuth–Bendix with recursive path ordering
helped by the ~ecumi~~e decomposition

ordering fo~ adding paim of symbols to the
precedence.

New rule added
(0+x) ->X

New rule added
(S(x)+y) ->s((x+y))

New rule added
fib(o) –>0

New rule added
fib(s(o)) -> s(0)

New rule added

dfib(o,y) ->y

New rule added
dfib(s(o),y) ->s(y)

dfib is decla?ed as having a “left-to-right”
status. Notice that tiith a “multiset” status,

the equation uould be oriented in the oppo–

site direction. REVE takes the presentation
into account.

Would you like to set the status of an operator to
validate the equation? (YIN)
dfib(s(s(x)),y) == dfib(s(x),dfib(x,y))

Y
~ive me a symbol or ask for help(?)
dfib

Give the status RL or LR
lr

~ you don’t change the ordering for the other

rules.

New rule added
dfib(s(s(x)),y) -> dfib(s(x),dfib(x,y))

I cannot suggest any ordered pair to validate the
equation

((X+Y)+Z) == (X+(y+z))

+ is declared as having a left–to–right
status.

Would you like to set the status of an operator?

(YIN)

Y
Give me a symbol or ask for help(?)
+

~ive the status RL or LR
lr
~ you don’t change the ordering for the other
rules.

New rule added
((x+y)+z) ->(x+(y+z))

REVE adds the pair + < fib,

I suggest that the following ordered pair be added:
+ < fib

to validate the rule
fib(s(s(x))) -> (fib(x)+fib(s(x)))

New rule added
fib(s(s(x))) -> (fib(x)+fib(s(x)))

I am computing the critical pairs with

fib(o) ->0

I am computing the critical pairs with
(0+x) ->X

I am computing the critical pairs with
fib(s(o)) -> s(0)

I am computing the critical pairs with

dfib(o,y) ->y

I am computing the critical pairs with
(S(x)+y) ->s((x+y))

I am computing the critical pairs with
dfib(s(c),y) ->s(Y)

I am computing the critical pairs with
fib(s(s(x))) -> (fib(x)+fib(s(x)))

I am computing the critical pairs with

dfib(s(s(x)), y) ->dfib(s (x), dfib(x, y))

I am computing the critical pairs with
((x+y)+z) ->(x+(y+z))

Your convergent system is now:

1 (0+x) –>X
2 (S(x)+y) ->s((x+y))
3 fib(o) –>0

4 fib(s(o)) -> s(0)

5 dfib(o,y) ->y
6 dfib(s(o),y) ->s(Y)

7 dfib(s(s(x)),y) -> dfib(s(x),dfib(x,y))
8 ((X+y)+Z) ‘>(X+(y+Z))

9 fib(s(s(x))) -> (fib(x)+fib(s(x)))

PROOF OF DFIB(X Y) == (FIB(X)+Y)_--—_—--— ------ 2----------------

What do you want to do now? (Type ? for help)
a

~-ype your new rules or equations. It or they must
be terminated by a “.”
dfib(x,y) == (fib(x)+y).

the user adds the equation to be proved.

Your system is now:

1
2

3
4
5
6

7
8

9

(c)+x) ->X

(S(x)+y) -> S((X+Y))
fib(o) ->0
fib(s(o)) -> s(0)
dfib(o,y) –>y

dfib(s(o),y) ->s(y)
dfib(s(s(x)),y) -> dfib(s(x),dfib(x,y))

((X+Y)+Z) ->(x+(y+z))
fib(s (s(x))) ->(fib(x) +fib(s (x)))

10 dfib(x, y) == (fib(x)+y)

What do you want to do now? (Type ? for help)

kbri REVE proposes the psir fib < dfib.

I suggest that the following ordered pair be added:
fib < dfib

to validate the rule

dfib(x, y) -> (fib(x)+y)

New rule added
dfib(x,y) ->(fib(x)+y)

The left hand-side of the following rule is
now reducible
dfib(o,y) ->y

106

The left hand-side of the following rule is

now reducible

dfib(s(o),y) ->s(y)

The left hand-side of the following rule is

now reducible
dfib(s(s(x)),y) -> dfib(s(x),dfib(x,y))

New rule added

(fib(s(x))+(fib(x)+y)) -> (fib(x)+(fib(s(x))+y))

I am computing the critical pairs with
dfib(x,y) ->(fib(x)+y)

I am computing the critical pairs with

(fib(s(x))+(fib(x)+y)) -> (fib(x)+fib(s(x))+y))

The theorem is proved.

Your convergent system is now:

1 (0+x) –>X
2 (S(x)+y) -> S((X+Y))
3 fib(o) ->0

4 fib(s(o)) ->s(0)
5 ((x+y)+z) -> (X+(y+z))

6 fib(s(s(x))) -> (fib(x)+fib(s(x)))

7 dfib(x,y) ->(fib(x)+y)
8 (fib(s(x))+(fib(x)+y)) -> (fib(x)+(fib(s(x))+y))

8 is an inductive “lemma ‘r added by REVE

tihiclz has a flavor of commutativity,

PROOF OF THE SAME THEOREM—————————————-——-————————

WITH A DIFFERENT PRESENTATION-----------------------------

What do you want to do now? (Type ? for help)

a
Type your new rules or equations. It or they must

be terminated by a “.”

(fib(x)+y) == dfib(x,y).

the use? adds the same equation but he per-

rmtes left hand-side and right-hand side.

Your system is now:

1 (0+x) –>X
2 (S(x)+y) ->s((x+y))
3 fib(o) ->0

4 fib(s(o)) -> s(0)
5 dfib(o,y) ->y
6 dfib(s(o),y) ->s(y)

7 dfib(s(s(x)),y) -> dfib(s(x),dfib(x,y))

8 ((X+ Y)+Z) ‘> (X+(y+Z))
9 fib(s(s(x))) -> (fib(x)+fib(s(x)))
10 (fib(x)+y) == dfib(x,y)

What do you want to do now? (Type ? for help)
kbri

REVE p~oposes the pair dfib < ~[b.

I suggest that the following ordered pair be

dfib < fib
to validate the rule

(fib(x)+y) ->dfib(x,y)

It is not enough; REVE proposes dfib <

I suggest that the following ordered pair be
dfib < +

to validate the rule

(fib(x)+y) ->dfib(x,y)

New rule added
(fib(x)+y) ->dfib(x, y)

added:

+.

added:

I am computing the critical pairs with

(fib(x)+y) ->dfib(x,y)

New rule added

(dfib(x, y)+z) ->dfib(x, (y+z))

New rule added
dfib(s(x),dfib(x,y)) -> dfib(x,dfib(s(x),y))

I am computing the critical pairs with

(dfib(x,y)+z) ->dfib(x, (y+z))

I am computing the critical pairs with
dfib(s(x),dfib(x,y)) -> dfib(x,dfib(s(x),y))

Tile theorem is p~oved. Compare uith the
previous proof.

Your convergent system is now:

1 (0+x) ->X
2 (S(x)+y) -> S((X+Y))

3 fib(o) –>0
4 fib(s(o)) ->s(0)

5 dfib(o, y) ->y
6 dfib(s(o),y) ->s(Y)

7 dfib(s(s(x)), y) ->dfib(x, dfib(s(x), y))
8 ((X+y)+Z) ‘>(X+(y+Z))

9 fib(s(s(x))) ->dfib(x, fib(s(x)))

10 (fib(x)+y) ->dfib(x, y)

11 (dfib(x, y)+z) ->dfib(x, (y+z))
12 dfib(s(x),dfib(x,y)) -> dfib(x,dfib(s(x),y))

What do you want to do now? (Type ? for help)

q

APPENDIX II.——

Proof of the termination of the examples Fig.1 and

Fig.2.

The example of Fig.1 is proved using the

recursive path ordering with “left-to-right” status
for *, and with the precedence e < * < i < f.

The example of Fig.2 is proved using the

recursive path ordering with “right-to-left” status
for /, and with the precedence e < i m / < *.

APPENDIX 111

Sketch of the definition of the recursive decompo–

sition ordering (91.

A decomposition of a term is a multiset (for
all paths in the term) of sets (for all occurrences

on the paths) of elementary decompositions. An ele–
mentary decomposition is a quadruplet

<Leader: symbol, main–fol~ower: set (elemen–

tary–decomposition), other-followers; multi–

set(term), context: set(elementary–decompo–

sition)>

The elementary decomposition of t (Fig.3) along the
path 21 at the occurrence 2is<~~,{<y,{},{} ,{}>},{z},d>

where d is the set of elementary-decompositions of
t’ along the path 2.

107

/’NQ /’\.t=
d/*\ /*:k..“=/+\

x YYlz~ x Y,. . ..-.

Fig. 3. A term and a context

The ordering on two terms is the ordering on
their decompositions, and the ordering on decompo–
sitions is obtained by set and multi set extension of
the ordering on elementary decompositions. The or-
dering on elementary decomposition is given lexi–

cographically, recursively using orderings on set

(elementary-decomposition) and multiset (terms).

NBI : The decomposition of o is the empty

multiset.

NB2: Because set(set(elementary~ecomposition))
contains enough information about the terms , we do
not need multiset(set(elementary–decomposition)) in

the definition. So only set extensions of the orde-

ring are necessary.

108

