
From Aa to AV

a journey through calculi of explicit substitutions

Pierre LESCANNE

Centre de Recherche en Informatique de Nancy (CNRS)

and INRIA -Lorraine

Campus Scientijique, BP 23!?,

F5J506 Vandowvre-l&9-Nancy, France

email: Pierre. Lesmnne@loria.fr

Abstract

This paper gives a systematic description of several calculi

of explicit substitutions. These systems are orthogonal and

have easy proofs of termination of their substitution cal-

culus. The last system, called Av, entails a very simple

environment machine for strong normalization of A-terms.

1 Introduction

The main mechanism of A-calculus is @-conversion which is

usually defined as (kv.a)b --+ a{ b/z}, where {b/z} is the

substitution of the term b by the variable z. In classical

““ Xcalculus [Bar84] the mechanism of substitution is usually

described at a meta-level by a specific and external formal-

ism, unlike A-calculi of explicit substitutions wKlch cent ain

in the same framework both the &rule and a description of

the evaluation of the substitution. Xcalculi of explicit sub-

stitutions are first order term rewrite systems. Such calculi

allow nice and uniform descriptions of implementations of

A-calculus. Three main A-calculi with explicit substitutions

have already been proposed: one called the k-calculus by

Abadi, Cardelli, Curien and L&y [ACCL91] is confluent on

pure A-terms. The others called the AuO-calculus by Hardln

and L6vy [HL89, CHL92] and }~ by Rios [Rio93], are con-

fluent on open A-terms, i.e., A-terms containing variables.

All these calculi use De Bruijn notations. In this paper we

consider the problem essentially from the point of view of

first order rewrite systems and as a consequence we system-

atically build new orthogonal calculi with explicit substi-

tutions where orthogonal means linear with no superposi-

tion [HL91]. The approach is systematic in the sense that

we try first to introduce as few forms of substitution as pos-

sible and second to design the rewrite systems by examining

the left-hand sides. Our goal is to reduce every substitution

which is amenable to a simpler form and eventually to elimi-

nate them all. These calculi are good candidates for efficient

implementations in functional programming languages or as

abstract machines. As a result of this quest we get a system

we call Av which is extremely simple. It has a rule (Beta)

Permission to copy without fee ell or part of this material is

granted provided that the copies are not made or distributed for
direct commercial advantage, the ACM copyright notice and the

title of the publication end its date eppeer, and notice ie given
that cop~”ng is by pwmiasion of the Association for Computing

Machinery. To COPY otherwiee, or to republish, requiree e fee
andlor epecific permission,

(Beta) (Ja)b + a[b . d]

(App) (ab)[s] -+ (a[s])(b[s])

(Abs) (Aa)[s] + A(a[v(l) . (. o t)])

(Clos) a[s][t] + a[s o t]
(VarId) V(l)[id] + v(i)
(VarCons) V(l)[a . s] --+ a

(IdL) ides -i s

(ShiftId) ~oid + T

(ShiftCons) T o (a. s) + s

(AssEnv) (Sot)ou + So(tou)

(MapEnv) (a. s)ot -+ W“(sot)

Figure 1: The rewrite system k (Abadl et al.)

plus seven other structurally simple rules and a somewhat

naive proof of termination. We also discuss how conflu-

ent calculi, i.e., alternatives to }Ofi, can be built and we

describe the U-machine which is an environment machine

derived from Jv. Although done quite independently, thk

study is parallel to that of Asperti [Asp92] who adopts a

categorical point of view. Connections between categorical

machines, categorical combinators and our rewrite systems

should be deepened.

2 The problem

In [ACCL91], Abadl, Cardelli, Curien and L&y propose h

a calculus with explicit substitutions which is confluent on

pure A-terms, i.e., terms without variables of type J-term.

The main idea of Au is a mechanism to denote and to evalu-

ate substitutions. Au uses De Bruijn notations for J-terms.

The reader is supposed to be familiar with them (see [Cur93]

for an introduction), For taking substitutions into account

the syntax of De Bruijn ~-terms (or kterme for short) is

slightly modified. A substitution part is added and a calcu-

lus with three sorts Terms, Substitutions and Naturals
is crested. At erms have the following grammar:

Terms a ::= V(n) I ab [Ja I U[S]
Subatitutiona s ::= idl T]a. s[sot

Naturals n ::= 1

POPL 94-1134, Portland Oragon,USA

@ 1994 AChf 0-89791 &rj-9/94/001 ..$3.50

60

(Beta) (Aa)b + a[b . id]

(App) (ab)[s] + U.[s]b[s]

(Lambda) (~a)[~l ~ ~(a[ll(~)l)
(Clos) a[s][t] + a[s o t]
(VarShift 1) V(n)[~] + V(S(n))

(VarShift2) V(n)[T’ 0s] -+ V(S(n))[s]
(FVarCons) V(l)[a . .9] ~ a

(FVarLiftl) V(l)[fi(’)1 + v(l)
(FVarLift2) v(l)[~.) o t] + V(l)[t]

(RVarCons) V(S(n))[a . s] + V(n)[s]

[RVarLift 1) V(S(n))[fi(s)] + V(n)[s o ~]

~RVarLift2) V(S(n))[~s) o t] + V(n)[s o (t o ~)]

~AssEnv) (Sot)ou -+ So(tou)

~MapEnv) (a. s)ot -+ cz[t]. (sot)

,ShiftCons) To (a..) + s

(ShiftLiftl) to~s) --) SOT

(ShiftLift2) To(ft(s)ot) -+ So(tot)
(Liftl) fi(s)o tit) + ~s o t)
(Lift2) ll(~)o(fl’(t)o’u) + ll(sot)ozt
(LiftEnv) O(s) o(a. t) ~ a.(sot)

(IdL) ides + S

(IdR) soid ~ s

(LiftId) ~id) + id

(Id) a[id] ~ a

[V(n)k

[S(n)ll
[1],
[ab]l
[Aa]l

[a[s]],
[a. s],

[Tnl
[id],

[s0 t],

[0 (s)11

[V(n)],

UXn)12
~1],
[ab]z
[Ja]z

[a[s] 12
[a. S]Z

[T12
[id]z

[so t],

[l? (5)12

=
——
——
=
——
=
——
——
.—
=
——

.—

.
——
—
——
——
——
——
.
=
——

2

[s], [t],
[s]1

[nib
[n]2
2
[a]z + [b]z + 1
2[a]z

([a]z[s]z) + [cz]2

[a]z + [s]2 + 1

2

t[s]z[t]z) + [s],

4[s]z

I

Figure 3: interpretations for the termination of rrfi

Figure 2: The rewrite system Aufi (Hardin and L&y)

a[s] is called a closure and is the result of applying the sub-

stit ution s to the term a. Thus every variable is represented

by V(n)l where n is a positive natural number. In their Au-

calculus, Abadl et al. propose two constant substitutions,

identity denoted by id and shifl denoted by T. t assigns to

the variable V(i) the term V(S(i)), that is

T: V(1)+ V(2), V(2) M V(3),..., V(i) H V(S(i)),...

Notice that since V(i)[~] = V(S(i)) there is no need for

natural number notations, in particular S is not necessary.

The Ja-calculus also has a cons operation that modifies a

substitution as follows. If a is a term and s a substitution,

then a . s is the substitution

as: V(l)Ha

v(2) l-+ S(v(l))

V(S(i)) i+ s(V(i))

Substitutions need also to be composed, and so the operator

o is proposed for this, The rules of ,b are given in Figure 1.

The system u, i.e., k\ {Beta}, is confluent (with 10 conver-

gent critical pairs) and strongly normalizing. However Ja

is not confluent on open A-terms, but only on pure closed

A-terms.

1We introduce this V explicitly for at least two reasons. First for
proving termination we give an interpretation of this operator: it is
therefore useful to write it explicitly. Seecmd, a. we will see later,
natural numbers will be used elsewhere in the calculus,

A confluent calculus called Jut was proposed by Hardin

and L&y [HL89, CHL92] (Figure 2). A new operation on

substitutions called Lifi and denoted by fi is introduced as

n(s) : v(i)++ v(i)
v(2) t+ s(v(l))[~]

V(S(i)) * s(V(i))[~]

fi (s) can be seen as an abbreviation of V(i). (s o T). It

makes the rule Abs structurally simpler. The grammar of

~ufi is

Terms a ::= V(n) I ab I Au I a[s]

Substitutions s ::= idl~jfj(s)la. sl sot
Naturals n ::= S(n) I 1

The sub-system Ufi, i.e., Aafi \ {Beta} is strongly normaliz-

ing. Its proof of termination is an easy game for ORME [Les92]

which uses its implementation of elementary interpretations

(see below the discussion on the proof of termination of 4).

Here we use a lexicographical composition of two elementary

interpretations (Figure 3). Using this, the proof of conflu-

ence of at can be fully mechanized in the completion pro-

cedure implemented in ORME [Les90]. 59 critical pairs are

computed.

3 The kj-calculus

In this section we start constructing systematicfly a ca.lcu-

lus called # for substitutions. To guide a systematic con.

struction we apply two principles. First, since the goal of

61

(Beta)

(App)

(Lambda)

(VarId)

(FVarCons)

(RVarCons)

(FVarLift)

(RVarLift)

(VarPhiId)

(VarPhiPhi)

(FVarPhiCons)

(RVarPhiCons)

(FVarPhiLift)

(RVarPhiLift)

(Phlsl)

(Phlss)

(~a)b

(ab)[s]

(Aa)[s]

V(n)[zd]

V(l)[a . s]

V(S(n))[a . 9]

V(i)[fi (s)]

V(S(n))[fi (9)]

V(n)[@(id, p)]

V(n)[@(@(s, q), p)]

V(l)[@(a. s,p)]

V(S(n))[@(a. s,p)]

V(i)[qfi (S),p)]

V(S(n))[@(fi (s), p)]

n+l

n+S(m)

-+
-+
-+
+
+
--)

-+

4

+

+

-i

-+

-i

-+
-+

ab. id

a[s]b[s]

J(a[tis)])

V(n)

a

V(n)[s]

v(1)
V(n)[@(s, 1)]

V(n + p)

V(n)[@(s, q+p)]

a[@(id, p)]

V(n)[@(s,p)]

V(s(p))

V(n)[@(s, S(p))]

S(n)

S(n + m)

I

Figure 4: The rewrite system Aq$

r
—

[(/:)}: =
—

[1], =

[ab]l =

[Ja]l =

[a[s]]1 =

[a. 5]1 =

[id], =

[f-r (s)11 =
[@(s,P)ll =

[p+ q], =

[n]l u&y22 = [n],

[n]l = [n]z + 1

2 [1]2 =2

[a]l + [b], [ab]z = [a]z + [b]z + 1

[a]l + 1 [Aa]z = [a]z

[a]l[s]l [a[s]]2 = [a]z([s]z + 1)

[a]l + [s], [a. s], : y], + [s],

2 [id]z

[s]1 [II (5)12 = 4[s]2

[SI1([PI1 -1) [@(5,P)12 = l1512(b12 + 1)
b], + [9]1 -2 up+ q]2 = b]z + 2[q]2

Figure 5: Interpretations for proving the termination of+

App o
[Lam~da) S1–l>o

(VarId) nl>o

(FVarCons) al-1- 2sl>0

(RVarCons) nlal >0

(FVarLift) 2s1–2>0

(RVarLift) o

(VarPhiId) 2nlpl–3nI–pI+2>0

(VarPhiPhi) nl$l(pl – 2)(ql – 2) ~ o
(FVarPhiCons) 2sl(pl -1) >0

(RVarPhiCons) nlal(pl - 1)> O
(FVarPhiLift) 2slpl – 2s1 – pl >0

(RVarPhiLift) o

(Plusl) o
(Pluss) o

S2>0

n292-t-4s2+l>o

n2s2p2(q2 – 1) >0

h2 S2P2 + 2nz S2

+h2Pz-+b2+l>o

3>0
1>0

Figure 6: Inequalities occurring in the proof of termination of@

62

a calculus is to build normal forms that do not contain any

substitution, @ provides a reduction for every term that con-

tains a substitution. This may require introducing new op-

erators, but — this is the second principle — we do this only

when necessary, in other words when already introduced op-

erators do not allow us to describe a reduced form. We will

see that actually both u and UO contain superfluous opera-

tors, namely o and t. A systematic successful construction

should provide an orthogonal rewrite system, i.e., a linear

rewrite system without superposition, This is the case for ~.

Since a non reduced form is a term that contains a substitu-

tion part, we have to consider for reduction only terms of the

form cz[~ and provide a reducing rule for each pattern. At

first we have four operators for terms, namely application,

abstraction, closure and variable naming, and two opera-

tors for substitutions introduced by the Beta rule, namely

o and id. We proceed by case. We design left-hand sides
by pattern refinement and right-hand sides according to the

underlying semantics as described in Section 2 or that given
by the system a.

● g is an application. This means that the term

form (ab)[s], and naturally we get the rule:

(App) (ab)[s] -+ (a[s])(b[s]).

● g is an abstraction. Thk means that the term

has the

has the

form (Ja)[s]. To reduce it one needs to introduce a

new operator that transforms s and produces a new

substitution H (s) to be put under). After Hardin et

al., we denote this operator O. We get their rule:

(Lambda) (X.Z)[s] - ~(a[fj-(s)]).

● g is a closure. This means that the term has the form

a[s][t]. In this case there is no need for a rule. In-

deed we introduce the induction hypothesis that the

system reduces any term with a substitution part, so

by induction it must reduce a[s].

● q is a variable. This will now constitute the rest of this

paragraph.

We consider terms of the form V(n)[sj and work by case

on patterns for substitutions. Two cases may arise: for a

pattern s the effect of ~ on V(n) can be described by a unique

rule with left-hand side V(n) [~ (prefixed by Var in ho

terminology) or thk description requires two rules with left-

hand sides V(i)~ (prefixed by FVar in Jan terminology)

and V(S(n))[~ (prefixed by RVar in Jofi terminology) .

0 g is just id. one rule is enough, which is simply:

(VarId) V(n)[id] ~ V(n).

o s has the form a . s. Two rules are necessary namely:

(FVarCons) V(l)[a. s] ~ a

(RVarCons) V(S(n))[a . s] ~ V(n)[s].

o g has the form fi (s). Two rules are necessary, the first

rule is trivially:

(FVarLift) V(l)[fi (s)] ~ V(l).

The second rule cannot be expressed directly, as its

right-hand side would be s o ~ in u. This requires the

introduction of a new operator

Then we get the rule

(RVarLift’) V(S(n))[fl (s)]

Let us further consider patterns

temporarily called p.

-+ V(n)[p(s)].

of the form

V(n)[P(s)l

and more specifically a pattern of the form

V(n)[p(yr(s))]

which would represent V(n)[(s o ~) o ~]. Since

we have no way to describe the reduction of such a

pattern, we decide (eureka!) to represent s o TP

by a unique operator @(s, p) and we forget p. As-

perti [Asp92] denote this tp (s) and calls it a shift

combinator. We get the rule:

(RVarLift) V(S(n))[fi (s)] ~ V(n)[@(s, 1)]

Now we have to reduce patterns containing @.

o g has the form @(@(s, p), q). We get the rule:

(VarPhiPhi)

V(n)[@(@(s,p), q)] - V(n)[@(s,p + q)].

This will later requires us to introduce rules for +.

o g has the form @(id, p). We get the rule:

(VarPhiId) V(n)[@(id,p)] -+ V(n + p).

It is interesting to notice that we exploit the fact that

@ and V use the same naturals, hence the need for a

special notation V for variables.

o g has the form @(a c s, p). We get the two rules:

(FVarPhiCons)

V(l)[@(a. s, p)] ~ a[@(id, p)]

(RVarPhiCons)

V(S(n))[@(a . s, p)] ~ V(n)[@(s, p)].

o g has the form @(fi (s), p). We get the two rules:

(FVarPhiLift)

v(l)[@(fi (S), p)] + V(s(p))

(RVarPhiLift)

V(S(n))[@(fi (s), p)] + V(n)[@(s, S(p))].

All the patterns have been exhausted, but we now need two

rules for + in positive natural numbers:

(Plusl) n+l ~ S(n)

(PIusS) n+S(m) -+ S(n + m).

Then we get the orthogonal system of fifteen rules for # given

in Figure 4. A+ is the system @ U {Beta}. The grammar of

A+ is:

Terms a ..– V(n) I ab I la] a[s]..—

Substitutions s ::= idla.s / O(s) l@(s, n)

Naturals n ::= S(n) I 1

63

Termination of + and confluence of k#I

Before speaking about proofs of termination, let say a few

words about the interpretation method. It relies on the

naive idea that for proving termination of rewrite systems

it is natural to associate a natural number [t] with each

ground term t and to prove that rewriting always decreases

thk number. But since the rewrite relation is usually a rela-

tion between open terms (terms with variables) the best we

can do is to associate with a term t(zl, . . . , zW) a function

over the naturals

[t(z,,..., zn)](x,, xn), xn)

that we call an interpretation. Interpretation are extended

to terms from interpretations given for basic operators: A, @,

id, etc. in our case. Proving that a rewrite system (1, - T;)

terminates boils down proving that the function [l,] bounds

the function [~;], i.e., for all its values. If we allow any kind

of interpretation, this may be a hard problem, but most of

the time one restricts the interpretations to be polynomi-

als or polynomials and exponential (elementary functions).

The problem remains undecidable, but heuristics, imple-

mented in ORME, cover a large scope and most of the known

examples of proof of termination based on polynomial or el-

ementary interpretations fall in that scope [Les92]. This is

the case for an. Note that an extension of the interpreta-

tion method has been devised by Hans Zantema [Zan93] to

provide a proof of termination of a (a hard problem).

The proof of the termination of ~ is simple and can be

made using the polynomial interpretations of Figure 5 sug-

gested by Paul Zimmerman. We see that for each term t
and for i = 1, 2, [t]; > 2. The array of Figure 6 gives for each

rule the sign of the difference between the interpretation of

the left-hand side and that of the right-hand side with the

conventions [n]l = 721, [s] I = sl, ~]1 = pi..., [n]z = n2,

[s], = 5,, etc.

The proof of the confluence of Ao on closed terms is ex-

actly like that of JO proposed by Abadl et al. [ACCL91] ex-

cept that in their Proposition 3.1 one should write U(O al .

az Jam . @(id, p)]) instead of a(a[al . a2 am. T)]).

The ,@calculus

With . and the operator @ at hand it is possible to g~t rid

of O. This can be done in the calculus that we call +. In

this calculus we rename the rule Lambda as LambdaPhi and

we state it as:

(LambdaPhi) (kz)[s] -+ A(a[I . @(s, I)])

Then rules App, Varld, FVarCons, RVarCons, VarPhiId,

VarPhiPhi, F VarPhzCons, RVavPhiCons are the same and

we get the rewrite system ~ with only eleven rules which is

also orthogonal (Figure 7). The grammar of X? is:

Terms a ::= V(n) I ab \ k. I a[s]
Substitutions s ::= id Ia. s I+(s, n)

Naturals r-l ::= S(n) \ 1

Its proof of termination relies on a similar interpretation as

#, which is given in Figure 8.

4 The A@-calculus

Our principle of introducing operators by need was not ap-

plied to rule (Beta). However Rios [Rio93] has done that in

his calculus (Figure 14). Indeed he introduces a new opera-
tor he calls / and the rule becomes:

(Beta.) (Ja)b ~ a[b/]

and a systematic construction can again be done. As pre-

viously the rule Lambda requires the introduction of an

operator O eliminated by the rules F VarLijt and RVarLift
which in turn introduces the operator @. Two rules FVar

and RVar eliminate /. The rule F VarPhiSl with left-hand

side V(l) [@(a/, p)] requires introducing an operator V (~(p)

means t=), which is eliminated by one rule namely:

(VarPsi) V(n)[V(p)] 4 V(n + p).

We still have the rule FVarPhiLifl, RVarPhiLifi, VarPhiPhi
and we need a new rule we call Varphipsi for eliminating V

inside @. The grammar of Ai is:

Terms a ::= V(n) I ab I ~a I a[s]

Substitutions s ::= a/ I f! (~) I @(sjn) I T(n)
Naturals n ::= S(n) I i

For proving the termination we take an interpretation very

similar to that of Ad (Figure 10). We give the same array

as for ~~ with only the new rules (Figure 11).

5 The Av-calcuh.rs

In Av, @ was introduced to eliminate ~ in

V(S(n))[fi (s)].

Six rules were necessary to eliminate @, but these rules in-

troduced V and + for which respectively one and two rules

were necessary. In thk section we propose a very simple

calculus that uses a trick in describing the right-hand side

of V(S(n))[fi (s)] (rule RVarLift”). As before we keep the

rules Bet~, (App), (Lambda), (FVar), (RVar) and (RVar-

Lift). For the rule (RVarLzjt) we remember p and we rein-

troduce the rule

(RVarLift>) V(S(n))[fi (s)] -+ V(n)[p(s)].

Thk leads to the rule

(FVarphiSl) V(i)[p(a/)] ~ a[f]

where the newly introduced operator is naturally written t

and called shift. Shift is naturally associated with the rule:

(VarShift) V(n)[T] -+ V(S(n)).

Here now is the trick. Since T would be introduced anyway,

let us try to minimize the number of operators by replacing

(RVarLifl’) by:

(RVarLift”) V(S(n))[fi (s)] + V(n)[s][t].

We then get the very simple system given in Figure 12 that

we call Au (read lambda-upsilon). It has only 7 + 1 rules, 3

substitution operators and its left-hand sides are elegantly

simple. Its proof of termination checked by ORME is given

by the elementary interpretations of Figure 13. / can take

any interpretation and the second interpretations are only

for orienting (RVarLijt”) and (VarShift] and therefore need

to be known on .[.], fi, t, V and S.

64

(Beta)

(App)

(LambdaPhi)

(VarId)

(FVarCcms)

(RVarCons)

(VarPhiId)

(VarPhiPhi)

(FVarPhiCons)

(RVarPhiCons)

(Plllsl)

(Plus.s)

(Aa)b

(ab)[s]

(Aa)[s]
V(n)[id]

V(l)[a . s]

V(S(n))[a . 9]

V(n)[@(id, p)]
V(n)[Q(@(s, q), p)]

V(l)[@(a os,p)]

V(S(n))[@(a . s,p)]

n+l

n+S(m)

-+

--+
-+
-+
-+
+
-+
+
+
+

-+

a[b . id]

a[s]b[s]

~(a[V(l) . @(s, 1)])

V(n)

a

V(n)[s]

V(n + P)
V(n)[@(s, q + p)]

a[@(id, p)]

V(n)[@(s, p)]

S(n)

S(n + m)

Figure 7: The rewrite system Ad

Figure 8: Interpretations for proving the termination of ~

(Beta.) (Aa)b ~ a[b/]

(App)

(Lambda)

(FVar)

(RVar)

(FVarLift)

(RVarLift)

(FVarPhiSl)

(RVarPhiSl)

(FVarPhiLift)

(RVarPhiLift)

(VarPhiPhi)

(VarPhiPsi)

(VarPsi)

(Plusl)

(Pluss)

(ab)[s]

(Aa)[s]

V(l)[a/]
V(S(n))[a/]

V(i)[fi (s)]

V(S(n))[fi (s)]

V(i)[@(a/, p)]

V(S(n))[@(a/, p)]

v(l)[@(fi (S), p)]

V(S(n))[@(fi (s), p)]

V(n)[@(4?(s, q), p)]

V(n)[41(V(q),p)]

V(n)[iI?(p)]

n+i

n+S(m)

+ a[s]b[s]

+ A(a[tis)])

*a

-+ V(n)

+ v(i)

+ V(n)[@(s, i)]

~ a[~(p)]

~ V(S(n + p))

+ V(s(p))

~ V(n)[@(s, S(p))]

~ V(n)[’%’(s, q + p)l

~ V((n + q) + P)

+ V(n + p)

-+ S(n)

-+ S(n + m)

Figure 9: The rewrite system A$

65

I

V(n)]l =

S(n)]l =

:1]1 =

ab]l =

~a]l =

a[s]]1 =

,fl (s)], =

:l’(s, p)]l =

p+q]l =

:V(p)j, =

a/]1 =

[nj,

[n],
2

[a], + [b],

[a]l + 1

[a]~[s]l

[s]1

[SI1(IIPII -

bnl + [qnl

[Pll
[a], + 1

1)

–2

[V(n)]2

[S(n)]2

[1]2

[ab]z
[Aa]z

[a[s]]2

[t (’)12
[@(s,p)]2

1P+ 0

u~(P)I12
[allz

= [rl]2
= [n]z + 1

=2
= [a], + [b]2 + 1

= [a]z

= [a]z([s]2 + 1)
= 4[.]z

= [S]2(UP]2 + 1)

= k]2 + 2[f7]2

= 5P]2

= [a]2

Figure 10: Interpretations for the termination of@

L
FVar

(RVar)

(FVarPhiSl)

(RVarPhiSl)

(VarPhiPsi)

(VarPsi)

al+2>0
nla~ >0

alpl+2pl —2al —2>0
nlalpl –nlal +nlpl –2nl –pl +2 >0

nlglpl–nlql–nl–ql–pl+ 4>0

7zl P1-7m-Pl+2>o

Figure 11: Inequalities occurring in the proof of termination

of $

(Beta.) (Aa)b ~ a[b/]

(App) (ab)[s] ~ u[s]b[s]

(Lambda) (Aa)[s] ~ ~(a[~.s)])

[m] V(l)[a/] ~ a
V[S(n))[a/] ~ V(n)

(FVarLift) V(i)[fi (s)] + v(1)

(RVarLift”) V(S(n))[fT (s)] -+ V(n)[s][~]

(VarShift) V(n)[t] A V(S(n))

Figure 12: The rewrite system ~v

Z[n],

[n], + 1

2

any

[V(n)]2 =

[S(n)]2 =

[a[s]]2 =
IIfi (’3)12 =

[T], =

pun],

[n]2 + 1

[a]z[s]z

[s]2 + 1

2

I

Figure 13: Interpretations for the termination of v

(BetaT) (Aa)b

(App)

(Lambda)

(Clos)

(AssEnv)

(MapSl)

(FVar)

(FVarLiftl)

(FVarLift2)

(shift)

(ShiftLift 1)

(ShiftLift2)

(Lift 1)

(Lift2)

(IdL)

(IdR)

(LiftId)

(Id)

(ab)[s]
(Aa)[s]

a[s] [t]

(Sot)ou

a/es

V(l)[a/]

v(l)[~s)]

V(i)[fi(s) o t]

~oa/

t o ~s)

~ o (~s) o t)

fls) o tit)

~s) o (tit) o u)

ides

soid

11$]

-+

-+
-+

--+
-+
-+

-+
+
+

7m-----

a[s]b[s]
,l(a[fi(s)])

a[s o t]

So(tou)
O (s) o a[s]/

a

v(1)

V(l)[t]

id

sot
So (tot)

~s o t)

~sot)ou

s

s

id

a

Figure 14: The rewrite system Jr

The grammar of Av is:

Terms a ::= V(n) \ ab I ~sz] a[s]

Substitutions s ::= all fr(s)l t
Naturals n ::= S(n) I 1

Section 7 gives a machine for strong reduction of A-calculus

derived from Jv.

6 A systematic construction of confluent calculi

As sketched in [ACCL91] it is also possible to use systematic
methods for computing confluent calculi. The main idea is

to introduce the rule (Beta) and to complete the system in

order to make it at most locally confluent. Without interac-

tion with the user, the completion process usually diverges,

but based on the intended semantics, there are ways to avoid

such a divergence (see [Her88]), Let us give some principles

used in the case of Acalculus.

● Generalize any rule of the form a[s] ~ a[t] or fi (s) -+

O (t) to a rule s ~ t,indeed if a substitution has the

66

(Beta)

(App)

(Lambda)

(Clos)

(AssEnv)

(MapEnv)

(FVarCons)

(ShiftCons)

(FVarLift)

(FVarLift’)

(ShiftLift 1)

(ShiftLift2)

(VarPhiId)

(VarPhiId’)

(PhiPhi)

(FVarPhiCons)

(FVarPhiCons’)

(VarPhiCons)

(VarPhiCons’)

(FVarPhiLift)

(FVarPhiLift’)

(VarPhiLift)

(VarPhiLift’)

(ShiftPhi)

(ShiftPhi’)

(Liftl)

(Lift2)

(LiftEnv)

(IdL)

(IdR)

&tId)

(Plusl)

(Pluss)

(PIusA)

(Aa)b -+ a[b. id]
(ab)[s]

(Aa)[s]

a[.s] [t]
(Sot)ou

(a. s)ot

V(l)[a . s]
~o(a. s)

V(l)[fi (s)1
V(l)[fi ($) o t]

To fi(s)

t o (fi(s) o t)

V(n)[@(id, p)]
V(n)[@(id, p) o t]

@(@(s, q), p)

V(l)[@(a. s,p)]

V(l)[@(a. s,p) o t]
~o~(a. s,p)

To(@(a. s,p)ot)

v(l)[@(~s), p)]

v(l)[lq~s), p) o t]

t o @(~.s), p)

‘T o (i$(~s),p) o t)

~ o @(id, p)

~ o (@(id, p) o t)

fls)o fit)

ff’(s) o (tit) o u)

~s) o (a. t)

ides

soid

Mid)

a[id]

n+l

n+S(m)

n+(m + p)

+ a[s]b[s]

--+ A(a[~s)])

+ a[s o t]
+ So(tou)

~ a[t] . (s o t)
+ir
+s

--+ v(1)
+ V(l)[t]
+ sot

+ so(~ot)

-+ V(n + p)

-+ V(n + p)[t]

+ @(s, q + p)

~ a[@(id, p)]

~ a[@(id, p) o t]

+ @($, p)

+ @(s, p) o t

-+ V(s(p))
+ V(s(p))[t]
-+ *(S, s(p))
+ @(s, s(p)) o t

+ @(id, S(p))

-+ @(id, S(p)) o t

+ ~sot)
+ ~$ot)ozs

+ a. (sot)

+s
+s

+ id
-a

- S(n)

-+ S(n + m)

~ (n+ m)+p

Figure 15: The rewrite system ~~fi

same effect on any terms we can declare that they are

equal and that O is one-to-one. Actually due to rules

(App) and (Lambda) we may also generalize rules of

the form V(n)[s] --t V(n)[t] to s -+ t. Similarly, rules

of the form Aa ~ Jb are generalized to a + b.

● Divergences are often generated by terms of the form

a[s][t] = b[~’][t’] when s o t or s’ o t’ or both can be
reduced by rules (AssEnv) and other rules that include

o. Therefore in an attempt to get a confluent system by

completion introduce o and rules (Clos) and (A ssEnv).

c Replace variables V(S(n)) by V(n)[T].

If we apply this method to Av we get Ar of Rios (Fig-

ure 14) and if we apply this method to Ao, we get the system

~q$fi (Figure 15). --

7 The U-machine

This journey will be a success if it ends with the con-

st ruction of an abstract machine for normalizing ~-terms.

Actually in A-calculus there are two kinds of normalizations:

weak and strong. Weak normal forms are terms with no ,f3-

redex at the root. Weak normalization is a process to get

weak normal forms, it is typically the reduction in functional

programming languages like ML or HASKELL. In addition

to the above mentioned ,&redexes strong normalization al-

lows also reduction of @redexes occurring under A, i.e., in

the subterm a of a term of the form Au or of ,B-redexes oc-

curring in the parameter part of a variable function, i.e., in

a subterm a, of a term V(n)al . . . aP. In a strong normal

form there is no @redex at all. Strong normalization is an

interesting tool for manipulating functional programs in par-

ticular for simplifying them. It is also used in higher order

theorem proving. Strong normalization is usually harder to

describe. In our case, it requires recursively creating new in-

stances of the machine. These machines are called to reduce

a specific term, say t,in a specific environment, say e. Such

calls are writ ten nf (a, e) in the sequel. The called machines

produce results used by the calling machine. To perform

a somewhat faithful strong normalization, it is essential to

design a machine that does a reduction only when necessary.

For designing our machine that we call the U-machine,

we proceeded from the following natural idea. If Jv is sim-

ple then it should entail a conceptually simple machine for

(weak and strong reduction) normalization of A-calculus.

We did not start form scratch since the U-machine has simi-

larities with a former machine due to Krivine and described

by P.L. Curien in his book [Cur93] (see also [Cr490]). The

U-machine is easy to explain since it sticks closely to Au

and relies on normalization in this calculus. Since its basic

transitions are strongly related to the rules of Av, we keep

the same name for them.z

The U-machine is an environment machine. It has states
made of three components: a term, an environment and a

stack. Each non-final state is matched by one instruction

or transition (the machine is deterministic) and the state is

modified according to the right-hand side of the correspond-

ing transition. Environments in the U-machine are lists of

actions to perform on variables. These actions are pairs of

the form (c, i), where the index i is the number of Lift’s to

do before performing more elementary actions, and c is ei-

ther a shift ~ or a closure that is a pair (a, e) of a term and

an environment. Closure (a, e) corresponds more or less to

the substitution a[s,]/ where s, is associated with the envi-

ronment e (see the function < below). The action ((a, e), O)

on the top of the current environment should be understood

either as “Evaluate the term t in the environment e and
return it as value” if the term in the state is the variable

V(l) or as “Skip this action and decrease the number of
this variable” if the term in the state is a variable which is

not V(l). This corresponds to rules (FVar) and (RVar) in

Au. In transition (APP) applied to term ab the evaluation

of the term b in the current environment is delayed. A clo-

sure is created and put on a stack for further evaluation if

necessary. A state of the U-machine has three components

and therefore its structure is:

state = term x env x stack
env = ((~ U closure) x IN) list
closure = term x env

stack = closure list

2except for the transit ion (LEA -BE T) which is a combination of

(Lambda) and (Beta.).

67

(ah, e,p) -~ (a, e,(b, e) ::p) (APP)

(k., e, (b, e’) :: p) -~ (a, Lift.env(e) @ [(b, e’), o],p) (LBA - BET)

(V(l), (c, i + 1) :: e,p) ~ (V(l), e,p) (FVARLIFT)

(V(S(n)), (c, i + 1) :: e,p) -... (V(n), (c, z) :: (T, O) :: e,pj (RVARLIFT”)

(V(l), ((a, e), O)::e’, p) ~ (a)e @e’, p) (FVAR)

(V(S(n)), ((a, e), O)::e’, p) ~ (V(n), e’, p) (RVAR)

(V(n), (T, O)::e,p) -; (V(S(n)), e,p) (VARSHIFT)

Figure 16: The U-machine

reference

F

thas paper

thu paper

thas papev
thts papeT

[Rio93]
thts paper

confluent

x

?
?

substitution part and use De Bruijn’s notations. Elements

of stack are denoted byp (for the French word “pile”). An

operation Lift-env transforms environments by adding 1 to

every index. It is used in the transition (LBA-.BET) where

one needs to lift a whole environment. It is defined by

Lift-env([]) ~ []
Lift_env((c, i) :: e) -+ (c, i+l)::Lift_env(e)

The operator _@ . appends one environment to another.

It is used in transitions (LBA-BET) and (FVAR). In a

good implementation, both Lift-env and _@. are called by

need, that is they are evaluated on just the part of the en-

vironment that is necessary for enabling a further transi-

tion. The U-machine has seven transitions (see Figure 16).

This way, it performs weak normalization. In particular,

if (a, [],[])~(b, [],[]) and no more transition can apply,

then b is the weak normal form of a. Two kinds of state are

not reducible by any transition, namely states of the form

(AI-z, e[]) and states of the form (V(n), [],p) Strong nor-

malization reduces those states. For that we also introduce

two inference rules that correspond to recursive calls to the

machine.

orth. subst. OPS.

id. to

x

x

x
x

size

10

23

15

11

15

7

17

34

Figure 17: Summary of calculi of explicit substitutions

term’s are De Bruijn’s pure lambda-terms, i.e., they have no from nf(a, []). The interpretation f of a state is

f(a, e,[(bl, ei),..., (bq, eq)]) = a[e]h[e,]... bq[eq]

where a[e] = a[sl; . . . ;sgl means a[sl] . . . [s~], a[(b, e), i] means

a[fi’ (~[e]/)] and a[~, i] means a[ff (~)]. The same holds for
the b, ‘s, therefore each state describes a A-term with sub-

stitution of the Au-calculus. A proof of correctness of the

U-machine is based on Av and comes from the facts that

~(a, e,[(bl, el),..., (bg, e~)])

*

((a’, e’, [(bj,e~~, (b~,e~)l)

iff

(a, e,[(b~, e~),..., (bg, eg)])
*

(a’, e’, [(b~, ej~,..., (b~, e~)])

(a,e,[]) -.!.+ (Ab,ef,[])

nf(~,~l _ A nf(b, Llft-env(eJ)J
(L)

-f

(a,e,[]) ~ (V(n),[],[(bi,el);(bq.eq)])

nf(a,.) - v(m) nf(bl,el)... nf(bq,eg)
(v)

nt

The strong normal form of a term a is the value computed by

nf(a, []), i.e., the term we get when all the nf’s are eliminated

and

nf(a, []) .$ b iff a~b iff a~b
Xv s

8 Conclusion

Although systematic, this paper rests on some intuitions.

Basically we can say that the creation of the adequate op-

erators, the design of left-hand sides and their reduction is

systematic whereas the design of the right-hand sides (rule

(RVa~Lift”) for instance), the proof of termination and

the generalization of operators (from ~ to @ for instance)

require invention. This paper cent ains many tables, but we

68

feel that a final one (Figure 17) would be useful to summa-

rize the results obtained. It gives for each system its name,

a reference to a paper where it is presented, its confluence

on open terms (x means proved, ? means conjectured), its

orthogonality, the operators it uses to describe substitutions

and its size, i.e., the number of its rules not including (Beta).

Currently we are examining the design of concrete ma-
chines for efficient evaluation of A-calculus, derived from the

U-machine, and we are comparing our approach with cat e-
gorical machines.

Acknowledgment: 1 would like to thank people who helped

me during this research: Paul Zimmerman, Jocelyne Rou-

yer, Alejandro R.ios, Roberto Amadio, Wayne Snyder, Pierre-

Louis Curien, Miki Hermann, Jean-Luc R6my, Christian

Guyot, the research group EURECA in Nancy and the GDR

Programmation.

References

~ACCL911 M. Abadi, L. Cardelli, P.-L. Curien, and J.-J.

[Asp92]

[Bar84]

[CHL92]

[Cr690]

[Cur93]

[Har92]

[Her88]

[HL89]

L6vy. Explicit substitutions. J. of Functional
Programming, 1(4):375-416, 1991.

A. Asperti. A categorical understanding of en-

vironment machines. J. of Functional Program-

ming, 2(1):23-59, January 1992.

H. P. Barendregt. The Lambda- Calculus, its

syntax and semantics. Studies in Logic and

the Foundation of Mathematics. Elsevier Science

Publishers B. V. (North-Holland), Amsterdam,

1984. Second edition.

P.-L. Curien, Th. Hardin, and J.-J. L6vy. Conflu-

ence properties of weak and strong calculi of ex-

plicit substitutions. RR 1617, INRIA, Rocquen-

court, February 1992.

P. Cr&gut. An abstract machine for the normal-

ization of X-calculus. In Proc. Conj. on Lisp and

Functional Programming, 1990.

P.-L. Curien. Categorical Combinators, Sequen-

tial Algorithms and Functional Programming.

Birkhauser, 1993. 2nd edition.

T. Hardin. Eta-conversion for the languages

of explicit substitutions. In H. Kirchner and

G. Levi, editors, Proc. 3rd Int. Conf. on Alge-
braic and Logic Programming, Volterra (Italy),
volume 632 of Lecture Notes in Computer Sci-

ence, pages 306–321. Springer-Verlag, September

1992.

M. Hermann. Vademecum of divergent term

rewriting systems. Research report 88-R-082,

Centre de Recherche en Informatique de Nancy,

1988.

Th. Hardin and J.-J. L&y. A confluent calcu-

lus of substitutions. In France-Japan Artificial

Intelligence and Computer Science Symposium,

Im, 1989.

[HL91]

[Les90]

[Les92]

[Rio93]

[Rit92]

[Zan93]

G. Huet and J.-J. L&y. Computations in orthog-

onal rewriting systems, I. In J.-L. Lassez and

G. Plotkin, editors, Computational Logic, chap-

ter 11. The MIT Press, 1991.

P. Lescanne. Implementation of completion by

transition rules + control: ORME. In H. Kirch-

ner and W. Wechler, editors, Proc. 2nd lnt. Conf.

on Algebraic and Logic Programming, Nancy

(France), volume 463 of Lecture Notes in Com-

puter Science, pages 262–269. Springer-Verlag,

1990.

P. Lescanne. Termination of rewrite systems by

elementary interpretations. In H. Kirchner and

G. Levi, editors, Proc. $rd Int. Cont. on Alge-
braic and Logic Programming, Volterra (Italy),
volume 632 of Lecture Notes in Computer Sci-

ence, pages 21–36. Springer-Verlag, September

1992.

A. Rios. Contributions b 1‘Ltude des A-calculs

avec des substitutions explicates. Th&se de Doc-

torat d’Universit&, U. Paris VII, 1993.

E. Ritter. Categorical Abstract Machines for

Higher- Order Typed Lambda Calculi. PhD thesis,

Cambridge U., ‘IXnity College, September 1992.

H. Zantema. Termination of term rewriting by in-

terpretation. In M. Rusinowitch and J.L. R&my,

editors, Conditional Term Rewriting Systems,
proceedings third international workshop CTRS-

92, volume 656 of Lecture Notes in Computer Sci-

ence, pages 155–167. Springer, 1993. Full version

appeared as report RUU-CS-92-14, Utrecht Uni-

versity.

69

