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ABSTRACT. Common knowledge logic is meant to describe situations of the real world where
a group of agents is involved. These agents share knowledge and make strong hypotheses on
the knowledge of the other agents (the so called common knowledge). But as we know, the real
world changes and mostly information on what is known about the world changes as well. The
changes are described by dynamic logic. To describe knowledge changes, dynamic logic should be
combined with logic of common knowledge. In this paper we describe experiments which we have
made about the integration in a unique framework of common knowledge logic and dynamic logic
in the proof assistant COQ. This results in a set of fully checked proofs for readable statements.
We describe the framework and how a proof can be conducted.
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1 Introduction
Common knowledge logic is about knowledge on the world, whereas dynamic logic is about
changes of the world. Both are presented as modal logic. In this paper we propose to
analyze reasoning in a combination of those logics through a mechanization by a proof
assistant.

By experience, we know that the knowledge we have of the world is not perennial,
but is meant to evolve. Therefore, any faithful and complete approach of reasoning of
agents about their surrounding world requires to take that evolution into account and to
combine a logic that describes the state of the knowledge at a given time and a logics that
accounts the changes due to external events. This kind of work is known as belief revision
(or knowledge revision in our case) and is advocated by Johan van Benthem [20]. In this
paper, following the work of [2, 3, 19, 20, 21], we combine two logics: the second logic
is common knowledge logic [1, 6, 10, 13] and the second one is dynamic logic [7, 8]. The
combination of both is called dynamic logic of common knowledge, but the novelty is that
we do that combination in a proof assistant.

As we are neither designers of modal logic, nor philosophers, but only proof assistant
users, what is presented in this paper is not a general discussion on the interest or the ad-
vantage of combining logics or how this can be made more appropriately. What we present
is a record of experiments done on a mechanization of dynamic logic of common knowl-
edge in COQ, one of the many proof assistants available on the market. This activity sheds
light on the reality of reasoning in dynamic logic of common knowledge and on how the
two components, namely epistemic and dynamic fit together. This paper does not address
any comparison of using one proof assistant or another in that kind of implementation. We
feel that actually higher order proof assistants like ACL-2 [9], HOL [18], Isabelle [15],
LEGO [16], PHoX [17] or PVS [4], are not so deeply different w.r.t. modal logic that such
a comparison would be informative, for the reader. We prefer to focus on the experience it-
self. We have taken COQ, because we have practiced it and we have an expert environment
around us. This paper is essentially a careful examination of what is necessary to make an
actual proof of correctness. We have chosen the muddy children puzzle (again not a very
original choice) and we introduce the reader to the COQ script.
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Why experiences on a proof assistant? We noticed that most of the presentations about
logic of common knowledge or dynamic logic or a combination of both were made either
through a model approach where no specific care is given to actual deductions, with rules
and axioms. When proofs are given they are done at an intermediary level of abstraction,
whereas we advocate a deep level, where no detail is left over. We are typically at a proof
theory level. With a proof theoretic background, we feel that proofs and deductions are of
main importance as it has been shown with most of experience with proof assistants. To
summarize, this paper is about the actual integration of common knowledge and dynamic
logic in a unique framework in a proof assistant.

2 Dynamic logic of common knowledge
Common knowledge logic is a modal logic with two main modalities. One modality Ki,
which is associated with each agent i, is the knowledge modality. It is meant to express the
knowledge an agent has on statements, facts and propositions. For instance, Ki(ϕ) reads as
i knows ϕ. The modality CG, which is associated with a group G of agents is the common
knowledge modality. CG(ϕ) translates the fact that a knowledge is common to a group G of
agents, not only each agent in the group G knows ϕ, but also he knows that the others know
ϕ and he knows that the others know that the others know ϕ, and this recursively. CG(ϕ)
reads as ϕ is a common knowledge of the group G. It is formalized as a fixed point by an
axiom and a rule:

FixPointC
`CGϕ→ ϕ∧EGCGϕ

` ρ→ ϕ∧EGρ
LeastFixPointC

` ρ→CGϕ

Dynamic logic makes actions modalities. There are as many modalities as there are ac-
tions. If α is an action, then [α] is a modality and one writes [α]ϕ the proposition modified
by an action α. If an universe satisfies ϕ, after the action α has been performed, it satisfies
[α]ϕ.
Hilbert-style is what has been chosen in the COQ implementation. We are not going to
discuss here the pro and cons of such an approach. Let us just say that it is convenient both
from the point of view of its presentation and from the point of view of its mechanization
in a proof assistant. Therefore the forthcoming rules and axioms will be presented in that
framework.
The axioms of modal logic are those of classical logic plus two axioms and one rule for
each modality M:

• Normalization axiom KM: `Mϕ→M(ϕ→ ψ)→Mψ

• Necessitation axiom TM: `Mϕ→ ϕ

• Generalization rule GenM:
` ϕ

GenM
`Mϕ

These axioms of modal logic have to be duplicated for dynamic logic and common
knowledge logic.

2.1 Epistemic and dynamic modalities: purely epistemic propositions
The central issue of this paper is to show how to integrate common knowledge and dynamic
logics in a unique framework for using in a proof assistant. First we define a logic that we
call T C [α]

G (see Figure 1). An interesting feature of T C [α]
G is axiom KT1:

∀ϕ : proposition ∀α : event ∀i ∈ G, ` Ki[α]ϕ→ [α]Kiϕ

It is well known in epistemic-temporal logic [5] and is appropriate for dynamic logic of
common knowledge. It reads “if agent i knows that, after event α, ϕ holds, then one can
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`K ϕ
Classical

` ϕ

` ϕ ` ϕ→ ψ
MP

` ψ

KK
` Kiϕ→ Ki(ϕ→ ψ)→ Kiψ

TK
` Kiϕ→ ϕ

` ϕ
GenK

` Kiϕ

De fE
` EGϕ↔

^
i∈G

Kiϕ

FixPointC
`CGϕ→ ϕ∧EGCGϕ

` ρ→ ϕ∧EGρ
LeastFixPointC

` ρ→CGϕ

K[α]` [α]ϕ→ [α](ϕ→ ψ)→ [α]ψ
T[α]` [α]ϕ→ ϕ

` ϕ
Gen[α]` [α]ϕ

KT 1
` Ki[α]ϕ→ [α]Kiϕ

Figure 1. The dynamic logic of common knowledge T C[α]
G

infer that, after event α, agent i knows that ϕ holds”. This axiom allows to commute
epistemic and dynamic modalities in one direction. Note that the converse is quite dubious
in natural language and would certainly be rejected by philosophers. Indeed if after α,
I know that ϕ holds, because action α is precisely to let me know proposition ϕ, then
there no reason to infer that I know that ϕ has to hold after α. But looking carefully at
axiom KT1, one notices that event α is transforming not actually the world in its physical
reality, but the knowledge the agent has of it. Therefore to avoid troubles and paradoxes,
we consider only events α that are “purely epistemic”. This means that in our approach of
dynamic logic of common knowledge , we consider only actions or events that change the
perception of the world which agents have, not the world itself. We borrowed this concept
of purely epistemic action from A. Baltag [3, 2].

2.2 The axiomatization of dynamic logic of common knowledge
For the common knowledge modality CG we have chosen the axiomatization proposed
and implemented in Coq by the first of us [11] . The whole dynamic logic of common
knowledge is made of the following ingredients:

• the logic T for K and for [α],

• the definition of shared knowledge EG,

• the definition of common knowledge CG by a least fixpoint axiom and a rule,

• the axiom KT1 that makes the connection between dynamic logic and common
knowledge logic.

3 A running example: the muddy children puzzle
The muddy children puzzle will serve as an example to show how dynamic and knowledge
logic have been integrated in COQ. This problem is presented by several authors [5, 1, 14]
as an illustration of common knowledge logic. The problem considers amazing children
who are be able to carry perfectly logical reasoning.

3.1 The statement
First, let us recall the puzzle. The reader who knows the puzzle can skip this part and jump
to Section 4, collecting the axioms. We follow more or less the presentation of Meyer and
van der Hoek [14].
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n+1 children are standing in a circle around their father. There are k+1 (k ∈ {0, ...,n})
children with mud on their face. The children can see each other, but they cannot see them-
selves. In particular, they do not know if they have mud on their face. Father says aloud:
“There is at least one child with mud on its face.” Then he asks: “Will all children who
know they have mud on their face please step forward?” This procedure is repeated until,
after the k+1-th time Father has asked the same question, all muddy children miraculously
step forward.

The conclusion which happens eventually is the result of a logical reasoning made by the
children, especially the muddy ones, about what they know initially and what they know
about the changes on what they know. It is a perfect example of an common knowledge
and dynamic reasoning which fits with our frameworks.

3.2 The formalization
In this section, we try to say what justified our statements. A reader interested only by the
formal rules and the mechanized reasoning can jumps over the text and go directly to the
formal statements. This discussion is interesting to understand why we have chosen this
system of axioms.

Two events
In this puzzle, the action are not very elaborated, since after Father’s first statement, he
keeps repeating the same sentence. Therefore we consider two events, one that starts the
scenario and that we write “·”, it is also called the initial event, and one that corresponds
to the sentence Father repeats and that we will write “*”, it is also called the progression
event. In our dynamic logic of common knowledge, we will have two types of propositions:
[.]ϕ and [∗]ϕ. We will also write [∗]kϕ for [∗]...[∗]ϕ where [∗] is repeated k times. Clearly
[∗]0ϕ means ϕ. In COQ, we will use the identifiers Point (abbreviated in [¤] in COQ) and
Star (abbreviated in [*] in COQ).

Definitions
To study this puzzle, we must describe formally the situation and so define basic properties
with axioms.

Let n ∈ N and k ∈ {0, ...,n}, so that n+1 is the number of children (there is at least one
of them) and k +1 the number of muddy ones (there is also at least one of them). Let G be
the group of all children, of cardinality n+1: we identify it with {1, ...,n+1}.

Let mi (i ∈ {1, ...,n+1}) be the proposition “child i has mud on his face”.
Let ϕ j ( j ∈ N) be the proposition “at least j children have mud on their face”.
Let ψ j ( j ∈ N) be the proposition “exactly j children have mud on their face”, which is

defined as follows:

EQϕψ : ∀ j ∈ N, ` ψ j ↔ ϕ j ∧¬ϕ j+1

what one can read “there are exactly j muddy children if and only if there are at least j
and at the most j ones”. Two trivial properties can be proved from this axiom (the proof
is made in the COQ file): first, “if there are at least but not exactly j muddy children, then
there are at least j +1 ones”, which is:

IMPϕψ ∀ j ∈ N, ` ϕ j ∧¬ψ j → ϕ j+1

secondly, a principle of exclusion, “there cannot be exactly j and at least j + 1 muddy
children”, which is:

EXCLUϕψ ∀ j ∈ N, ` ¬(ϕ j+1∧ψ j)

These propositions describe the “physical world”, i.e., the physical state of the children,
whether they are muddy or not. They form the type physical proposition. As we only take
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into account epistemic events, physical propositions are “persistent”, which means they
are not modified by epistemic events. This property is axiomatized as follows:

PERSIST ∀p : physical proposition ∀α : epistemic event, ` p→ [α]p

The description of the situation in natural language reveal some key events which are to
be precisely described.

The initial event and its consequences
First, Father says loudly that there is at least one muddy child: therefore this proposition
becomes common knowledge. If TRUE is the logical constant, we notice that it is the only
“true” proposition available to the children initially. The effect of the first statement is as
follows:

MC11 ` [¤]TRUE→CGϕ1

this is the first axiom of our formalization.
The children are not blind, they see each other and they get pieces of information from it.

The initial event records what they get: every child counts the number of muddy children
in front of him/her. In particular, the muddy ones see k muddy children, thus they get a
knowledge about the total number of muddy children, namely k or k +1:

MC12 ∀i ∈ G, ` [¤]TRUE→ mi → Ki(ψk ∨ψk+1)

Defined that way, the initial event is an epistemic event: No further action will change
the world, only the knowledge the agents own on it will evolve. Therefore the muddy
children problem is a paradigmatical example.

We said that physical propositions are persistent, but they are not the only ones. Indeed,
the muddy children are able to remember what they have seen initially, in other words, the
part mi → Ki(ψk ∨ψk+1) of axiom MC12 is also persistent:

PERSMC12 ∀α : event ∀i ∈ G,` (mi → Ki(ψk ∨ψk+1))→ [α](mi → Ki(ψk ∨ψk+1))

The final statement
The problem gets to its end when the muddy children step forward. This happens when
muddy children know they are muddy. Formally this is

∀i ∈ G, mi → Kimi

Muddy children are able to infer this statement when they know there are exactly k + 1
muddy children: as every muddy child sees k ones (a persistent property), he/she knows
that he/she is muddy when he/she knows there are exactly k + 1 muddy children, i.e. the
k ones he/she sees plus him/herself. If a child is muddy and if he knows there are exactly
k + 1 muddy children, then he/she knows he/she is muddy. This leads to the following
axiom.

MC3 ∀i ∈ G, ` mi → Kiψk+1 → Kimi

The progression event and the increase of knowledge
The core of the work consists in clarifying formally what is produced by Father’s injunction
and how this makes the muddy children’s knowledge to grow.

In this scenario, a tempo is given by Father: time is made discrete and is divided into
time intervals which every agents (here the children) can distinguish by counting Father’s
statements. Therefore, these intervals can be numbered as follows:

• First interval starts at Father’s declaration and ends at Father’s first injunction

• (i+1)th interval goes from ith to (i+1)st injunction.
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After k + 1 injunctions, every muddy child steps forward, as we will prove it in our
epistemic-dynamic system. To do so, we need to better understand what happens from
an interval to another with each Father’s injunction. These injunctions do not carry much
semantics, but they are dynamically important: indeed, each injunction gives a tempo and
helps every child in his/her quest of knowledge as it ends the previous interval. Then every
child can deduce that no child has stepped forward during the previous interval which
means that none has been able to conclude about his/her state, these increases the amount
of information the children have..

Indeed, let us consider the first injunction. In the first interval, CGϕ1 holds and two cases
occur:

If k = 0, the only muddy child can say at once, that he is muddy because he is the only one
to see no other muddy child and after Father’s first injunction, he steps forward.

If k > 0, every child sees at least another muddy child, and so, no one can conclude
whether he/she is muddy or not. Worst, Father’s initial statement of ϕ1 did not tell
them anything they do not know, but the fact that this statement became common
knowledge and when no one steps forward at Father’s first injunction, every child
can infer that no one sees no muddy child, this means that every one sees at least one
muddy child. This can only happen if there are at least two muddy children. By an
easy reasoning they exclude the case k = 0.

To be more formal, every child knows that every child knows there is at least one
muddy child, which leads the children to the following: there are at least two muddy
children.

Father’s first injunction translates formally into

` EGEGϕ1 → [∗]EG¬ψ1

which generalizes for any injunction:

MC2 ∀ j ∈ {1, ...,k}, ` EGEGϕ j → [∗]EG¬ψ j

which is if every child knows that every child knows there are at least j muddy children,
then after Father’s injunction, every child knows there cannot be exactly j ones.

4 A knowledge gain lemma
One can deduce a knowledge gain lemma which says that if every child knows that every
child knows there are at least j muddy children, then after Father’s injunction, every child
knows there are at least j +1 ones. Formally

LEMMA 1. GainConn ∀ j ∈ {1, ...,k}, ` EGEGϕ j → [∗]EGϕ j+1

Proof. Let j ∈ {1, ...,k}.

MC2
` EGEGϕ j → [∗]EG¬ψ j

TE
` EGEGϕ j → EGϕ j

PERSϕ

` ϕ j → [∗]ϕ j
EPers

` EGϕ j → [∗]EGϕ j
Cut

` EGEGϕ j → [∗]EGϕ j
∧Intro

` EGEGϕ j → [∗]EGϕ j ∧ [∗]EG¬ψ j
∗/∧Dist

` EGEGϕ j → [∗](EGϕ j ∧EG¬ψ j)
E/∧Dist

` EGEGϕ j → [∗]EG(ϕ j ∧¬ψ j)
IMPϕψ

` EGEGϕ j → [∗]EGϕ j+1

�
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Summary of the proof of the muddy children puzzle theorem
A common knowledge induce an nested shared knowledge at any level, the GainConn
lemma deduced from MC2 axiom allows us to get a picture of the proof of the muddy
children puzzle theorem, which we called Concl and which states as:

Concl ` ∀k ∈ N ∀i ∈ G, [¤]TRUE→ [∗]k(mi → Kimi)

Indeed, initially, ϕ1 is a common knowledge (MC11), so it is as an arbitrarily nested
shared knowledge. With each Father’s injunction, children are able to make precise their
knowledge about the total number of muddy children by dropping one level of their shared
knowledge. Therefore, after j injunctions, they know ϕ j+1 by dropping j depths of their
shared knowledge. But since initially this knowledge is arbitrarily deeply nested in shared
knowledge, after the first k Father’s injunctions, every child effectively knows ϕk+1.

At this point, the muddy children know there are at least k + 1 muddy children; so, as
they see k ones, they deduce there are exactly k+1 muddy children (MC12) and they know
they are muddy themselves (MC3). At the (k + 1)st injunction, they will step forward not
miraculously (as Meyer and van der Hoek pretend to say) but perfectly logically!

One can notice that Concl is holds also for k = 0. This theorem describes all the scene:
“if Father makes its initial statement, then after the kth injunction, the agents who satisfy
property m know they do.”.

5 The proof of the muddy children puzzle theorem
In this section, we describe the mechanized proof previously summed up in more detail.

Let n ∈ N and k ∈ {0, ...,n+1}.

LEMMA 2 (MultGainConn). ∀n ∈ N∗ ∀ j ∈ {0, ...,k}, ` En+1
G ϕ j → [∗]En

Gϕ j+1

Proof. By induction on n ∈ N∗ :

• Initialization : n = 1,

GainConn
` EGEGϕ j → [∗]EGϕ j+1

• Heredity : Let n ∈ N∗,

HYP-REC
` En+1

G ϕ j → [∗]En
Gϕ j+1

EDist
` EGEn+1

G ϕ j → EG[∗]En
Gϕ j+1

KT 1
` EG[∗]En

Gϕ j+1 → [∗]En+1
G ϕ j+1

Cut
` EGEn+1

G ϕ j → [∗]En+1
G ϕ j+1

�

LEMMA 3 (ComImpPartIt). ∀n ∈ N, `CG p→ En
G p

Proof. By induction on n ∈ N :

• Initialization : n = 0,

PointFixeC
`CG p→ p∧EGCG p

∧Elim
`CG p→ p

• Heredity : Let n ∈ N,

PointFixeC
`CG p→ p∧EGCG p

∧Elim
`CG p→ EGCG p

HYP-REC
`CG p→ En

G p
EDist

` EGCG p→ En+1
G p

Cut
`CG p→ En+1

G p
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�

LEMMA 4 (PointImpPartIt). ∀n ∈ N∗, ` [¤]TRUE→ En
Gϕ1

Proof. Let n ∈ N∗.

MC11
` [¤]TRUE→Cϕ1

ComImpPartIt
`CGϕ1 → En

Gϕ1
Cut

` [¤]TRUE→ En
Gϕ1

�

LEMMA 5 (PointImpProgr). ∀n≥ k ∀ j ∈ {1, ...,k +1}, ` [¤]TRUE→ [∗] j−1En− j+1
G ϕ j

Proof. Let n≥ k. By induction on j ∈ {1, ...,k +1} :

• Initialization : j = 1,

PointImpPartIt
` [¤]TRUE→ En

Gϕ1

• Heredity : Let j ∈ {1, ...,k},

HYP-REC
` [¤]TRUE→ [∗] j−1En− j+1

G ϕ j
Id

` [¤]TRUE→ [∗] j−1EGEn− j
G ϕ j

MultGainConn
` EGEn− j

G ϕ j → [∗]En− j
G ϕ j+1

( j−1)∗Dist
` [∗] j−1EGEn− j

G ϕ j → [∗] jEn− j
G ϕ j+1

Cut
` [¤]TRUE→ [∗] jEn− j

G ϕ j+1

�

From those lemma we get the following ones
With j = k +1

LEMMA 6 (ResInter1). ∀n≥ k, ` [¤]TRUE→ [∗]kEn−k
G ϕk+1

With n = k +1

LEMMA 7 (ResInter2). ` [¤]TRUE→ [∗]kEGϕk+1

And the muddy children puzzle theorem comes out (almost) easily.

THEOREM 8 (Concl). ` ∀k ∈ N ∀i ∈ G, [¤]TRUE→ [∗]k(mi → Kimi)

Proof.

ResInter2&MC12
` [¤]TRUE→ [∗]kEGϕk+1∧ (mi → Ki(ψk ∨ψk+1))

PERSMC12` [¤]TRUE→ [∗]kEGϕk+1∧ [∗]k(mi → Ki(ψk ∨ψk+1))
∗/∧Dist

` [¤]TRUE→ [∗]k(EGϕk+1∧ (mi → Ki(ψk ∨ψk+1)))
(EG p→ Ki p)

` [¤]TRUE→ [∗]k(Kiϕk+1∧ (mi → Ki(ψk ∨ψk+1)))
(a∧ (b→ c)→ (b→ a∧ c))

` [¤]TRUE→ [∗]k(mi → Kiϕk+1∧Ki(ψk ∨ψk+1))
K/∧Dist

` [¤]TRUE→ [∗]k(mi → Ki(ϕk+1∧ (ψk ∨ψk+1)))
∧/∨Dist

` [¤]TRUE→ [∗]k(mi → Ki((ϕk+1∧ψk)∨ (ϕk+1∧ψk+1)))
(ϕk ∧ψk → ψk+1)

` [¤]TRUE→ [∗]k(mi → Ki((ϕk+1∧ψk)∨ψk+1))
(EXCLUϕψ)

` [¤]TRUE→ [∗]k(mi → Ki(⊥∨ψk+1))
(⊥∨ p→ p)

` [¤]TRUE→ [∗]k(mi → Kiψk+1)
MC2

` [¤]TRUE→ [∗]k(mi → Kimi)

�
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6 The dynamic logic of common knowledge in COQ

6.1 What is COQ?
COQ is a proof assistant, i.e., a program which verifies step by step the validity of a mathe-
matical proof given by the user. In logic, it is generally not obvious to follow a hand-made
proof and to determine whether it is right or wrong [22]. A proof assistant, such as COQ,
becomes a necessary tool if one chooses to be absolutely sure of a result.

Moreover, COQ is a very good means to build proofs. Indeed, managing a proof step by
step, as required by a proof assistant, allows us understanding in a very precise way what
is done and what has to be done to complete a proof. COQ is also a way to reach a good
formalism as it requires from the user to define exactly all what he manipulates. Into [11],
we reports how we found a flaw in well accepted axiomatization.

6.2 Implementation of T C[α]
G in COQ

This implementation is based on another implementation, namely this of logic of com-
mon knowledge done by the second author who implemented all the epistemic multi-agent
logic with common knowledge (system T C

G ), of which a COQ file is available on the web:
http://perso.ens-lyon.fr/pierre.lescanne/COQ/EpistemicLogic.v8.

This paper comes out with its own COQ file:
http://perso.ens-lyon.fr/pierre.lescanne/COQ/EpistemicAndDynamicLogic.v

which implements the whole system T C[α]
G and a complete proof of the muddy children

puzzle theorem Concl.

6.3 Why this implementation?
The first aim of this implementation was to ensure a reader that the proof is totally check-
able. This lead to a proof of nearly 1100 lines of COQ code, where every lemma is the
direct translation of the hand-made proof for a maximal legibility. We do not claim that
proof are readable as they would be in an English paper, a certain technicality is required
for giving all the detail of the proof; however we claim that the statements of the lemmas
as easily readable.

As an added value, this implementation allows any future development by adding axioms
or new modalities. This makes our work flexible and reusable.

7 Conclusion
The proof theoretic approach we have used in this paper combines easily epistemic and
dynamic logics together, thanks to a general epistemic-dynamic axiom (KT1). (KT1) in-
volves a commutativity between epistemic modality and a dynamic modality. In the current
implementation of (KT1), type is not used to check whether the axiom is only invoked on
purely epistemic propositions. In a future implementation, we will create a new type epis-
temic proposition on which (KT1) can only be invoked.

After manipulating the logical system presented in this paper with the proof assistant
COQ, we feel that it is quite simple and intuitive. It only uses axioms and rules from clas-
sical logic plus a few additional axioms and rules. Statements can be made in a language
close to this of the hand proof.

In epistemic-dynamic logic, there are events. In a formal statement, an event becomes
a dynamic modality which transforms a proposition that describes the world before the
event into a proposition that describes the world after that event. Said otherwise a dynamic
modality transforms properties into others. Here we have limited our work to epistemic
events which only transform agent knowledge, but this is not a big restriction, as this is
what happens most of the time.

We notice that we had to adapt the system for the specific situation generated by the
muddy children puzzle. But this is no so different from situation where classical logic or
another system is used. However, conceptual tools or practical tools (for instance imple-
mented in COQ) could be built to ease the task of the person who mechanizes a proof.
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Excerpts of the Coq script
Here is the statement of the main lemmas and the proof in COQ of the last theorem Concl.

Lemma GainConn :
forall (G: list nat) (i j : nat),
|- E (i::G) (E (i::G) (phi j)) ==> [*] (E (i::G) (phi (j+1))).

Lemma MultGainConn :
forall (G: list nat) (m i j : nat),
|- F ((m+1)+1) (i::G) (phi j) ==> [*] (F (m+1) (i::G) (phi (j+1))).

Lemma ComImpPartIt :
forall (p:proposition) (n:nat) (G: list nat),
|- C G p ==> F n G p.

Lemma PointImpPartIt :
forall (G:list nat) (m:nat),
|- Point TRUE ==> F m G (phi 1).

Lemma PointImpProgr :
forall (G:list nat) (i j n:nat),
|- Point TRUE ==> [*]<:j:> (F (n+1) (i::G) (phi (j+1) ) ).

Theorem Concl :
forall (G:list nat) (i j k : nat),
In i (j::G) ->
|- Point TRUE ==> [*]<:k:> (muddy i ==> (K i (muddy i))).

Proof.
intros.
apply Transitivity_of_Imp with ([*]<:k:> (muddy i ==> (K i (psi (k+1))))).
apply Transitivity_of_Imp with ([*]<:k:> (muddy i ==> (K i (FALSE V psi (k+1))))).
apply Transitivity_of_Imp with ([*]<:k:> (muddy i ==> (K i ((phi (k+1) & psi (k)) V psi (k+1))))).
apply Transitivity_of_Imp with ([*]<:k:> (muddy i ==> (K i ((phi (k+1) & psi (k)) V (phi (k+1) & psi (k+1)))))).
apply Transitivity_of_Imp with ([*]<:k:> (muddy i ==> (K i (phi (k+1) & (psi (k) V psi (k+1)))))).
apply Transitivity_of_Imp with ([*]<:k:> (muddy i ==> (K i (phi (k+1)) & K i (psi (k) V psi (k+1))))).
apply Transitivity_of_Imp with ([*]<:k:> (K i (phi (k+1)) & (muddy i ==> (K i (psi (k) V psi (k+1)))))).
apply Transitivity_of_Imp with ( ([*]<:k:> (E (j::G) (phi (k+1))) & (muddy i ==> (K i (psi (k) V psi (k+1)))))).
apply Transitivity_of_Imp with ( ([*]<:k:> (E (j::G) (phi (k+1)))) & [*]<:k:> (muddy i ==> (K i (psi (k) V psi (k+1))))).
apply Transitivity_of_Imp with ( ([*]<:k:> (E (j::G) (phi (k+1)))) & (muddy i ==> (K i (psi (k) V psi (k+1))))).
apply Transitivity_of_Imp with ( ([*]<:k:> (E (j::G) (phi (k+1)))) & (muddy i ==> (K i (psi (k) V psi (k+1))))).
apply Transitivity_of_Imp with ( Point TRUE & Point TRUE).
apply AND_idempotence.
apply rule_glueAND.
apply Transitivity_of_Imp with ([*]<:k:> (F 1 (j::G) (phi (k+1)))).
apply PointImpProgr.
apply rule_STAR_Imp.
unfold F.
apply I.
apply MC1_2.
apply I.
apply rule_glueAND.
apply I.
apply PERS_STAR_MC1_2.
apply ANDSTAR.



12 Jérôme Puisségur and Pierre Lescanne

apply rule_STAR_Imp.
apply Transitivity_of_Imp with ( (E (j::G) (phi (k +1))) & (muddy i ==> K i (psi k V psi (k +1)))).
apply I.
apply rule_AND_right_regular.
apply E_Ki.
trivial.
apply rule_STAR_Imp.
apply TOOL2.
apply rule_STAR_Imp.
apply MP with (K i (phi (k +1)) & K i (psi k V psi (k +1)) ==> K i (phi (k +1) & (psi k V psi (k +1)))).
apply B.
apply AND_Ki.
apply rule_STAR_Imp.
apply MP with ( (K i (phi (k +1) & (psi k V psi (k +1)))) ==> (K i ((phi (k +1) & psi k) V (phi (k +1) & psi (k +1))))).
apply B.
apply rule_K_K_rev.
apply K_rule.
apply dist_AND.
apply rule_STAR_Imp.
apply MP with (K i (phi (k +1) & psi k V (phi (k +1) & psi (k +1))) ==> K i (phi (k +1) & psi k V psi (k +1))).
apply B.
apply rule_K_K_rev.
apply K_rule.
apply rule_OR_left_regular.
apply AND2.
apply rule_STAR_Imp.
apply MP with (K i (phi (k +1) & psi k V psi (k +1)) ==> K i (FALSE V psi (k +1))).
apply B.
apply rule_K_K_rev.
apply K_rule.
apply rule_OR_right_regular.
apply phi_psi_Exclu.
apply rule_STAR_Imp.
apply MP with (K i (FALSE V psi (k +1)) ==> K i (psi (k +1))).
apply B.
apply rule_K_K_rev.
apply K_rule.
apply Transitivity_of_Imp with (psi (k+1) V FALSE).
apply OR_comm.
apply OR_FALSE.
apply rule_STAR_Imp.
apply MP with (muddy i ==> K i (psi (k+1)) ==> K i (muddy i)).
apply Hilbert_S.
apply MC3.
Qed.


