
On the Recursive Decomposition Ordering with

Lexicographical Status and other related Orderings∗

Pierre LESCANNE

Centre de Recherche en Informatique de Nancy

INRIA-Lorraine

Campus Scientifique, BP 239,

54506 Vandœuvre-les-Nancy, France

Abstract

This paper studies three orderings, useful in theorem proving, espe-
cially for proving termination of term rewriting systems: the recursive
decomposition ordering with status, the recursive path ordering with
status and the closure ordering. It proves the transitivity of the recur-
sive path ordering, the strict inclusion of the recursive path ordering
in the recursive decomposition ordering, the totality of the recursive
path ordering – therefore of the recursive decomposition ordering –, the
strict inclusion of the recursive decomposition ordering in the closure
ordering and the stability of the closure ordering by instanciation.

1 Introduction

In this paper, facts about simplification orderings known as the recursive
decomposition ordering with status, the recursive path ordering with status
and a less known one called the closure ordering are proven. Essentially one
aspect of these orderings is studied, namely when the status is lexicographi-
cal. There are three reasons for this choice. First the lexicographical status
is actually the only useful one according to our experience. We found indeed
no example of operations that requires a multiset status and rejects a lexi-
cographical status. Second, the lexicographical status provides an ordering
which is total on ground terms when the precedence is total or quasi-total

∗Part of this work was done while the author was visiting the Institute for New Gen-

eration Computer Technology, Tokyo, Japan

1



(the definition will be given in the paper). Third, no proof of the relation
between the recursive path ordering with status and the recursive decom-
position ordering with status exists yet, it was only sketched in one of a
previous paper of the author [16], by a matter of fact, compared with pre-
vious works, proofs can be made easier, because simpler definitions of both
the recursive path ordering and the recursive decomposition ordering are
used here. The properties that are proven are the transitivity of the recur-
sive path ordering, the strict inclusion of the recursive path ordering in the
recursive decomposition ordering, the totality of the recursive path ordering
– therefore of the recursive decomposition ordering –, the strict inclusion of
the recursive decomposition ordering in the closure ordering and the stabil-
ity of the closure ordering by instanciation. Some results of this paper can
be considered as folk theorems [5], but since their proofs are not available
or do not exist we found interesting to provide them. These orderings are
really useful for proving termination of term rewriting systems. People who
are not familiar with these applications are invited to read [2] or [10].

2 Some definitions

In this paper, we study strict quasi-orderings, i.e., relations that are transi-
tive, (s < t & t < u) =⇒ s < u, and irreflexive, s 6< s, and we called them
orderings for short. In addition, we consider terms in T (F ) or in T (F,X),
where F =

⋃
n≥0 Fn is a set of operators and X is a set of variables and we

are using some conventions that are really helpful. If f ∈ Fn is an operator
of arity n, we indeed will write indifferently s or f(s1, . . . , sm) or f~s and,
symmetrically, t or g(t1, . . . , tn) or g~t and u or h(u1, . . . , up) or h~u, with the
convention that ~s represents the sequence s1, . . . , sm. Many proofs in this
paper will be by induction on the strict subterm ordering, written � and
the cartesian products of this ordering, written �×� and �×�×�. s� t
means that s is a strict subterm of t and (s1, s2)�×� (t1, t2) means that s1

is a subterm of t1 and s2 is a subterm of t2 and at least one of the relations is
strict. �×�×� is defined the same way. These three orderings are noethe-
rian. Let us recall the definition of the symbol of t at occurrence α written
t(α), which is f(t1, . . . , tn)(ε) = f and f(t1, .., tn)(iα) = ti(α). The subterm
t/α at the occurrence α is defined by t/ε = t and f(t1, . . . , tn)/iα = ti/α. In
this paper, we need also a new concept, namely the list of terms below the
occurrence α, written s5 α. It is given by

Definition 1 The list of terms below α is defined as

2



• f~s5 ε = ~s

• f~s5 iα = si5 α

In other words if s/α = f~t then s5α = ~t. We are now defining the con-
cepts of elementary decomposition, written edec, path decomposition, written
pdec and decomposition of a term, written dec.

Definition 2 • The elementary decomposition at the occurrence α is
defined as

edec(t, α) = 〈t/α, t5 α〉.

• The precedence elementary decomposition at the occurrence α is

〈t(α), t5 α〉.

• The path decomposition of a term along the path π is defined as

pdec(t, π) = {edec(t, α)|α ≤ π}.

• The decomposition of a term is

dec(t) = {pdec(t, π)|π path in t}.

In this paper, as in many others, people speak about the recursive path
ordering or the recursive decomposition ordering, whereas they should say
the recursive path extension or the recursive decomposition extension of
a precedence or of an ordering. We will follow the tradition and stick to
this abuse of language. In this paper, the status is supposed lexicographical
from left to right which means that one compares the sequences of terms
from left to right. For instance, ~s <lex ~t if either s1 < t1 or s1 = t1
and (s2, . . . , sm) <lex (t2, . . . , tn) or ~s is a strict prefix of ~t, which means
~t = (s1, ..., sm, tm+1, ..., tn). Notice this last part in the definition, which
allows considering equivalent operators with different arities. We are going
to see later the interest of such a possibility. The recursive decomposition
ordering supposes that a quasi-ordering < on terms, the basic ordering, is
already defined. The equivalence with respect to this quasi-ordering is writ-
ten '. The basic ordering is often founded on a precedence, which is a partial
ordering on the symbols. Especially, the precedence may specify that dif-
ferent operators are equivalent. Most of the time in current applications,

3



one uses a specific basic ordering, founded on a precedence, called the root
ordering and written <ρ. The root ordering compares two terms by com-
paring just their roots according to a specific precedence. In other words,
f~s <ρ g~t if and only if f < g and f~s 'ρ g~t if and only if f ' g. If two
symbols f and g are not comparable by the precedence we write f]g. A
key problem in proving termination of term rewriting systems is to provide
an ordering which is stable by instanciation. Usually, one requires the basic
ordering to fulfill the variable condition, namely s > x⇒ x ∈ V ar(s). With
ordering based on precedence the idea is to make the precedences to satisfy
the variable condition.

Definition 3 A precedence satisfies the variable condition if

• (x ∈ X & f ∈ F ) → x]f

• (x ∈ X & y ∈ X & x 6= y) → x]y

Precedence elementary decompositions are convenient and simpler. The
definition of the recursive decomposition ordering starts by defining the or-
dering on elementary decompositions, supposing that the ordering on terms
is already recursively defined and extended to a lexicographical ordering
on sequences of terms. To compare two elementary decompositions, one
compares the first components and if they are equivalent, one compares
the second components that contain the sequences of terms. The path de-
compositions are compared according to the set extension of the ordering
on elementary decompositions, it is similar to the multiset ordering, except
that it is restricted to sets. The decompositions are compared as multisets
of path decompositions and terms are compared by the recursive decompo-
sition ordering through their decompositions.

Definition 4 The decomposition ordering is written <d and defined as fol-
lows.

• The ordering on elementary decompositions <ed is defined by 〈s, ~s〉
<ed 〈t,~t〉 if and only if s < t or s ' t and ~s <lex

d
~t.

• The ordering <pd on path decompositions is defined as the set exten-
sion of <ed, often written <ed<ed.

• The ordering on decompositions is defined as the multiset extension
<pd<pd of the ordering <pd.

4



• The recursive decomposition ordering <d of two terms s and t is de-
fined as s <d t if and only if dec(s) <pd<pd dec(t).

Let us illustrate the recursive decomposition ordering on a rule taken
from a classical term rewriting system, later on an ad hoc example will be
used to prove an inclusion of orderings. Suppose that the basic ordering is
a root-ordering based on the precedence suc < +. Then for this ordering
suc(x + y) <ρ suc(x) + y. Let us state s = suc(x) + y and t = suc(x + y).
The decomposition ordering extends this ordering. Indeed one has dec(s) =
{pdec(s, 11), pdec(s, 2)} where

pdec(s, 11) = {〈s, (suc(x), y)〉, 〈suc(x), (x)〉, 〈x, ()〉}

and
pdec(s, 2) = {〈s, (suc(x), y)〉, 〈y, ()〉}

and dec(t) = {pdec(t, 11), pdec(t, 12)} where

pdec(t, 11) = {〈t, (x + y)〉, 〈x + y, (x, y)〉, 〈x, ()〉}

and
pdec(t, 12) = {〈t, (x + y)〉, 〈x + y, (x, y)〉, 〈y, ()〉}.

pdec(t, 11) <pd pdec(s, 11) since 〈t, (x + y)〉 <ed 〈s, (suc(x), y)〉 by t <ρ s
and 〈x+ y, (x, y)〉 <ed 〈s, (suc(x), y)〉 by x+ y 'ρ suc(x) + y and (x, y) <lex

d

(suc(x), y). One may prove similarly that pdec(t, 12) <pd pdec(s, 2). In this
example, one refers to a root-ordering and it is more convenient to use a
precedence elementary decomposition and to write, for example 〈+, (x, y)〉
instead of 〈x + y, (x, y)〉 since only the root + will be used in comparisons.
This will be done whenever a root-ordering is used.

3 The Recursive Decomposition Ordering and the

Recursive Path Ordering

Now before stating our main theorem, let us define the recursive path order-
ing [2, 12, 21].

Definition 5 The recursive path ordering with status or the recursive ex-
tension of < or the lexicographical semantic path ordering is defined as
follows,

f~s <p g~t

5



iff

(ST ) (∀i ∈ [1...m])si <p t

and one of the following conditions is fulfilled

1. s < t,

2. s ' t & ~s <lex
p

~t,

3. (∃j ∈ [1...n]) s <p tj ∨ s = tj.

If the basic ordering satisfies a condition called weak F-stability relative
to the recursive path ordering, then the recursive path ordering is F- sta-
ble [17]. This property is trivially satisfied when the basic ordering is a root
ordering.

Definition 6 An ordering is F-stable if

s < t =⇒ f(. . . , s, . . .) < f(. . . , t, . . .).

An ordering < is weakly F -stable relative to <p if

s <p t =⇒ f(. . . , s, . . .) < f(. . . , t, . . .) or f(. . . , s, . . .) = f(. . . , t, . . .).

On another hand, the recursive path ordering has the subterm property ST .
Then provided one proves it is a strict quasi-ordering, it is a simplification
ordering and according to Higman theorem [6], the relation <p & = is a
well-quasi ordering, hence the recursive path ordering <p is well-founded.
The irreflexivity s 6<p s is obvious. Therefore, the proof of transitivity
is important. Since it is very simple, it is worth to be given (see [8] for
another slightly more complex proof). Next we prove that the recursive
path ordering is included in the recursive decomposition ordering. By a
counter-example the inclusion will be shown to be strict.

Proposition 1 <p is transitive.

Proof:

Suppose that s, t and u are three terms such that s <p t
and t <p u. Let us prove s <p u, by induction on the ordering
�×�×�. For the (ST ) part of the definition, if si <p t, then
(si, t, u) � × � × � (s, t, u), therefore by transitivity, si <p u.
Consider now the several methods for proving s <p t and t <p u
in the second part of the definition.

6



• Only 1 and 2 are used, then, by transitivity of <, s < u
which implies s <p u.

• t <p u is proved by 3, i.e., (∃k ∈ [1...p]) t <p uk ∨ t = uk,
then by induction and transitivity (∃k ∈ [1...p])s <p uk,
therefore s <p u.

• s <p t is proved by 3, i.e., (∃j ∈ [1...n]) s <p tj ∨ s = tj ,
then using the first part of the proof of tj <p u and by
induction and transitivity, s <p u.

2

Theorem 1 s <p t⇒ s <d t.

Proof: By induction on �×�. Suppose s <p t and (s′, t′)�

×� (s, t)⇒ [s′ <p t′ ⇒ s′ <d t′]. Therefore, (∀i ∈ [1..m])si <p t,
then by induction si <d t and for all iπ path in s, there exists a
path φ in t such that pdec(si, π) <d pdec(t, φ).

Notice that pdec(s, iπ) = pdec(si, π)∪〈f, ~s 〉, that pdec(t, φ) 3
〈g,~t 〉 and that pdec(si, π) 63 〈g,~t 〉. Therefore, if f < g or f =
g and ~s <lex

p
~t i.e., by induction ~s <lex

d
~t, 〈f, ~s 〉 <ed 〈g,~t 〉 then

pdec(s, iπ) <d pdec(t, φ) where iπ and φ are associated as above.
Thus, in this case, one concludes that s <d t.

If there exists j such that s <p tj, by induction s <d tj
and for each π path in s, there exists a path jφ in t such that
pdec(s, π) <d pdec(tj , φ). Since pdec(t, jφ) = 〈g,~t 〉 ∪ pdec(tj , φ),
then pdec(s, π)<d pdec(t, jφ), dec(s) <d<d dec(t) and s <d t. 2

The implication goes only in one direction, as shown by the following
counter-example. Indeed, one may have s <d t and s 6<p t. Let s be
x ?h(x ?x) and t be h(h(x) ? x). One notices that if h]? and the precedence
satisfies the variable condition, then s 6<p t. However, s <d t, because

pdec(s, 1) = {〈?, (x, h(x ? x))〉, 〈x, ()〉},

pdec(s, 211) = {〈?, (x, h(x ? x))〉, 〈h, (x ? x)〉, 〈?, (x, x)〉, 〈x, ()〉},

pdec(s, 212) = pdec(s, 211)

and

pdec(t, 111) = {〈h, (h(x) ? x)〉, 〈?, (h(x), x)〉, 〈h, (x)〉, 〈x, ()〉},

7



pdec(t, 12) = {〈h, (h(x) ? x)〉, 〈?, (h(x), x)〉, 〈x, ()〉},

it’s easily seen that pdec(s, 1) <pd pdec(t, 111),pdec(s, 211) <pd pdec(t, 111)
and pdec(s, 212) <pd pdec(t, 111). It is interesting to notice that if ? < h or
? = h or ? > h then s <p t, which means in some sense that the precedence
is useless and which is translated by the decomposition ordering.

4 Totality on quasi-total precedences

Let us recall that an ordering is total if for all pairs (x, y) one has either
x < y or x = y or x > y. In many cases, one wants to get an ordering which
is total on ground terms. Total precedences give such orderings, but they
are not the only ones with this property. There are cases where one may
want other precedences, like in group with division (see below). The basic
idea is to allow symbols to be equivalent provided they have different arity.
In this case, the arity discriminates among terms with equivalent root. Such
a precedence is called a quasi-total precedence.

Definition 7 A precedence is quasi-total if for all pairs (f, g) one has either
f < g or f ' g or f > g and f ' g implies that f and g have different
arities. This last property is called the arity condition.

Usually when we mean that a precedence is total or quasi-total, this does
not affect the variables, but only the function symbols. The variables are
as usual, pairwise incomparable and incomparable with any other function
symbol. Suppose f and g are two symbols such that the arity of f is less
than the arity of g. A precedence with f < g gives a recursive path ordering
which is different from this given by a precedence with f ' g. Indeed with
a < b < f < g one has f(b) <p g(a, b) and with a < b < f ' g one has
g(a, b) <p f(b). The practical interest of the quasi-totality is illustrated
by the following example extracted from a canonical rewriting system for
deciding groups with left division [15]. The termination of the other non
mentioned rules is proved by the subterm property.

x\e→ i(x)

i(x\y)→ y\x

(x\y)\z → y\(i(x)\z)

The termination of this term rewriting system can only be proved by using a
recursive path ordering or a recursive decomposition ordering based on the

8



quasi-total precedence that contains the pair i ' \. The reader may check
that no other choice for i and \ works. REVE that implements an automatic
method of suggestion gives the same conclusion [4]. In [14] p. 43, Kapur
and Sivakumar report how they were faced to this problem. Especially, in
this case, one has y <p i(x\y), x <p i(x\y). Therefore, y\x <p i(x\y) comes
from \ ' i and [y;x] <lex

p [x\y]. One has y <p (x\y)\z and i(x)\z <p

(x\y)\z. On another hand, y\(i(x)\z) <p (x\y)\z comes from \ = \ and
[y; i(x)\z] <lex

p [x\y; z].

Theorem 2 If the precedence is total or quasi-total then the recursive path
ordering is total.

Proof: Let s and t be two terms. By induction on � × �,
for all pairs (s′, t′) �×� (s, t) one has either s′ <p t′ or s′ = t′

or s′ >p t′. This is specifically true if one takes for (s′, t′) either
(si, t) or (s, tj). Therefore, one may distinguish essentially three
cases:

• either (∃i ∈ [1...m])si >p t or si = t, then s >p t,

• or (∃j ∈ [1...n])s <p tj or s = tj, then s <p t,

• or (∀i ∈ [1..m])si <p t and (∀j ∈ [1..n])s >p tj then

– if f < g, then s <p t,

– if f > g, then s >p t,

– if f ' g, then

∗ if ~s <lex
p

~t, then s <p t,

∗ if ~s >lex
p

~t, then s >p t,

∗ and if ~s = ~t then f = g and s = t.

2

Corollary 1 If the precedence is total or quasi-total, the recursive decom-
position ordering is total and therefore coincides with the recursive path or-
dering.

Proof: Obvious, from Theorem 1 and Theorem 2. 2

The next corollary is interesting in some uses of ordering in theorem proving
with equations, where such orderings that can be extended to total orderings
on ground terms are necessary [7]. They are called complete simplification
orderings.

9



Corollary 2 Each recursive path ordering or recursive decomposition order-
ing based on a precedence that satisfies the arity condition can be extended
to a total ordering on ground terms.

Proof: Obvious, since each precedence can be extended into
a total or quasi-total one. 2

5 The Closure Ordering

We introduce now an ordering which contains strictly both, the recursive
path ordering and the recursive decomposition ordering. We feel that, in
some sense, it is the largest that can be built based on precedences and the
recursive path ordering principle, this is why we call it the closure ordering.
A variant was already presented by R. Forgaard in [3] (see also [2] p. 97).
In Section 2 we have set the variable condition on the precedence to insure
stability by substitution. Here, a different attitude is adopted, the idea is
to give he variables all the possible positions in a quasi-total precedence.

Definition 8 The closure ordering w.r.t. a precedence < is written <c and
defined as follows.

s <c t

iff for all precedences ≺ that contain < and whose restriction to F is quasi-
total

s ≺p t.

Notice that, according to Corollary 1, it makes no difference to use the recur-
sive decomposition ordering or the recursive path ordering when speaking
about quasi-total precedence. A difference between the ordering presented
here and the previous versions [2, 3] is that variables can be ordered by the
precedence. This gives a stronger ordering; for instance, the examples below
could not be ordered by Forgaard’s version. Notice also that two variables,
say x and y, can be made equivalent in ≺, but this has no consequence,
since it corresponds to a renaming of x to y. Thus in the definition of <c it
makes no difference to use ≺p or ≺d.

Proposition 2 s <d t⇒ s <c t.

Proof: If s <d t then for any ≺ that contains <, s <d t or
s <p t, therefore s <c t. 2

10



The opposite implication is false as shown by the counter-example:

x ? h(x ? y) <c h(h(x) ? y)

with an empty precedence. It is similar to the counter-example in section 3,
in the sense that the former is an instance of the latter. Another counter-
example is

(x ? y) ? (x ? y) <c ((x ? x) ? x) ? (y ? y)

which is related to one that appears in [11]. The closure ordering is stable
by substitution.

Theorem 3 For each substitution σ,

s <c t⇒ σ(s) <c σ(t).

Proof: Suppose given a substitution σ and a precedence ≺
which is quasi-total on F and contains <. Let us prove that
s <c t implies σ(s) ≺p σ(t). We just have to find a precedence,
say ≺′, that contains < and is such that s ≺′

c t implies σ(s) ≺p

σ(t). This precedence is an ordering on V ar(t) ∪ F which is
built from the orderings ≺p and ≺ and from the substitution σ
as follows.

x ≺′ y ⇔ σ(x) ≺p σ(y)
x =′ y ⇔ σ(x) = σ(y)
x ≺′ g ⇔ (∀h ∈ F ∩ σ(x))h ≺ g
f ≺′ x ⇔ (∃h ∈ F ∩ σ(x))f ≺ h ∨ (f = h & f 6= σ(x))
f =′ x ⇔ f is a constant and σ(x) = f
f ≺′ g ⇔ f ≺ g.

The proof of the (ST ) part for σ(s) ≺p σ(t) from s ≺′
c t is easy

by induction on � × � as for the proofs of part 2 and 3. The
proof of 1 is by case on the root of s and t. It uses the definition
of the precedence ≺′. For instance, if s ≡ x, t = g~t and x ≺′ g,
then σ(s) ≡ σ(x), σ(t) ≡ g(σ(t1), . . . , σ(tn)) and by definition of
s ≺′ g one can demonstrate σ(x) ≺ σ(t). 2

6 A hierarchy of orderings

In this section, we recall what we have proved on the relationships between
extensions of precedences in the case of a lexicographical status. Let first
define an embedding or what Higman [6] calls a divisibility order.

11



Definition 9 The embedding is the least ordering ←↩ that satisfies

s←↩ t implies f(. . . , s, . . .)←↩ f(. . . , t, . . .)

and
s←↩ f(. . . , s, . . .)

Actually there exists an alternative definition more manageable and that
provides trivially the inclusion into the recursive path ordering. Here ←↩cart

is the cartesian product of the ordering ←↩ extended to arbitrary long se-
quences of terms, it is strictly contained in the lexicographical product.

Proposition 3 ←↩ is the least ordering that satisfies

f~s←↩ g~t

if

(ST ) (∀i ∈ [1...m])si ←↩ t

and one of the following conditions is fulfilled

1. f ≡ g & ~s←↩cart ~t,

2. (∃j ∈ [1...n]) s←↩ tj ∨ s = tj.

Proof: The proof is by induction on � × � and the transi-
tivity of ←↩ plays an important role. 2

By examining its definition, one sees that the recursive path ordering
is a fixed point of the previous definition, then it contains obviously the
least fixed point, namely the embedding ←↩. Then one gets the following
proposition, that summarizes all the results of this paper.

Proposition 4 Given a precedence < one has the following strict inclu-
sions:

� ⊂←↩⊂<p⊂<d⊂<c .

In the case of a multiset status the second inclusion is due to Dershowitz [1]
and means that the orderings higher in the hierarchy are simplification or-
derings and well-quasi orderings, the third is due to Jouannaud, Lescanne
and Reinig [11] and the fourth to Forgaard [3] in a restricted case. A hierar-
chy of orderings was also presented by Rusinowitch in the case of a multiset
status [20]. It contains orderings we didn’t try to extend in the case of a
lexicographical status, namely orderings due Plaisted [18], to Kapur and
Narendran [13] and to himself. However he does not consider the closure
ordering.

12



7 Conclusion

All the orderings of this paper have been implemented except the closure
ordering, but this could easily be done as we have mentioned, this only
requires to check that the disjunction of the suggestions made by REVE is a
tautology, which means it covers all the possible cases. Actually we run the
examples this way, in REVE. Other hierarchies could be considered based
on extensions of the embedding [19].

References

[1] N. Dershowitz. Orderings for term-rewriting systems. Theoretical Com-
puter Science, 17:279–301, 1982.

[2] N. Dershowitz. Termination of rewriting. Journal of Symbolic Compu-
tation, 3(1 & 2):69–116, 1987.

[3] R. Forgaard. A program for generating and analyzing term rewriting
systems. Technical Report 343, Laboratory for Computer Science, Mas-
sachusetts Institute of Technology, 1984. Master’s Thesis.

[4] R. Forgaard and D. Detlefs. An incremental algorithm for proving
termination of term rewriting systems. In J-P Jouannaud, editor, Pro-
ceedings 1st International Conference on Rewriting Techniques and Ap-
plications, pages 255–270, Springer Verlag, 1985.

[5] D. Harel. On folk theorems. Communications of the Association for
Computing Machinery, 23(7):379–389, 1980.

[6] G. Higman. Ordering by divisibility in abstract algebra. Proc. London
Math. Soc., 3(2), 1952.

[7] J. Hsiang and M. Rusinowitch. On word problem in equational the-
ories. In Th. Ottmann, editor, Proceedings of 14th International Col-
loquium on Automata, Languages and Programming, Karlsruhe (West
Germany), Springer-Verlag, July 1987. Lecture Notes in Computer
Science, volume 267.

[8] G. Huet. Formal Structures for Computation and Deduction. Technical
Report, INRIA, May 1986.

13



[9] J. P. Jouannaud and P. Lescanne. La réécriture. Techniques et Sciences
Informatiques, 5(6):433–452, 1987.

[10] J. P. Jouannaud and P. Lescanne. Rewriting systems. Technology and
Sciences of Informatics, 6(3):180–199, June 1987. Translated from [9].

[11] J. P. Jouannaud, P. Lescanne, and F. Reinig. Recursive decomposition
ordering. In Bjørner D., editor, Formal Description of Programming
Concepts 2, pages 331–348, North Holland, Garmisch-Partenkirchen,
RFA, 1982.

[12] S. Kamin and J-J. Lévy. Two generalizations of the recursive path
ordering. 1980. Unpublished manuscript.

[13] D. Kapur, P. Narendran, and G. Sivakumar. A path ordering for prov-
ing termination of term rewriting systems. In H. Ehrig, C. Floyd, M.
Nivat, and J. Thatcher, editors, Proceedings of the 6th Conference on
Automata, Algebra and Programming, Springer-Verlag, 1985.

[14] D. Kapur and G. Sivakumar. Experiments with an architecture of RRL,
a rewrite rule laboratory. In Proceedings of an NSF Workshop on the
Rewrite Rule Laboratory, pages 33–56, 1983.

[15] P. Lescanne. Computer experiments with the REVE term rewriting
systems generator. In Proceedings, 10th ACM Symposium on Principles
of Programming Languages, ACM, 1983.

[16] P. Lescanne. Uniform termination of term rewriting systems. recursive
decomposition ordering with status. In B. Courcelle, editor, Proceedings
9th Colloque les Arbres en Algebre et en Programmation, pages 182–194,
Cambridge University Press, Bordeaux (France), 1984.

[17] J-J. Lévy. Dershowitzeries. 1981. Unpublished manuscript.

[18] D. Plaisted. A recursively defined ordering for proving termination of
term rewriting systems. Technical Report R-78-943, U. of Illinois, Dept
of Computer Science, 1978.

[19] L. Puel. Bon préordres sur les arbres associés à des ensembles
inévitables et preuves de terminaison de systèmes de réécriture. Thèse
d’Etat, September 1987. Université Paris VII.

14



[20] M. Rusinowitch. Path of subterms ordering and recursive decomposi-
tion ordering revisited. J. of Symbolic Computation, 3(1 & 2):117–132,
1987.

[21] K. Sakai. An ordering method for term rewriting systems. In Proc.
First Int. Conf. on Fifth Generation Computer Systems, Tokyo, Japan,
November 1984.

15


