
- ----. _...._...~ 177J 1.H.....-'oJ ...
of Computing

Termination of Rewrite Systems by Elementary
Interpretations

Pierre Lescanne
Centre de Recherche en Informatique de Nancy (CNRS) and INRIA-Lorraine,
Vandoeuvre-les-Nancy, France

Keywords: Rewrite systems; Termination; Well-foundedness; Total connection

Abstract. We focus on termination proofs of rewrite systems, especially of rewrite
systems containing associative and commutative operators. We prove their ter
mination by elementary interpretations, more specifically, by functions defined
by addition, multiplication and exponentiation. We discuss a method based on
polynomial interpretations and propose an implementation of a mechanisation
of the comparison of expressions built with polynomials and exponentials.

1. Proving Termination of Rewrite Systems by Number Theoretic
Functions

Automating proofs of termination, especially proofs of termination of rewrite
systems containing associative and commuta~e (AC) operators, is a major
challenge in programming. To prove termination, we use elementary functions,
defined by addition, multiplication and exponentiation. Consider, for instance,
the rewrite system FACT (a functional programmes that describes a factorial
function)

O+x ---+ x

S(x) + y ---+ S(x + y)

O*x ---+ 0

S(x) * y ---+ (x*y)+y

x*(y+z) ---+ (x*y)+(x*z)

Correspondence and offprint requests to: P. Lescanne, Centre de Recherche en Informatique de Nancy
(CNRS) and INRIA-Lorraine, Campus Scientifique, BP 239, 54506 Vandoeuvre-les-Nancy, France,
email: Pierre.Lescanne@loriaJr.

fact (0) S(O)-4

fact(S(x)) S(x) * fact(x)-4

where + and * are associative and commutative. Its proof of termination requires a
well-founded ordering compatible with associativity and commutativity (AC-com
patible, for short), having the replacement property (i.e., compatible with the term
structure) and fully invariant (i.e., stable by substitutions). Such AC-compatible
well-founded orderings are rare in the literature. Indeed, the lexicographic path
ordering [KaL80] cannot handle associative and commutative rewrite systems.
Classical extensions of the recursive path orderings [BaP85, GnL86] do not allow
the precedence * > + > S that would be necessary in this case. Delor [DeI91]
relaxed this restriction on the precedence (see also [DeM92, KSZ90]), but there
are still rewrite systems (including the fib example of section 7.2) that cannot be
handled by a precedence-based ordering. Polynomial interpretations [Lan79] with
the restrictions for associative and commutative operators proposed in [BCL87]
(namely, that the interpretations of AC operators be of the form aXY+b(X+Y)+c
with ac + b - b2 = 0) do not work, since the function fact has exponential
growth and therefore cannot have a proof of termination done by polynomial
interpretations [CiL91]. This absence of implemented mechanised methods is
a great drawback if one wants to fully automate a completion procedure for
associative-commutative rewrite systems (for example [Les90]) or to use oriented
paramodulation or ordered completion [HsR87, BDP89]

On the other hand, the rewrite system FACT can be proved to terminate if
one uses the following interpretations:

[0]1 2

[S]I(X) X+2

[[+]I(XI,X2) XI +X2 + 1

[[*]I(XI,X2) XI ,X2

[fact] I (X) XX+l

and

[0]2 = 2

[S]2(X) - X + 2

[[+]2(XI,X2) = XI' X2

[[*]2(XI,X2) = XI' X2 '

[[fact]2(X) = XX + 1

saying that 8 > t if ([8]1 >N [t]d or ([8]1 = [t]1 and [8]2 >N [t]2), where
[[8] I and [[8]2 are two elementary functions over the non-negative integers. These
functions are the interpretations of the term 8 deduced from the interpretations
[-]1 and [-]2 of the operators and >N is the comparison of the functions
over the set N of non-negative integers. Note that fact is interpreted by an
exponential. Two levels of interpretation are necessary because the restriction on
interpretations of AC operators imposes strict limitations on the interpretations
of + and *. The proof of termination requires more than the functions allowed
by these restrictions and cartesian product of two or many level of interpretations
preserves stability by associativity and commutativity.

The method described in [BCL87] for mechanising the comparison of poly
nomials does not work on account of the exponential; we are going to show

here how that method can be extended. We propose an implementation of a
mechanisation of the comparison of expressions built with polynomials and ex
ponentials that are a subclass of "elementary functions" (see [Pet67], chapter 8).
Such expressions are called EP-terms in the rest of this paper. We show how
they can be used for proving termination of rewrite systems. Note that EP-terms
contain any tower of exponentials.

First, we describe our method for the comparison of polynomials in a formal
ism of rewrite rules, in order to prepare for the presentation of the comparison
of elementary functions described in the section 3.

2. Interpretations and Termination of Rewrite Systems

The method for proving termination of rewrite systems, called "polynomial in
terpretations" [Lan79], is based on the idea that a natural way for proving
termination is to associate with each term a natural number. Actually, since one
works with terms with variables, it is wiser to associate a function. Therefore,
a natural idea is to assign to each function symbol a function on the natu
rals and to compute, by induction on the structure of the terms, the function
associated with compound terms. More precisely, with each function symbol
f E ;Y; of arity n, one associates a function [f](XI, ... , X n) over natural numbers.
By induction, one can associate with each term t with variables {x., ... , X n } a
function [t](XI, ... ,X n) over natural numbers with n parameters. For instance,
with the interpretation [[-]1 of section 1, [[fact(S(x))] I (X) = (X + 2)X+2 + 1 =
X 2 . (X +2)X +4X . (X +2)x +4(X +2)X + 1. If one can prove that for each rule
I ---+ r, the function [IDI is larger than the function [r] 1 (here, "larger" means that
for each instantiation I of the parameters by natural numbers in an interval [c, iXJ),
the number [[I] 1(I(Xd, ... , I(Xn)) is larger than the number [[r] I (I(Xd, ... , I(Xn))) ,

then one can prove the termination of the rewrite system. If one takes again [-] 1

of section 1, the inequality

[fact(S(x))] I (X) = X 2. (X + 2)x + 4X· (X + 2)X + 4(X + 2)X + 1

>

[[Sex) * fact(X)]I(X) = X . XX + 2X

is satisfied for all X ;::: 2. If one could prove the same for the other rules, FACT
would be proved to terminate. Actually, for rul_S(x) + Y ---+ Sex+ y) one has
[[Sex) + yDI(X1,X2) = [[Sex +Y)]I(XI,X2) = XI + X2 + 3, but one has

[Sex) +Y]2(XI,X2) = XI' X2 + 2X2 > [Sex +Y)]2(Xt,X2) = XI' X2 + 2

which means FACT terminates. Therefore, the problem of termination boils down,
in this case, to provide adequate interpretations for basic operators and then to
prove that a function is larger than another over an interval of the naturals. The
first step is usually done by the user and the second is mechanised [BCL87], which
is very helpful since such comparisons are needed often for orienting equalities
during the process of completion.

Until now, to make comparisons of functions easy and, especially, to mechanise
the ordering, one restricted interpretations to be polynomials only. Additionally,
polynomial interpretations work well for proving termination of rewrite systems
modulo the associativity and the commutativity of some operations. Indeed, if
an operation is associative and commutative, the interpretation has to satisfy a

I

condition that is easy to check, namely the polynomial has to be of the form
aXY + b(X + y) + c with ac + b - b2 = O. In section 1, [+]1, [[*]1, [[+]2 and
[*]2 fulfill these requirements. This makes the number theoretic interpretation
method the only practical one in this case. Methods based on polynomial inter
pretations have been implemented and included in software that handles rewrite
systems, including REVE [For84, Les83], COMTES [AMS89], LP [GaG89] or,
ORME [Les90].

3. ORME

Since the procedures we are going to describe have been implemented in ORME, we
would like to mention a few things about this software. ORME is a set of tools for
dealing with equational theories, rewrite techniques and completion procedures.
It is written in ML (more precisely in CAML [WAL89]) and incorporates an
associative and commutative completion procedure. The completion procedure is
described by transformation rules [Bac91]. Proofs of termination of associative
and commutative rewrite systems is, therefore, an important part of ORME. ORME
has been described in [Les90, Les89] and is available by anonymous ftp! or
upon request to the author. ORME has now been upgraded to include the method
described in this paper.

4. Comparing Polynomials Using Rewrite Systems

In this section, we describe a method for comparing polynomials which is the
key to our method for proving termination based on polynomial interpretations.
For simplicity, we restrict comparisons to the interval of numbers greater than or
equal to 2; hence, the aim is to prove that a polynomial P(XI,,,.,Xm) is greater
than a polynomial Q(XI,. ", Xm) over the set [2,+00) of integers larger than 1.

In what follows, since we consider polynomials with non-negative integer
coefficients, we represent monomials CX7' ... X;;;· as the sum of c monomials
X7' ... X~m. Similarly, we do not use exponents, but repeat Xi as often as it occurs
in the monomials; in other words, we write

Xi."Xi ,"-v--'
n times

instead of X7. In what follows, the X;'s are called "letters". For instance, 3X1X~ will
be represented internally as X1X2X2 + X1X2X2 + X1X2X2. With these conventions,
the method of [BCL87] can be presented by three rewrite systems: The first is a
rewrite system .0Jl modulo associativity and commutativity of '+' and '.' with four
rules

O+x -+ x

O'x -+ 0

1· x -+ x

x : (y + z) -+ (x'y)+(x'z)

ftp on machine ftploria.fr .

I

for reducing polynomials with positive coefficients to their canonical form. There
is a rule for reducing a polynomial to a smaller one, namely Yf:

X '---+ 1+1

for every letter X and there are two rules for reducing a polynomial to a strictly
smaller one, namely q>:

1 ~ 0

X ~ 1

for every letter X. Since 0 is the identity of '+' and 1, the identity of '.', the
relation P --t Q (where --t is the transitive closure of~) can be implemented by
a function that checks whether Q is embedded into P where a monomial m is
embedded in another monomial m' if the set of the letters of m is a subset of the
set of the letters of m', and a polynomial P is embedded in a polynomial Q if
each monomial in P is embedded in a monomial in Q. The implementation of the
embedding is made easier if one has a canonical representation for polynomials,
obtained, for instance, by sorting the monomial according to a given ordering.
Let us write =- the relation (--+ U '---+ U ~r 0 ~ 0(--+ U '---+ U ~r. It is easy

to see that P >N Q if P=-o :- Q. In other words P is greater than Q if one
reaches an ~-reduced form of Q from P by many steps of --+ or '---+ or ~ with
at least one step of r-»,

Let us look at an example (the same one as presented on page 143 of [BCL87]
for the proof of termination of a distributivity rule),

UX2yZ + X2YZ + XZ > UXYZ + UXZ + XYZ + XZ

Let L be the left-hand side and R, the right-hand side, and let X2 be an abbrevia
tion for XX. Rewriting X to 1+ 1 by '---+ in the first monomial of L and computing
the normal form of the polynomial gives UXYZ + UXYZ + X2YZ + XZ. Reducing
Y to 1 by ~ in the second monomial gives UXYZ + UXZ + X2YZ + XZ. Reducing
X in the third monomial gives UXYZ + UYZ + XYZ + XZ which is equal to R.
Therefore L =- R which implies L >N R. Note that we can check easily that
R = UXYZ + UXZ + XYZ + XZ is embedded in UXYZ + UXYZ + X2YZ + XZ. A
direct implementation of the embedding will be really useful and efficient with
expressions containing exponentials.

In [BCL87], the key point was to pro~de heuristics for reaching Q from
P' (where P' is the ~-normal form of P) by =--reductions. Reachability in
terminating rewrite systems is decidable, but a decision procedure based on an
exhaustive search could be inefficient. The implementation of [BCL87] is efficient,
since it is based on finding monomials m in P and m' in Q such that the difference
of the degrees is minimum; then m is '---+-rewritten at the letters where the degree
is different and as many times as the difference in degrees.

The set Yf can be extended by other rules, provided P '---+ Q implies P 2N Q.
For instance, rules like .

XX + YY '---+ XY + XY

(x . XX) + (x . YY) '---+ (x XV) + (x . XV).

This allows one to prove XX + YY + 1 - XY - XY > O. Hans Zantema (private
communication) mentioned me an example of integers with addition, subtraction,
multiplication and squaring where such an argument is necessary.

5. Comparing EP-Terms

First, let us say a few words on the kind of expressions we consider. They are
defined by the following grammars for EP-terms:

EP_term ::= 0 EP_monomial + EP_term

EP_monomial 1 I EP.cornponent EP.rnonornlal

EP.cornponent ::= String I (EP_term)(EP .terrnj

Stri ng represents the letters of the EP expressions. In addition to those of section 2
for polynomials, the system, still called ;JA, for reducing to normal forms has rules

o+x x -O·x 0-1· x x
x . (y . z) - (x·y)+(x·z) -

;JA: J x(y+z) x'' . Xz

(x . y)Z - XZ . yZ
- x(Y'z)
(xYY -Xl X
xO - 1

System .Yf is modified to include new facts about binomials it is

L.+ 1+1

.Yf: { ~+yy L.+ XZ+ yZ

In a recent version we introduced a rule
l{x + y)Z L.+ XZ+ z . xz- + yZ

which requires to change the data structure described in the next section. g> is
the same as in Section 2, that is:

"--+ o{i ,g>: "--+ 1

and P >N Q if P = 0 :- Q.

6. Implementation and Examples

6.1. Data Structure and Implementation of f!II

The above described method has been implemented in CAML as a part of ORME2.

EP-terms are represented by the following data structure: EP-terms are lists of
EP-monomials and 0 is the empty list of EP-monomials. EP-monomials are lists

2 The CAML documented code of the implementation of EP is about 500 lines and 40 definitions of
functions.

of EP-components and 1 is the empty list of EP-components. EP-components
are either a letter or a power, i.e., a pair of EP-terms, namely the base and
the exponent. ~ is implemented directly by three functions called EP.term.norm,
EP .monomial.norm and EP.componeninorm, acting on EP-terms. EP-terms are
sorted with respect to a canonical ordering using a function EP .ierm.sort in order
to build canonical representations for EP-terms as a part of the implementation
of fY>.

6.2. Canonical Comparison of EP Canonical Forms

The total ordering between components on which the sorting is based compares
letters alphabetically and makes them smaller than raising to a power; powers
are compared lexicographically, i.e., the bases first, then exponents. Comparisons
of bases and exponents recursively invoke the ordering between EP-terms. Note
that this total ordering is not at all the ordering we are building for proving
termination.

6.3. Implementation of f?/

fY> is implemented by an embedding similar to the one described above for
polynomials. An EP-term P is embedded in an EP-term Q if with each EP
monomial m of P one can associate one-to-one an EP-monomial of Q in which m
is embedded. Similarly, an EP-monomial m is embedded in an EP-monomial m'
if with each EP-component of m one can associate one-to-one an EP-component
of m' in which it is embedded. At the EP-component level, a letter is embedded
in a letter of same name or in a power if it occurs in the base or in the exponent.
A power be is embedded in another power pq if the base b is embedded in the
base p and the exponent e is embedded in the exponent q.

6.4. Implementation of Yf

:If' is implemented by choosing a letter X and replacing it by 1+ 1 or by choosing
a power of the form (x + y)' and by replacing it by X Z + z . xz- 1 + yZ. This
is, in effect, a step of rewriting. :If' -rewriting, is done breadth first and is the
most expensive step of the process. In the implementation, the depth of search is
limited. In our experiments, it was limited to 4.

6.5. Two Optimizations

Since the comparison of polynomials by the procedure described in [BCL87] is
anyway better that the comparison of EP .ierms, this procedure is invoked in the
case of pure polynomials. On the other hand, comparing the evaluations of two
elementary terms on a specific value is cheap. For empirical reasons, we have
chosen the value 3; thus, before trying to prove that an EP-term s is smaller
than an EP-term t, we compare their evaluations on 3, if s(3) ?: t(3) we do not
pursue the comparison. This trick improved the efficiency of the implementation
dramatically when used for orienting equalities, as in completion.

O+x --+ x

S(x) + y --+ S(x + y)

O*x --+ 0

S(x) * y --+ (x*y)+y

x * (y + z) --+ (x*y)+(x*z)

jact(O) --+ S(O)

jact(S(x)) --+ S(x) * jact(x)

jib (0) --+ 0

jib(S(O)) --+ S(O)

jib(S(S(x))) --+ jib(x) + jib (S(x))

sqr(O) --+ S(O)

sqr(S(x)) --+ sqr(x) + sqr(x)

with the interpretations

[[0]1
[[S]I(X)

[+]I(XI,X2)
[*]I(XI,X2)

[fact]I(X)
[fib]1(X)
[[sqr]I(X)

-
-

=
=
=
=
-

2
X+2
Xl +X2 + 1
Xl ·X2
XX + 1
2x

2x + 1

[0]2
[S]2(X)

[[+]2(XI, X2)
[*]2(XI, X2)

[[fact]2(X)
[fib]2(X)
[sqr]2(X)

=
=
-

=
=
-
=

2
X+2
Xl ·X2
Xl ·X2
XX + 1
2x

2x + 1

Fig. 1. The system NAT + DIST + FACT + FIB + POWER2.

6.6. EP .Iess and EP .order

The main procedure of this process are called EP J~s and EP .order, EP Jess
takes two EP-terms sand t and returns true if s can be proved less than t,
and false, otherwise. It calls the procedures and the methods described above.
EP .order takes an interpretation and two terms and returns Greater, Less, Equiv
or, Undej.

6.7. Benchmarks

As examples, we tried FACT and the rewrite systems given in Figs 1 and 2.
On a SUN 4/75 (SPARC2) workstation and using non-optimized code, we have
oriented the rules of FACT in 0.35 s, the rules of NAT + DIST + FACT + FIB
+ POWER2 in 0.58 s and the rules of NAT + DIST + EXP in 0.68 s. Notice
that the interpretations of + and * satisfy the restrictions on AC-operators.

-
O+x x

S(x) + y

O*x

S(x) * y

x * (y + z)

S(x + y)

0

(x * y) + Y

(x*y)+(x*z)

xjO

x t S(y)

x j (y + z)

(x * y) j z

(x j y) j z

- S(O)- x * (x j y)- (xjy)*(xjz)- (x j z) * (y j z) - x j (y * z)

with the interpretations

[0]1
[S]I(X)

[1+]I(XI,Xl)
[*]I(XI,Xl)
I[i] I(Xt, Xl)

=
-

=
-
-

2
X+3
Xl + Xl + 3
Xl' Xl
(XI)(X2+1)

[0]1
[[S]l(X)

II+]l(XI, Xl)
[*]l(XI,Xl)
[l]l(XI,Xl)

=
=
=
=
-

2
X+2
XI 'Xl
XI' Xl + 1
(XdX2+1)

Fig. 2. The system NAT + DIST + EXP.

7. Use of the Ordering in Completions

This ordering is especially interesting in a completion, since it allows a completion
without any interaction with the user. The ordering is indeed used for orienting the
equalities generated as critical pairs into rewrite rules and therefore it preserves
the termination of the rewrite system. More precisely, the user provides the
interpretations and starts the completion process. No interaction, like orientation
of an equality into a rule, is required later on in the course of completion, if the
interpretations are adequately chosen. ,
7.1. Automatic Synthesis of an Iterative Factorial

An interesting example is the automatic generation of the definition of an iterative
factorial IFACT from its definition in term of FACT and properties relating it to
* and +, which are given to be associative and commutative:

ifactix, S(O)) = fact(x)

ifact(x, y + z) = ifact(x, y) + ifact(x, z)

ifact(x,y * z) = ifact(x,y) * z

One completes the system FACT together with these three equations, using the
following interpretations, which satisfy conditions on the associativity and com
mutativity of + and * (we omit unnecessary components of the interpretation):

[[0]1 = 2

[[S]I(X) X+2
[+]I(XI,X2) = Xl +X2 + 1 [S]2(X) X+2
[*]I(XI,X2) - Xl· X 2 [[+]2(XI,X2) XI·X2

[[fact] I (X) = 6Xx
[[!fact]I(XJ, Y2) = xf'.(X2 + 1)

The completion ends and yields the system:

(0 + x) -+ x

Sex) + y -+ sex + y)

(0 * x) -+ 0

Sex) * y -+ (x*y)+y

x * (y + z) -+ (x*y)+(x*z)

fact (x) -+ ifact(x, S(O))

ifact(x,O) -+ 0

ifact(x,y) + ifact(x,z) -+ ifact(x,y + z)

ifact(x,y) + !fact(x,z) + u -+ ifact(x,y + z) + u

!fact(x,y) * z -+ ifact(x,y * z)

ifact(O,x) -+ x

ifact(S(x),y) -+ ifact(x,y + (x * y))

The completion required 10 calls to the procedure EP.order. Cases where only
comparisons between polynomials can be used are not counted.

7.2. Automatic Synthesis of an Iterative Fibonacci Function

Like in the case of factorial, one starts with a naive definition of Fibonacci
numbers and, by completion, one generates a set of rules that gives an iterative
or tail recursive function that can be used to compute Fibonacci numbers. Unlike
FACT, the completion fails on an equation that cannot be oriented, but by that
time all interesting rules have been generated. '

One starts with the following set of equations, together with the associativity
and commutativity of + and *:

O+x x

Sex) + y Sex + y)

O*x o
Sex) * y (x*y)+y

x * (y + z) (x*y)+(x*z)

jib (0) o
jib(S(O)) S(O)

jib(S(S(x))) jib (x) +jib(S(x))

ijib(x, Y,z) (fib(S(x)) * y) + (fib(x) * z)

ijib(x, YI + Y2, ZI + Z2) ijib(x, Yb ZJ) + ijib(x, Y2, Z2)

(fib(S(x» * yd + ijib(X,Y2,Z) ijib(x,YI + Y2,Z)

(fib(x) * zd + ijib(x, Y,Z2) ijib(x,Y,zl + Z2)

The following three-level interpretations, which satisfy restrictions on the asso
ciativity and commutativity of + and *, are used:

[0]1 = 2

[S]I(X) = X + 2

[+JJ(XI,X2) = XI +X 2

[*]I(XI,X2) - XI' X2

[fib]I(X) = 2x

2X 1+I
.x2 + 2X 1
[ijib]I(XI,X2) = .x3

[Oh = 2
[Sh(X) - X + 2

[+h(XI,X2) = X I+X2+ 1 [Sh(X) X+2
[*h(XI,X2) - XI' X2 [+h(XI,X2) X I'X2

[fibh(X) - 2x

2X 1+2.x2+ 2X 1X 3 [ijibh(XI,X2) =
The completion fails on the equation

(XI * jib(S(X2))) + ijib(X3,jib(X2), X4) = (X4 * jib(X3» + ijib(X2, xl,jib(S(X3)))

that obviously cannot be oriented. At the time of failure, the completion has
generated the rewrite system

O+x ---+ X

S(x) + Y ---+ S(x + y)

O*x ---+ 0

S(x) * Y ---+ (x*y)+y

X * (y + z) ---+ (x*y)+(x*z)

jib (0) ---+ 0

jib(S(O» ---+ S~)

jib (S(S(x))) ---+ jib(x) +jib(S(x))

(fib(S(x)) * y) + (fib (x) * z) ---+ ijib(x,y,z)

(fib(S(x)) * y) + (fib (x) * z) + u ---+ ijib(x, Y, z) + u

ijib(x, YI, zj) + ijib(x, Y2, Z2) ---+ ijib(x, YI + Y2, Zl + Z2)
u + ijib(x, YI, zd + i[ib(x, Y2, Z2) ---+ u + ijib(x, YI + Y2, Zl + Z2)

(fib(S(x)) * yJ) + ijib(X,Y2,Z) ---+ ijib(X,Yl + Y2,Z)

U + (fib(S(x)) * yd + ijib(x, Y2, z) ---+ u + ifibtx.y, +Y2,Z)

(fib(x) * zj) + ijib(x, Y,Z2) ---+ ijib(x, Y,Zl + Z2)

u + (fib(x) * zd + ijib(x, Y, Z2) ---+ u + ijib(x, Y,Zl + Z2)

ijib(O,Y,z) ---+ Y

ifib(S(x),Y,z) ifib(x, (y + z), y) -
ifib(x,O,z) z *jib(x) -ifib(x,Y, O) Y * jib(S(x)) -

u * ifib(x, Y, z) ifib(x, (y * u), (u * z)) -
jib(x) + ifib(x, Y, z) ifibtx,», S(z)) -

u + jib(x) + ifibtx,», z) u + ifib(x,Y,S(z)) -
jib(S(x)) + ijib(x,Y,z) ifib(x, S(y), z) -

u + jib(S(x)) + ijib(x,Y,z) u + ifibix, S(y), z) -
All these rules are interesting properties of jib and ifib; the most interesting are
perhaps

ifib(O,Y,z)
- Y

ifib(S(x),Y,z) - ijib(x,(Y +z),Y)

which are tail-recursive definitions of ifib. On the other hand, the rule

ifib(x,O,z) - z*jib(x)

and rule

(fib(S(x)) * y) + (fib(x) * z) - ifib(x,Y,z)

show that elementary interpretations do not work like a precedence ordering
which could not orient the rules this way. Indeed, with such orderings, the terms
containing ifib have to be both in the right-hand side or both in the left-hand
side. This will make the completion fail too early to generate the expected tail
definition of ifib. EP .order was called 27 times in this completion.

8. Conclusion

EP is available as a part of ORME [Les90] and currently we are investigating
how this method can be applied to automate proofs of termination of other
rewrite systems. The method has some limits; the most obvious one is that
interpretations are not easy to find and require expertise. The problem here is
harder than for polynomial interpretations, since, in addition to the difficulty
of finding an interpretation that actually can be us~ to prove the termination,
the interpretation must also to be tractable for our inefficient procedure. For
instance, all our examples required some tuning before working; nevertheless, the
programme is very useful in this phase. The method has also theoretical limits.
Indeed, for number theoretic functions (with notation of [CiL91]) defined using a
O-S discipline, function {J} (the actual function computed by the rewrite system)
is related to function [fn with conditions that are made explicit in [CiL91] in
the case of polynomial interpretations. Intuitively, we feel that the interpretation
has to be larger in growth that the computed functions, but we do not know
by how much. Actually, there are examples where the computed functions are
elementary (exponential, for instance), but require a non-elementary function for
a proof of termination. A similar result should hold for functions on lists with
a nil-cons discipline, and we have an example of a definition of a permutation
function (a n" function), where the only simple available interpretation contains
a superexponential, more precisely, the function e(2) = 2 and e(n + 1) = e(n)e(nJ•

Acknowledgements

The result of [CiL91], which we proved with Adam Cichon, was the starting
point for this research. Alfons Geser mentioned to me the analogy between
transformation orderings [BeL90, Ges90] and our use of proofs of positiveness in
polynomial interpretations as described in [ECL8?]. This comment was a source of
inspiration for the implementation and helped me to see the proof of positiveness
of a reachability problem for a specific rewrite system, namely ~ ffi :Yt ffi f!J. This
analogy should be studied further and should lead to other implementations.
I would like also to thank Nachum Dershowitz for his help in the preparation
of this paper and the members of the research group EURECA (among them
Adam Cichon, Isabelle Gnaedig, Miki Hermann, Dieter Hofbauer, and Gregory
Kucherov) for many interactions.

This research was partly supported by PRC "programmation avancee et
outils de l'intelligence artificielle" and by ESPRIT under Basic Research Working
Group 3264, COMPASS.

References

[AMS89]	 Avenhaus, J., Madlener, K., and Steinbach, J.: COMTES -- an experimental environ
ment for the completion of term rewriting systems. In N. Dershowitz, editor, Proceedings
of the Third International Conference on Rewriting Techniques and Applications, pages
542-546, Chapel Hill, NC, April 1989. Vol. 355 of LNCS, Springer, Berlin.

[Bac91]	 Bachmair, L.: Canonical equational proofs. Computer Science Logic, Progress in Theo
retical Computer Science. Birkhauser Verlag AG, 1991.

[BCL87]	 Ben Cherifa, A and Lescanne, P.: Termination of rewriting systems by polynomial
interpretations and its implementation. Science of Computer Programming, 9(2):137
160, October 1987.

[BDP89]	 Bachmair, L., Dershowitz, N. and Plaisted, D.: Completion without failure. In H. Art
Kaci and M. Nivat, editors, Resolution of Equations in Algebraic Structures, Volume 2:
Rewriting Techniques, pages 1-30. Academic Press, 1989.

[BeL90] Bellegarde, F. and Lescanne, P.: Termination by completion. Applicable Algebra in
Engineering, Communication and Computation, 1(2):79-96, 1990.

[BaP85] Bachmair, L. and Plaisted, D. A: Termination orderings for associative-commutative
rewriting systems. Journal of Symbolic Computation, 1:329-349, 1985.

[CiL91]	 Cichon, E. A and Lescanne, P.: PolynomiagIntcrprctations and the Complexity of
Algorithms. Rapport interne 91-R-151, Centre~e Recherche en Informatique de Nancy,
Vandceuvrc-les-Nancy, 1991. to be presented at CADE'92.

[DeI91] Delor, c.: Terminaison des systemes de reecriture, application it la transformation des
formules equationnelles. These de l'Universite de Paris VII, June 1991.

[DeM92] Dershowitz, N. and Mitra, S.: RPO for AC-termination. Unpublished manuscript, U.
of lllinois, 1992.

[For84]	 Forgaard, R.: A program for generating and analyzing term rewriting systems. Technical
Report 343, Laboratory for Computer Science, Massachusetts Institute of Technology,
1984. Master's Thesis.

[Ges90]	 Geser, A.: Relative termination. Dissertation thesis, Universitat Passau (Germany),
1990.

[GaG89]	 Garland, S. J. and Guttag, 1. V.: An overview of LP, the Larch Prover. In N. Dershowitz,
editor, Proceedings 3rd Conference on Rewriting Techniques and Applications, Chapel Hill
(North Carolina, USA), volume 355 of LNCS, pages 137-151. Springer-Verlag, April
1989.

[GnL86]	 Gnaedig, 1. and Lescanne, P.: Proving termination of associative rewriting systems by
rewriting. In J. Siekmann, editor, Proceedings 8th International Conference on Automated
Deduction, Oxford (UK), volume 230 of LNCS, pages 52-61. Springer-Verlag, 1986.

[HsR87] Hsiang, J. and Rusinowitch, M.: On word problem in equational theories. In Th.
Ottmann, editor, Proceedings of 14th International Colloquium on Automata. Languages
and Programming. Karlsruhe (Germany), volume 267 of LNCS, pages 54-71. Springer
Verlag, 1987.

[KaL80] Kamin, S. and Levy, J.-J.: Attempts for generalizing the recursive path ordering.
Unpublished manuscript, 1980.

[KSZ90]	 Kapur, D., Sivakumar, G. and Zhang, H.: A new method for proving termination of
AC-rewrite systems. In Proceedings 10th Conf. on Foundations of Software Technology
and Theoretical Computer Science, volume 472 of LNCS, pages 133-148. Springer-Verlag,
1990.

[Lan79]	 Lankford, D. S.: On proving term rewriting systems are noetherian. Technical report,
Louisiana Tech. University, Mathematics Dept., Ruston LA, 1979.

[Les83]	 Lescanne, P.: Computer experiments with the REVE term rewriting systems generator.
In Proceedings of 10th ACM Symposium on Principles of Programming Languages, pages
99-108. Association for Computing Machinery, 1981

[Les89]	 Lescanne, P.: Completion procedures as transition rules + control. In M. Diaz and
F. Orejas, editors, TAPSOFT'89, volume 351 of LNCS, pages 28-41. Springer-Verlag,
1989.

[Les90]	 Lescanne, P.: Implementation of completion by transition rules + control: ORME.
In H. Kirchner and W. Wechler, editors, Proceedings 2nd International Workshop on
Algebraic and Logic Programming. Nancy (France), volume 463 of LNCS, pages 262
269. Springer-Verlag, 1990.

[Pet67] Peter, R.: Recursive Functions. Academic Press, 1967.
[WAL89] Weis, P., Aponte, M. v., Laville, A., Mauny, M. and Suarez, A.: The CAML reference

manual. Technical report, Projet Formel, INRIA-ENS, 1989. Version 2.6.

Received June 1993

Accepted in revised form January 1994 by U.H.M. Martin

,

