
Science 01 Computer rrograrnmmg 'J \ I'J~ I} U 1- D'J
North-Holland

TERMINATION OF REWRITING SYSTEMS BY

POLYNOMIAL INTERPRETATIONS

AND ITS IMPLEMENTATION*

Ahlem BEN CHERIFA and Pierre LESCANNE
Centre de Recherche en Informatique de Nancy, 54506 Vandoeuvre, France

Communicated by M.-C. Gaudel

Received May 1986

Revised February 1987

Abstract. This paper describes the actual implementation in the rewrite rule laboratory REVE of
an elementary procedure that checks inequalities between polynomials and is used for proving
termination of rewriting systems, especially in the more difficult case of associative-commutative
rewriting systems, for which a complete characterization is given.

1. The origin of the problem

Termination is central in programming and in particular in term-rewriting systems,
the latter being both a theoretical and a practical basis for functional and logic
languages. Indeed the problem is not only a key for ensuring that a program and
its procedures eventually produce the expected result, it is also important in concur
rent programming where liveness results rely on termination of the components.
Term-rewriting systems are also used for proving equational theorems and are a
basic tool for checking specifications of abstract data types. Again, the termination
problem is crucial in the implementation of the Kn~h-Bendix algorithm, which
tests the local confluence and needs the termination to be able to infer the total
confluence. Termination is also necessary to direct equations properly. Until now,
methods based on recursive path ordering were satisfactory [8,19], but when we
recently ran experiments on transformation of FP programs [2], we were faced with
a problem that the recursive path ordering could not handle. The problem, motivated
by a simple example of code optimization, is just Associativity + Endomorphism:

(XI * x2) * X3 = XI * (x2 * x 3) ,

f(x I * x2) = f(xJ * f(x 2) .

The variables are functions, * is the composition and f is a mapcar-like operator.
In order to optimize the program, the user wants to decrease the number of uses

* This work was supported by the Greco de Programmation.

0167·6423/87/$3.50 © 1987, Elsevier Science Publishers B.Y. (North-Holland)

138 A. Ben Cherifa, P. Lescanne

of f, and to orient the equation

f(XI * X2) = f(x l) * f(x2)

into the rule

f(XI) * f(x2)~ f(x l * X2)

what the recursive path ordering accepts by setting *> f. It orients the associativity
equation in

(x, * x2) * X3 ~ Xl * (X2* X3)

by setting the status of * to be left-to-right, and then the Knuth-Bendix procedure
diverges generating the rules:

!"(xl * x2) * X 3 ~ !"(xl) * (f"(X2) * x3).

This is not what the user expects, since he or she rather wants to get the terminating
system

f(x l) * f(X2) ~ f(XI * X2),

(Xl * x2) * X3~ Xl * (X2 * X3),

f(x l) * (f(x2) * x3)~f(XI * X2) * X3,

where the third rule also decreases the number of occurrences of f. Fortunately,
thanks to Lankford [21] this system can easily be proved to be terminating by using
the polynomial interpretation [f](XI) = 2Xl and [* I(XI, X 2) = XI X 2 + Xl, and this
motivates our attempt for implementing a nice and efficient method for mechanically
proving termination based on polynomial interpretations. Our purpose is not to
extend his method in any way, but to strictly implement what is presented by Huet
and Oppen in their survey I [16]. We also characterize the polynomial interpretations
for associative-commutative operators, restricting drastically the space of interpreta
tions for such operators. We get, in this way, the unique safe method for associative
commutative rewriting which is implemented. Finally we extend the method to
Cartesian product providing a technique for pr~ving termination of associative
commutative systems, such as a simple specification of the natural numbers. This
example is especially interesting since it is important and no other method for
proving its termination works [1,12].

This paper rather emphasizes the actual implementation in REVE, and the
examples that were mechanically proved by REVE. It describes procedures for
checking polynomial inequalities, which are both efficient and general. It was said
that such a method was already proposed by Lankford, but we do not know whether
or not it was actually implemented and we did not have access to published matter
on the subject. In the absence of such information we have made this work

I The authors say: "the proof of (inequality of the form [i(x * y)](X, Y) > [i(y) * i(x)](X, Y) (see
Example 1)) is not straightforward, since it involves showing for instance (\fx, yEN) x 2(l + 2y)2 >
y2(l + 2x2)" [16, p. 367].

139 Termination of rewriting systems by polynomial interpretations

independently. By the way, the reader will find no new results on theoretical aspects
of the polynomial interpretation method, but only results dealing with the actual
implementation. We feel indeed it is important to propose algorithms, and people
who have used our software REVE are usually grateful to notice the system performs
all tedious computations required by the polynomial interpretation method at their
place.

2. Interpretation by functions over the naturals and termination

Let T(F, {XI, ... , xm}) be the set of terms on {XI, ... , xm} and Nm
~ N the set of

m-ary functions on natural numbers. Suppose that for each k-ary function j'e Fk <:; F,
we define an interpretation ofJ as a polynomial with k variables. The interpretation
of f will be written AXI··. Xdfl(X\, ... ,Xk) and often we simply write [fl
(XI' ,Xk) . We use the systematic convention of associating variables
XI, ,Xb Y, Z, U for the polynomials with variables XI, ... , Xb Y, Z, u for the
terms. This interpretation allows us to define on Nm

~ N an F-algebra N m , in the
following way: if PI , ... ,Pk E Nm

~ N, then

fN m (PI.·· ., Pk)(XI. ... , X m)= [fl(PI (X), .. . , X m), . . . , pdXI, .. . , X m)).

If we define [x;)(XI, ... , X m) = Xi, then there exists a unique extension to a
morphism from T(F, {XI' ... , xm }) to the F-algebra N m imposed on Nm

~ N that we
will also write [·1.

Example 1. Suppose Fo = {e}, F[= {i} and F2 = {*}, and define [el = 2, [il(XI) = xi,
[* I(XI, X 2) = 2XI X 2 + XI.

Then

[(XI * i(X2)) * x21(XI, X 2)= 4XI X~ +2XI X~ + 2X[X 2+ XI.

There exists on Nm
~ N a natural partial strict orderingavhich is defined as h < k if

and only if (VaIEN) ... (VamEN)h(al, ... ,am)<k(al, ... ,am). This ordering is
obviously well-founded, otherwise a sequence h.> ... > h; > ... would exist which
by instantiation would produce an infinite sequence h, (aI' ... , am)> ... >
hn(aI. ... ' am»···.

On T(F, {XI, ... , xm }) , we define an ordering <[oj by s <[1 t if and only if lsl < [r].
This ordering is well-founded by definition. It is also stable by instantiation, which
means that for all substitutions a, u(s) <[.] u(t). Indeed, since [·1 is a morphism,
[u(s)I(XI. ... ' X m)<[u(t)I(XI. , X m) is equivalent to the following inequality
between polynomials [sl([u(xIH , [u(x",))) < [tl([u(x1)1, ... , [u(xm))) and this
inequality holds if the inequality [s1< [t I holds. It will be said to be compatible if
s <[] t implies f(. . . , s, ...) <[If(. . . , t, ...). Let us recall now a main termination
criterion:

140 A. Ben Cherifa, P. Lescanne

Proposition 1 (Manna and Ness [23]). A term-rewriting system R terminates on a set

T(F, {Xl' ... , xm }) of terms if there exists a well-founded and compatible ordering>
such that, for all rules g ~ d in R and for all substitutions 0', O'(g) > 0'(d).

So, any interpretation associated with a compatible ordering could be used to
prove termination.

3. Polynomial interpretation for proving termination

Given a term-rewriting system {g. ~ d.; ... , gn ~ dn}, the problem consists of first
guessing a compatible interpretation [.] and then proving that gI> [.] di,

... , gn >[.] d., In this paper we give no good solution to the first problem since
currently nobody, at our knowledge, has good heuristics. Instead, we make sugges
tions in Section 6 and we expect that computer experiments will lead to a progress
in this direction. So, in this paper, we will essentially focus on proving the inequalities
between the interpretations of terms. Then, polynomial interpretations like in [16]
can be used, although it is known that there are term-rewriting systems that cannot
be proven to terminate using this method. However, we feel that our method could
be extended to other classical recursive functions like the exponentials.

3.1. An overview of the problem

Notice first there is no algorithm to decide inequalities between n polynomials
over N [21]. Otherwise this algorithm could be used to solve the tenth Hilbert
Problem. Indeed to decide inequalities between polynomials over N is equivalent
to decide inequalities between polynomials over 7L (an inequality between poly
nomials over 7L is transformed into several inequalities between polynomials over
N, according to the positiveness or the negativeness of the variables). So, if we could
decide n arbitrary inequalities, we could in partic_ar decide whether n polynomials
are positive. This in turn could be used for deciding whether n polynomial equations
PI = 0 II ... II P; = 0 have solutions, since it is equivalent to decide pi+ ... + P~ = 0
[7].

However we know after Tarski [26, 5] that if QI, R I , ... , Qn, R; are considered
as polynomials over 1R, there exists an algorithm to decide first-order formulas like
QI> R I II ... II Qn> R n. The most elaborate version of such an algorithm was pro
posed by Collins [6] and, actually, used to prove termination of simple term-rewriting
systems. Anyway this algorithm is a very large piece of code, it has an exponential
complexity and is not really efficient (at least for our purpose, where we want to
be able to handle thirty, up to one-hundred comparisons in a reasonable time).
Thus we have chosen a much simpler view of the problem.

(l) We do not want to decide inequalities and leave open the problem of guessing
an adequate interpretation [']. Our aim is a procedure that simply checks properties

that insure the wanted inequalities between polynomials and thereby directs
equations into rules. Experience has shown that proving these inequalities is rather
tedious, even when one has a good intuition on how to select the polynomials and
computer experiments gave us surprises, see Example 2.

(2) We want to base these computations on really elementary and basic principles
such that a simple and efficient implementation can be easily devised.

Our first idea will be to restrict the domain of polynomials to N - {O, 1}, in other
words to consider the set (N - {O, 1})m ~ N. Now the idea behind this becomes easy,
and generalizes the fact that XY> Y if X> 1. To guarantee the stability by instanti
ation, we have also to be sure that the values [O'(xJ](Xj, ... , X n) are in N - {O, 1}.
Thus we have to check that the interpretation of each term is a function in (N
{O, 1})m~N-{0, l}. This will be easily satisfied, if each time we have Xi> 1, for all
i in [1 .. m], then [f](Xj, ... , X m) > 1, and this will be true if If] satisfies the
inequalities [f](a j , ••• , am) ;. a j on N - {O, 1}. This last monotonicity condition is
quite similar to the subterm property' of the simplification orderings and both
conditions can obviously be checked with our algorithm. Usually it is enough to
ensure that the coefficients of the interpretations are natural numbers. With the
degree of each variable greater than 1, this implies the compatibility'.

3.2. An example

Before explaining our method let us look at the termination of Associativity +
Endomorphism. Let us take

[f](Xj) = 2Xj,

r-](Xh X 2) = X jX2+ Xj.

It is easy to check that this interpretation satisfies the subterm property. Now we
may compute the values of the left-hand and right-hand sides of the rules. For the

associativity rule, we obtain

[(Xj * x2) * X3](XI, X 2 , X 3) = X j X 2X3 + X j X2'Xj X3+ XI,

[x, * (X2 * X3)](XI, X 2 , X 3) = X j X 2X3 + X jX2+ XI,

so that we have to prove the inequality

X jX3>0.

It is true because of X j > 0 and X 3 > O. Similarly, as

[f(xj) * (f(X2) * X3)](X1 , X 2 , X 3) = 4X1 X 2X3 +4X1 X 2 +2XI,

[f(x\ * X2) * X3](XI, X 2 , X 3) = 2X\ X 2 X3+ 2XjX 2 + 2XjX3+ 2Xj,

2 An ordering> on a set of terms T possesses the subterm property if f(... t .. .) > t for all terms in T.
3 It is surprising to notice that, in general, the interpretations suggested by the authors in the literature

satisfy these conditions (restriction on the domain and subterm property), which show they are not so
restrictive.

this yields the inequality

2X\X2X3+2XIX3-2XIX2> 0

which is true since

2X\ X 2X3 > 2X\ X2 and 2X\ X 3 > O.

The latter follows from the fact that all its coefficients are positive. The former from
the fact that X 3 > 1. The test for the rule f(x\) * f(x2) --'>f(x\ * X2) is left to the reader.

3.3. The principles of the procedure used for proving positiveness

Here is the key of our method. We prove inequalities one at a time, and starting
from a polynomial plO] we build a sequence of inequalities such that" plO]? ... ?

pln-l]? pln] > 0". The positiveness of pln] is supposed to be checked by a basic

principle like "all coefficients are positive". At each step we transform some
coefficients of pli] (actually two) such that p[i] = pli+l] +Qli] where Qli] is a positive

monomial. More precisely, we propose the algorithm shown in Fig. 1.

Positive = proc(P: polynomial) returns(string)
while there exists a negative coefficient do

if there exist ap\>o.; > 0 and a%...•qm < 0,
with Pi? qi for all i E [1 .. m]

then choose(ap\>o.« , aqIo-- .•qJ

change(ap" ...»; , aq" ...•qJ

else return("no-answer")
end

end

return("positive")

end

Fig. 1. A procedure for checking positiveness of a polynomial. '"
We suppose that

pli] = " ali] XPI .. , XPm
1..J m pi. -Pm 1 m

Ph···.Pm EN

where a~il]"Pm is the coefficient of Xfl ... X;;;n in pli].

The main idea of the procedure Positive is to consider a monomial with a negative
coefficient, say v and to try to find a monomial with a positive coefficient, say 7T,

which bounds it. This means that for all value greater than or equal to 2, the value
of 7T will be greater than the value of /I. This comes from considerations on the
degree of the monomials, i.e, the degree of 7T has to be greater than the degree of

http:Ph���.Pm

II. When such a monomial is found, one removes from 7T as little as possible to
bound as much as possible of II. The procedure will now rely on how we choose
the function change. We propose two solutions for the body of change(a p1__ pm , aq, ...q,J

where ap/- ..Pm is positive and aq, ...qm is negative. The first one is the most straightforward
and uses the fact that the values of the variables are greater than 1. Therefore a
monomial like X" is greater than 1 and if n is greater than m, a monomial like
Xny is greater than Xmy' We indicate precisely the transformation to perform on
the coefficients of 7T and II according to the previous conventions.

Solution 1:

if a~iLPm > la~?qJ

then

ali+!] := ali] + ali]
PI···Pm PI' ·Pm ov- ·qm

ali+l] := 0
ql···qm

else

ali+I] := 0

PI···Pm

ali+1] := ali] + ali]

ql· ..qm q,. ·qm Pv- ·Pm

The other coefficients are unaltered.

The example of Associativity+ Endomorphism illustrates an application of this
technique. In order to understand the second solution let us look at a realistic
example that cannot be solved by the previous transformation.

Example 2. Using a Knuth-Bendix procedure, the rewriting system

x + (y + z) (x + y) + z,

x * (y + z) (x * y) + (x * z)

can be completed into itself plus the rule

(u+(x*y))+(x*z) u+(x*(y+z)) ,
by using the interpreation [+](X, Y) = XY + Y and [*](X, Y) = Xy. A completion
algorithm which orients the third rule has to prove that

[(u+(x*y))+(x*z)](X, Y,Z, U»[u+(x*(y+z))](X, Y,Z, U)

i.e.,

UX 2YZ+X2yZ+XZ> UXYZ+ UXZ+XYZ+Xz.

Since all the coefficients are equal to 1, in order to apply Solution 1, we should
have at least as many monomials with positive coefficients as those with negative
coefficients. However we can take advantage of the fact that X is greater than or
equal to 2, thus

UX 2 YZ ~ 2UXYZ > UXYZ + UXz.

This remark can be generalized to the power of 2. Indeed

X q,[i] XP, XPrn + [i] Xi»
UP, ...Pm 1" • m U q•.. qm 1'" m

= (a[i] + ali] xt.:». Xqrn-Prn)XP I XPrn
Pt ...Pm q.···qm 1 • • . mI' • . m .

Since Xi ~ 2, Pi ~ qi and a~?.qrn"':; 0, the above expression is

~(a[i] +a[i] 2q,-p' ... 2qrn-P'")Xp' ... XPrn.
P,···Pm ql···qm 1 m

The idea is now to use this last coefficient as the new coefficient of Xf' ... X~rn in
p[i+l] and to delete the coefficient of Xi' ... X~n. This removes a smaller part of
a~?.Prn than Solution 1. For instance, with X 2 Y - X we get ~ X 2 Y instead of O.

Solution 2.

2 q,-p, .. , 2qrn-Prn lif ali] > la[i]
PI···Pm q.···qm

then

a[i+l] := ali] + ali] 2q,-p, .. , 2qrn -Prn

PI···Pm pv- ·Pm ql···qm
a[i+l] :=0

q,···qm

else

a[i+l] :=0

PI···Pm
a[i+l) '= ali] +a[i] 2P,-q, ir-:»

q,···qm· ql ..·qm PI···Pm •••

The other coefficients are unaltered.

Proposition 2. Using Solution 1, change transforms a polynomial into a less polynomial.

Proof. Take the first change function and consider only the first case of Solution 1.

Then

P[i+l]= ... + ali] X k, Xkrn + ... +oxq, Xt»
kJ ... k I' • • mI' • • mm

+... + (a~iLPrn + a~?qJ Xf' ... X~rn

("] k k [']'="'+ak' k X1' ... X '"+"'+a' Xp, ... XP rn
1'" m m PI ••. Pm 1 m

X q,+... + ali] XqrnXp,-q, Xprn-qrn
qt ... qm l' . . mI' • • m •

Therefore, if a~i']'Prn > la~,] ..qJ, putting p[i] in the left-hand side, we get

p[i]=p[i+J]_a[i 1 xt. Xqrn(Xp,-q, X Prn- qrn-l)
q, ... q". l' • • mI· • • m ,

and

P[i]= p [i+l]+ a [i] xi. Xqrn(Xp,-q, Xprn-qrn-l')
Pt ... Pm l' . . mI' • • m

otherwise. D

Proposition 3. Using Solution 2, change transforms a polynomial into a less polynomial.

145 Termination of rewriting systems by polynomial interpretations

Proof. Remember that Xi ~ 2, so any power of X;/2 is greater than 1. Thus, when
one takes the second change function,

if ali] > la[i] 2q , - p , ... 2Qm-Pml
Pt···Pm qt···qm

then
p[i] = p[i+I]_ a~?"Qm Xi' ... X%;"[(XI/2)P,-Q, ... (Xm/2)P

m-Qm -1]

else
p[i] = p[i+\]+ a~?'PmXi' ... X~'[(XI/2)PI-Q,... (Xm/2)Pm-

Qm -1]

Notice that the polynomials p[i] have their coefficients in dyadic numbers, i.e.
numbers of the form n/2k

, even though prO] has coefficients in N. 0

We may now state the following theorem about the procedure Positive.

Theorem 1. Whatever change function is taken, the procedure Positive always termin
ates and returns "positive", only if the polynomial" input" is positive for all natural
greater than or equal to 2.

Proof. The correction comes from the correction of change and the termination
comes from the fact that each call to change decreases the absolute value of the
coefficient of one monomial of a number at least equal to T k where k is the
maximum of PI + ... +Pm for all monomials in pro]. []

When the first method is used, the second one can always be used and the
difference between p[i] and p[i+l] is always smaller and have more chance to succeed
as shown in Example 2. For this reason, we have implemented the second method
in REVE and we have kept the presentation of the first one, because of its simplicity.
In the procedure Positive, the choice of the coefficients to compare is a difficult part
of its implementation. Some choices could lead to a failure when others do not, as
illustrated by the following example; see [4] for a ~ll discussion.

Example 3. Let

y + X 2-X -4 Yp[O](X, Y) = X 2

and suppose we choose a2,1 and al.o, then

p[I](X, Y)=3/4X2Y+X2-4Y

Now choose a2,1 and aO,1

p[2](X, Y) = X 2 - Y

which leads to a failure. On the other hand, we could have chosen first a2,O and al,o,

p[I](X, Y)=X2Y+l/2X2-4Y

146 A. Ben Cherifa, P. Lescanne

and aZ,l and aO•l

p[2](X, Y) = 1/2Xz,

which is positive.

The current implementation in REVE tries to compare a a~?...Pm and a a~?qm with
the smallest difference and seems to work well. A study should be made to know
if it is good.

On the other hand, notice that other properties of polynomials could be used like

Xi+X~>2XlXZ'

or

Xi+6Xix~+ xi> 4xixz+4X l X~'

It could be also possible to take values greater than or equal to 3 and to include
this property into the definition of a new function change.

4. Polynomial interpretations of associative-commutative operators

Associative-commutative operators often occur in rewriting systems and it is really
important to have methods to prove termination of associative-commutative rewrit
ing systems. In the presence of associative-commutative equations (written AC),
one interprets the quotient algebra T(F, {Xl' ... , X m }) / AC. Therefore any interpreta
tion has to be consistent with the laws. The purpose of this section is to give a
characterization of when polynomial interpretations are consistent in this sense. It
turns out that this criterion is very simple and can be tested simply. Thus if a
polynomial Q interprets an associative-commutative operator, it satisfies the two
conditions:

Q(X, Y) = Q(Y, X), ,

Q(Q(X, Y), Z) = Q(X, Q(Y, Z)).

The first equation says that Q is symmetric, the second one gives a bound on the
degree. Indeed if the highest degree of X in Q is m, then m has to satisfy the
identity mZ = m, since m' is the highest degree of X is Q(Q(X, Y), Z). Therefore
m = 0, 1 and the general form of Q is

Q(X, Y)=aXY+b(X+ Y)+c
then

Q(Q(X, Y),Z) = aZXYZ+ab(XY+ YZ+ZX)+ bZX +bzy

+(ac+ b)Z + c(b + 1);

Q(X, Q(Y, Z)) = aZXYZ + ab(XY + YZ + ZX)+ (ac+ b)X

+ bZY+ bZZ+c(b+ 1),

then

b2)(ZQ(Q(X, Y), Z) - Q(X, Q(Y, Z)) = (ac+ b - - X)

and we have

Proposition 4. The polynomials that satisfy associative-commutative equations, i.e.,
the polynomials that interpret associative-commutative operators, are the polynomials
of the form

aXY+ b(X + Y)+ c with ac+ b- b2 =0.

Surprisingly enough we are not aware of any mention of this criterion in the
literature, except for Lankford who gives a non-exhaustive list of possible solutions,
but no actual characterization and a false conjecture. He says [21]: "The only
polynomials that we have found have one of the following three forms: c, cXY, c+ x +
Y + dxy. We conjecture that these are the only forms that such polynomials can
have". His list does not include polynomials like 2XY +2(X + Y) + 1, XY+
2(X + Y)+2, 3XY+3(X + Y)+2, 2XY+3(X + Y)+3, 6XY+3(X + Y)+ 1, XY+
3(X + Y) +6 etc.... and his class c+ x +Y + dxy is too large, without the restriction
that c or d is equal to zero.

Proofs of termination of associative-commutative rewriting systems based on
polynomial interpretations have another property. They do not require to prove the
termination of the extensions [18,19,25]. Recall that the extension of a rule s ~ t

is the rule s + x ~ t + x. Thus if

[sl> [tl,

then

[s + x I> [t +x I,

since this is equivalent to

a([sIX) + b([sl+ X) + c> a([tIX) + b([tl+'x) + c

and to

(aX + b)[sl> (aX + b)[tl.

5. Interpretations by a Cartesian product of polynomials,
or why Lankford's example 3 works

When dealing with a really classical example, namely the Naturals with addition
and product defined in terms of the function" successor", we arrived at the rather :
difficult problem that neither the classical polynomial interpretations nor the other
approaches could handle [1]. Indeed, such a specification uses a rewriting system

with "+" and "." associative and commutative:

O+x~x,

s(x)+y~s(x+y),

o· x~O,

s (x) . y ~ (x - y) + y,

x- (y+z)~(x· y)+(x' z).

Because of the associativity and commutativity and the restrictions on the polynomial
interpretations of "+" and ".", we have to choose their interpretations of degree
one. A simple computation made on the degree of X in the interpretation of the
distributivity shows that the interpretation of "+" has to be of the form "(X + Y) +
c", but this cannot work with any interpretation proving the termination of the rule

s(x)+y~s(x+y).

Thus the classical interpretations do not work in this case and we propose to use
a p-tuple of polynomials for interpreting the operators instead of a unique one. We
will use the notation

[t](X\, ... , X n) == ([tJt(X\, ... , X n) , ••• , [t]p(X\, ... , X n)) ,

where the [tl(Xt. ... , X n) are the same kind of polynomials as defined in the
previous sections. A lexicographical comparison will allow us to handle scale of
ordering that polynomials cannot.

Let us first define this on the previous example. The interpretation of an operator
of arity n is a pair of polynomials of the same arity n. The interpretation of a term
is made component-wise. The comparison of two terms is made lexicographically
by first comparing the first components and if they are equal their second com
ponents. Since the lexicographical product of well-founded orderings is well
founded, we obtained in this way a well-founded or~ring. For instance, let us take

[0] == (2, 2),

[s](X) == (X +2, X + 1),

[+](X, Y) == (X + Y + 1, XY),

t leX, Y) == (xY, XY).

Since the components of the interpretations of "+" and "." satisfy the conditions
for the polynomial interpretations of associative and commutative operators, the
complete interpretations are constant on each equivalence class modulo associativity
and commutativity and can be used for proving the termination of the previous
associative-commutative rewriting system. We have indeed

149 Termination 0/ rewriting systems by polynomial interpretations

- for the first rule

[0+ x](X) = (X +3, 2X),

[x](X) = (X, X)

and

(X + 3, 2X) > (X, X);

- for the second rule

[s(x)+y](X, Y)=(X+ Y+3,XY+ Y),

[s(x+y)](X, Y)=(X+ Y+3,XY+l)

and

(X + Y+3, XY + Y» (X + Y+3, XY+l);

- for the third rule

[0' x](X) = (2X, 2X),

[O](X) = (2, 2)

and

(2X, 2X) > (2, 2);

- for the fourth rule

[sex) . y](X, Y) = (XY + 2 Y, XY + Y),

[(x'y)+y](X, Y)=(XY+Y+l,Xy2
)

and

(XY +2Y, XY + Y) > (XY+ Y + 1, XY2
) ;
,

- for the fifth rule

[x : (y+ z)](X, Y, Z) = (XY + XZ + X, XYZ),

[(x' y)+(x' z)](X, Y,Z)=(XY+XZ+l,X2yZ)

and

(XY + XZ + X, XYZ) > (XY + XZ + 1, x 2 YZ).

Therefore the rewriting system is terminating.
As we mentioned in the title of this section, this method is already present in

[21] in rule (18) and rule (19). However, we feel that our presentation gives the
conceptual framework behind rules that are only given through an example, and
allows extension to more than two levels in the Cartesian product. In addition the
method is actually implemented in REVE.

ISU A. Hen Cherija; P. Lescanne

6. Finding the right polynomial interpretation: Several suggestions

In this section we would like to provide hints for the difficult problem of finding
an interpretation which proves the termination of a given rewriting system. During
our experiments the main method we used was by "trial and error" and for this the
help of a computer was essential, for instance in the Associativity + Distributivity
system mentioned in Example 2, the computer behaved better than ourselves. This
can be improved by good messages, when the software fails to orient a specific rule.
However, Dave Detlefs noticed that in many examples of associative-commutative
rewriting systems a trivial interpretation like [+](X, Y) = 2XY works often and he
proposed it as the default. As suggestions for a user faced to the problem of orienting
a rewriting system by a polynomial interpretation, we propose experimental facts.

Suggestion 1. Set the interpretation of your constants to 2.

Suggestion 2. Look for a hierarchy on your operators and use it in a Cartesian
product interpretation. Such a hierarchy could be provided by a precedence on the
operators given, for instance, by an incremental ordering like the recursive path
ordering or the recursive decomposition ordering [11] run on the rewriting system.
This precedence can be topologically sorted to obtain a total hierarchy, that is to
extend it to a linear ordering. To use it in a Cartesian product of polynomial
interpretations, set the interpretation of the operators with the highest precedence
to a highest degree polynomial interpretation on the first component of the Cartesian
product (see next section for examples).

Suggestion 3. For your associative operators, if you want to orient your rule like

x + (y + z) ~ (x + y) + z

try one of these interpretations: either [+](X, Y) = XY + Y or, [+](X, Y) = 2XY+ Y
or [+](X, Y) = X + y 2

• The idea is always to give Clore "weight" to the second
argument, and the choice between these interpretations will depend on the other
rules. Obviously, the interpretations [+](X, Y) = XY+ X or, [+](X, Y) = 2XY+ X
or, [+](X, Y) = X 2+ Y may work if you want to orient the rule in the opposite
direction.

Suggestion 4. If the rule is a definition of an operator, i.e., a rule of the form
f(x), ... , xn) ~ t(Xl, ... , X n) , an interpretation like If] = [t] + 1 works.

Appendix A gives a demonstration of a computer session run on the term-rewriting
system laboratory REVE. The example is an axiomatization of groups due to Taussky,
and proposed by Knuth and Bendix in [20]. The reader will notice that the interpreta
tion of *, namely [* J(X, Y) = 2XY+ Y is an application of Suggestion 3 and that
the interpretation of g, namely [f(x, X * i(y»)) + 1, is an application of Suggestion

Termination of rewriting systems by polynomial interpretations lSI

4. None can be guessed at the beginning of the completion algorithm, but only
when the associativity of * and the actual definition of g in terms of f are known.
This shows the difficulties in the use of these suggestions.

7. Review of systems whose termination was proved by our algorithm
and actually run on REVE

The first example we proved was obviously the Associativity-Endomorphism (see
Section 1). Notice that the interpretation /f](X l) = 2X, and 1*](X" X 2) = xi+ X 2 ,

produces the same diverging system as the Recursive Path Ordering. A similar
example is Associativity-Antimorphism. It can be seen as the optimization of
inversions in an algebraic system with an associative law, like in matrix manipulation:

x*(y*z)~(x*y)*z,

f(x) * fey) ~ fey * x),

(x * fey)) * fez) ~ x * fez * y).

The system is convergent, but its termination cannot be proved by a recursive path
ordering. The interpretation 1* leX, Y) = XY + Y and Ifl(X) = X + 1 works.

Then we studied the equations for the groups

e*x==x,

i(x) * x == e,

(x*y)*z==x*(y*z),

x/y==x*i(y)

using an interpretation proposed by Huet [14].

tel = 2, ,

X 2
[i](X) = ,

1*](X, Y) = 2XY+ X,

[fleX, Y) = 1+ X +2Xy2
•

The interpretation of / is just [(x * i(y))]+ 1 (Suggestion 4). This interpretation was
used to complete these equations into the ten classical Knuth-Bendix rules plus the
definition of [, On the first three equations our Suggestion 3 would give the following
Cartesian product interpretation to get the ten classical rules:

Iel = (2, 2),

Ii](X) = (X 2
, X 2

) ,

[*](X, Y) = (X + Y, X + y 2
) .

152 A. Ben Cherifa, P. Lescanne

On the four equations for groups another interpretation can be taken:

[e]=2,

[i](X) = X 2
,

[* leX, Y) = 1+ X + y 4 ,

2
1I](X, Y) = X + y •

It completes them in the non-classical set of 10 rules already discovered using the
recursive path ordering [22]:

(elx)~i(x),

i(e) ~ e,

(xl e)~ x,

(xlx)~e,

i(i(x)) ~ x,

i«ylx))~xly,

(xly)/i(y)~x,

(xli(y))ly~x,

(x/(yl z)) ~ «xli(z))ly),

(x*y)~(xli(y)).

We are also interested by the termination proof of the following system, given
by Hsiang [13]:

x+O=x,

x+ (-x) =0,

x*l=x, ,

x*x=x,

(x+y) * z=(x * z)+(y* z),

x+x=O

using the polynomial interpretations:

[0] = 2,

[1] = 2,

[-leX) =X + 1,

[+](X, Y) = X + Y + 2,

[*](X, Y) = 2XY+ 1.

The last system presented in this review, deals with the symbolic differentiation
with respect to x, given by Dershowitz [10]:

D;« = 1,

o,« =0,

DxCa + (3) = D;« + D,f3,

DxCa - (3) = Dca - Dxf3,

DxC-a)=-D,a,

DxCa * (3) = f3 * Dca + a * Dxf3,

DxCa/ (3) = Dca] f3 - a * Dxf3/ f32,

Dx(ln a) = Dca] a,

13 13Dx C(13) = f3 * a -
1 * D;« + a * (In a) * Dxf3

13•where a A f3 stands for a

The following polynomial interpretations can be used to prove termination and
to complete the above system:

[+]Ca, (3) = a + f3,

[-]Ca, (3) = a + f3,

(]Ca, (3) = a + f3,

[-]Ca) = a + 1,

[a]= [b]= [0]= [l]= [2]= 2,

[*]C a, (3) = a + f3, ,!I]C a, (3) = a + f3,

[Dx]Ca) = a 3 ,

[In]Ca) = a + 1.

This is a little different from the interpretation proposed by Dershowitz, but agrees
with out suggestions, namely that the interpretation of the constant is set to 2.

8. Conclusion

The method based on polynomial interpretations is now proposed in the rewrite
rule laboratory REVE. Though this termination check procedure is definitely
necessary in order to run some of the examples we know, like Associativity +

Endomorphism or Associativity + Antimorphism, we do not think it will replace in
each occasion the current methods based on recursive path ordering [8] or recursive
decomposition ordering [19], since they have shown to have a large scope and to
be really easy to use in many practical cases [11], and to be usable when polynomial
interpretation fails as pointed out by Dershowitz [9]. Let us notice that other general
terminations can handle the associativity + endomorphism example, namely the
Knuth-Bendix ordering [24] and the transformation ordering [3]. Moreover, since
the termination of rewriting systems is undecidable [15], there exists obviously no
universal method. So, we think we will keep both methods in REVE and let the
user choose the method he or she wants. However in the case of associative
commutative operators, the extensions of the recursive path ordering either fail or
are not ready for being incorporated in a rewrite rule laboratory like REVE. So, it
is the only method currently available and we are incorporating it into REVE-3 (the
general equational rewrite rule laboratory) as the mechanism for proving termination
in the associative-commutative case.

In conclusion, we would like to talk about the polynomial interpretation limita
tions. The first one deals with our criterion. As already mentioned, it cannot prove
the positiveness of the polynomial

X~+ X~-2Xl X 2+ 1 = (Xl -X2)2+1.

Since we never encountered such a polynomial in termination proofs, we feel that
this would not be an obstacle for using it. On the opposite, we do not consider it
a restriction that our method checks positiveness of polynomial for values greater
than or equal to 2 instead of any natural value, since a change of variable gives a
polynomial that satisfies the condition. Thus, if in the polynomial 3X2 -7, which
is positive for X;:. 3, we change X into Y + 1 we get the polynomial 3 y 2

- Y - 4
that fulfills our requirements. The second kind of restriction is mentioned in [10,16],
where it is said that the general polynomial interpretations impose a polynomial
upper bound on the complexity of the computations. We claim that this is not true
as demonstrated by this one rule term-rewriting system,

j(s(s(x)), y) ~ j(s(x),j(x, y))

which has an exponential computation complexity, since it computes a term related
to the Fibonacci numbers, and which can be proved to terminate using the interpreta
tion [f](X, Y) = X + Y and [s](X) = X 2

• We conjecture that such a limitation exists,
but a precise formulation has to be stated and proved.

Acknowledgment

We are pleased to thank all the people who gave us helpful suggestions, especially
Francoise Bellegarde, Dave Detlefs, Harald Ganzinger, Jean-Pierre Jouannaud,
Dallas Lankford, Laurence Puel, Jean-Luc Rerny and Rene Schott.

Appendix A

This appendix is a demonstration of a computer session run on the term-rewriting
system laboratory Reve. The example is an axiomatization of groups due to Taussky,
and given by Knuth and Bendix in [20]:

~ read taussky

User equations:

1. x*(y*z)==(x*y)*z

2. e * e == e
3. x*i(x)==e

4. g(x*y,y)==!(x*y,x)

5. !(e,x)==x

No critical pair equations.

No rewrite rules.

Note that the following identifiers were parsed as nullary operators:
e

~ord

The current ordering is 'noeq-dsmpos'.

What ordering do you wish to use now? poly

Current interpretations:
I[x*y]=2(x)(y)

I[e] = 2

I[i(x)] = 2(x)

I[g(x, y)] = 2(x)(y)

I[f(x, y)] =2(x)(y)

I[x * y] = 2(x)(y) ,

New polynomial, 'quit', or [ret]: ((2 * x) * y) +Y

I[x*y]=(y)+2(x)(y)

I[e] = 2

New polynomial, 'quit', or [ret]: 2

I[e] = 2

I[i(x)] = 2(x)

New polynomial, 'quit', or [ret]: (x * x)

I[i(x)] = (x A 2)

I[g(x, y)] = 2(x)(y)

New Polynomial, 'quit', or [ret]: ((2 * x) * (y * y))+(y * y)+x+ 1

I[g(x, y)] = 1+ (x) + (y A 2) +2(x)(y 2)
A

I[f(x, y)] = 2(x)(y)

New polynomial, 'quit', or [ret]: x + y

I[f(x,y)]=(y)+(x)

All rewrite rules have been turned back into equations to preserve the

proof of termination.

All operator information has been discarded.

The current ordering is now 'poly'.

-r kb
Starting Knuth-Bendix ...

There are currently 0 rules and 5 equations in the system.

Ordered the equation:

x * (y * z) == (x * y) * z
into the rewrite rule:

x * (y * z) ~ (x * y) * z

ordered the equation:
e*e==e

into the rewrite rule:
e*e~e

Ordered the equation:
x*i(x)==e

into the rewrite rule:
x*i(x)~e

Ordered the equation:
g(x*y,y)==f(x*y,x)

into the rewrite rule:
g(x*y,y)~f(x*y,x) ,

Ordered the equation:
f(e, x) == x
into the rewrite rule:
f(e, x)~ x

There are currently 5 rules and 0 equations in the system.

Starting to compute critical pairs ...

Critical pairs between the rule:

e*e~e

and the rule:
g(x*y,y)~f(x*y,x)

are as follows:

g(e, e) == e

157 Termination of rewriting systems by polynomial interpretations

There are currently 5 rules and I equation in the system.

Starting to reduce and order equations ...

There are currently 5 rules and I equation in the system.

Ordered the equation:

gee, e) =; e
into the rewrite rule:
gee, e) ~ e

There are currently 12 rules and II equations in the system.

Starting to reduce and order equations ...

There are currently 12 rules and II equations in the system.

Ordered the equation:

iCy) * xl =; i(i(xI) * y)

into the rewrite rule:
i(i(xI) * y) ~ iCy) * xl

There are currently 13 rules and 10 equations in the system.

Starting to compute critical pairs ...

Critical pairs between the rule:
i(i(x))~x

and the rule:

i(i(xl) * y) ~ iCy) * xl

are as follows:

i(x * y) =; iCy) * i(x)

There are currently 13 rules and 11 equations in the system.

Starting to reduce and order equations ...

There are currently 13 rules and II equat~ns in the system.

Ordered the equation:

i(x * y) =; iCy) * i(x)

into the rewrite rule:
i (x * y) ~ i (y) * i (x)

Following 2 left-hand sides reduced:

i(yl * y) * yl ~ iCy)

became:
(i(y) * i(yI)) * yl =; iCy)

i(i(xI) * y)~ iCy) * xl

became:

i(y) * i(i(xI)) =; i(y) * xl

There are currently 12 rules and 10 equations in the system.

DIS	 A. Hen Chenja, r. Lescanne

Starting to compute critical pairs ...

Starting to reduce and order equations ...

No user equations.

No critical pair equations.

Rewrite rules:

1. x*(y*z)~(x*y)*z

2. x*i(x)~e

3.	 !(e,x)~x

4. (x*y)*i(y)~x

5. i(e)~e

6. i(i(x)) ~ x
7. e*x~x

8. x * e~x

9. i(x)*x~e

10. (x*i(xl))*x1~x

11. g(x1, x)~!(x1, xl * i(x))
12. i(x*y)~i(y)*i(x)

Your system is complete!

Knuth-Bendix runtime:
Total: 1: 12.

Unification: 20.00
Rewriting: 28.35
Ordering: 3.56
Overhead: 20.90

Computed 155 critical pairs and ordered 35 equations into rules.

~q

Some steps in the computer session run on REVE have been skipped, the example
being too long to appear exhaustively in this appen<1\x.

References

[1]	 L. Bachmair and D.A. Plaisted, Termination orderings for associative-commutative rewriting sys
tems, J. Symbolic Comput. (1985).

[2]	 F. Bellegarde, Rewriting systems on FP expressions to reduce the number of sequences yielded,
Sci. Comput. Programming 6 (1986) 11-34.

[3]	 F. Bellgarde and P. Lescanne, Transformation ordering, Proc. CAAP 'S7 (1987).
[4]	 A. Ben Cherifa, Preuves de terminaison de systernes de reecriture: un outil fonde sur les interpreta

tions polynomiales, These, Universite de Nancy 1, Nancy, France, 1986.
[5]	 P.I. Cohen, Decision procedures for real and p-adic fields, Comm. Pure Appl. Math. 22 (1969)

131-151.
[6] G. Collins, Quantifier elimination for real	 closed fields by cylindrical algebraic decomposition,

Proc. 2nd GI Conference on Automata and Formal Languages (Springer, Berlin, 1975).

159 termination ot rewriting systems by polynomial interpretations

[7]	 M. Davis, Hilbert's tenth problem is unsolvable, Amer. Math. Month. 80(3) (1973) 233-269.
[8]	 N. Dershowitz, Orderings for term-rewriting systems, Theoret. Comput. Sci. 17 (1982) 279-301.
[9]	 N. Dershowitz, Well-founded orderings, ATR-83(8478)-3, Information Science Research Office,

The Aerospace Corporation, EI Segundo, CA, 1983.
[10]	 N. Dershowitz, Termination, Proc. 1st Conference on Rewriting Techniques and Applications, Lecture

Notes in Computer Science 202 (Springer, Berlin, 1985) 180-224.
[II]	 R. Forgaard and D. Detlefs, An incremental algorithm for proving termination of term rewriting

systems, Proc. 1st International Conference on Rewriting Techniques and Applications, Lecture Nores
in Computer Scinece 202 (Springer, Berlin, 1985).

[12]	 I. Gnaedig and P. Lescanne, Proving termination of associative-commutative rewriting systems by
rewriting, Proc. 8th Conference on Automated Deduction (Springer, Berlin, 1986).

[13]	 J. Hsiang, Topics in automated theorem proving and program generation, PhD Thesis, University
of Illinois at Urbana-Champaign, 1982.

[14]	 G. Huet, Confluent reductions: abstract properties and applications to term rewriting systems, J.
ACM 27(4) (1980) 797-821.

[15]	 G. Huet and D.S. Lankford, On the uniform halting problem for term rewriting systems, Rapport
Laboria 283, INRIA, 1978.

[16]	 G. Huet and D. Oppen, Equations and rewrite rules: A survey, in: R. Book, Ed., Formal Languages:
Perspectives and Open Problems (Academic Press, New York, 1980).

[17]	 J.P. Jouannaud and H. Kirchner, Completion of a set of rules modulo a set of equations, Proc.
11th ACM Conference on Principles of Programming Languages, Salt Lake City (1984).

[18]	 J. Jouannaud and H. Kirchner, Completion of a set of rules modulo a set of equations, SIAM J.
Comput. 15(4) (1986).

[19]	 J.P. Jouannaud, P. Lescanne and F. Reinig, Recursive decomposition ordering, in: D. Bjerner, Ed.,
Formal Description of Programming Concepts 2 (North-Holland, Amsterdam, 1982) 331-346.

[20]	 D. Knuth and P. Bendix, Simple word problems in universal algebras, in: J. Leech, Ed., Computa
tional Problems in Abstract Algebra (Pergamon Press, New York, 1970) 263-297.

[21]	 D.S. Lankford, On proving term rewriting systems are noetherian, Report Mtp-3, Mathematics
Department, Louisiana Technical University, 1979.

[22]	 P. Lescanne, Computer experiments with the REVE term rewriting system generator, Proc. 10th
ACM Conference on Principles of Programming Languages, Austin, TX (1983) 99-108.

[23]	 Z. Manna and S. Ness, On the termination of Markov algorithms, Proc. 3rd Hawaii International
Conference on System Sciences (1970) 789-792.

[24]	 U. Martin, How to choose the weights in the Knuth-Bendix ordering, Proc. 2nd Conference on
Rewriting Techniques and Applications, Bordeaux (1987)

[25]	 G. Peterson and M. Stickel, Complete sets of reduction for equational theories with complete
unification algorithms, J. ACM 28(2)(1981) 233-264.

[26]	 A. Tarski, A Decision Method for Elementary Algebra and Geometry (University of California Press,
Berkeley, 1951'). ,

