Generating collection transformations from proofs

MICHAEL BENEDIKT, Oxford University, United Kingdom
PIERRE PRADIC, Oxford University, United Kingdom

Nested relations, built up from atomic types via product and set types, form a rich data model. Over the last decades the nested relational calculus, NRC, has emerged as a standard language for defining transformations on nested collections. NRC is a strongly-typed functional language which allows building up transformations using tupling and projections, a singleton-former, and a map operation that lifts transformations on tuples to transformations on sets.

In this work we describe an alternative declarative method of describing transformations in logic. A formula with distinguished inputs and outputs gives an implicit definition if one can prove that for each input there is only one output that satisfies it. Our main result shows that one can synthesize transformations from proofs that a formula provides an implicit definition, where the proof is in an intuitionistic calculus that captures a natural style of reasoning about nested collections. Our polynomial time synthesis procedure is based on an analog of Craig’s interpolation lemma, starting with a provable containment between terms representing nested collections and generating an NRC expression that interpolates between them.

We further show that NRC expressions that implement an implicit definition can be found when there is a classical proof of functionality, not just when there is an intuitionistic one. That is, whenever a formula implicitly defines a transformation, there is an NRC expression that implements it.

CCS Concepts: • Software and its engineering → General programming languages; • Social and professional topics → History of programming languages.

Additional Key Words and Phrases: nested collections, synthesis, proofs

ACM Reference Format:

1 INTRODUCTION

Nested relations are a natural data model for hierarchical data. Nested relations are objects within a type system built up from basic types via tupling and a set-former. In the 1980’s and 90’s, a number of algebraic languages were proposed for defining transformations on nested collections. Eventually a standard language emerged, the nested relational calculus (NRC). The language is strongly-typed and functional, with transformations built up via tuple manipulation operations as well as operators for lifting transformations over a type T to transformations taking as input a set of objects of type T, such as singletons constructors and a mapping operator. One common formulation of these uses variables and a “comprehension” operator for forming new objects from old ones [Buneman et al. 1995], while an alternative algebraic formalism presents the language as a set of operators that can be freely composed. It was shown that each NRC expression can be evaluated in polynomial time in the size of a finite data input, and that when the input and output is “flat” (i.e. only one level of nesting), NRC expresses exactly the transformations in the standard relational database language relational algebra. Wong’s thesis [Wong 1994] summarizes the argument made by this line of work “NRC can be profitably regarded as the ‘right’ core for nested relational languages”. NRC has been the basis for most work on transforming nested relations. It is the basis for a number of commercial tools [Melnik et al. 2010], including those embedding nested data transformations in programming.
languages [Meijer et al. 2006], in addition to having influence in the effective implementation of data transformations in functional programming languages [Gibbons 2016; Gibbons et al. 2018].

Although NRC can be applied to other collection types, such as bags and lists, we will focus here on just nested sets. We will show a new connection between NRC and first-order logic. There is a natural logic for describing properties of nested relations, the well-known Δ_0 formulas, built up from equalities using quantifications $\exists x \in \tau$ and $\forall y \in \tau$ where τ is a term. For example, formula $\forall x \in c \; \pi_1(x) \in \pi_2(x)$ might describe a property of a nested relation c that is a set of pairs, where the first component of a pair is of some type T and the second component is a set containing elements of type T. A Δ_0 formula $\Sigma(o_1^{k_1} \ldots o_{in}^{k_{in}}, o_{out})$ over variables $o_1^{k_1} \ldots o_{in}^{k_{in}}$ and variable o_{out} thus defines a relationship between $o_1^{k_1} \ldots o_{in}^{k_{in}}$ and o_{out}. For such a formula to define a transformation it must be functional: it must enforce that o_{out} is determined by the values of $o_1^{k_1} \ldots o_{in}^{k_{in}}$. More generally, if we have a formula $\Sigma(o_1^{k_1} \ldots o_{in}^{k_{in}}, o_{out}, \bar{a})$, we say that Σ implicitly defines o_{out} as a function of $o_1^{k_1} \ldots o_{in}^{k_{in}}$ if:

\[
(*) \text{ For each two bindings } \sigma_1 \text{ and } \sigma_2 \text{ of the variables } o_1^{k_1} \ldots o_{in}^{k_{in}}, \bar{a}, o_{out} \text{ to nested relations satisfying } \Sigma, \text{ if } \sigma_1 \text{ and } \sigma_2 \text{ agree on each } o_{in}^{k_{in}}, \text{ then they agree on } o_{out}.
\]

That is, Σ entails that the value of o_{out} is a partial function of the value of $o_1^{k_1} \ldots o_{in}^{k_{in}}$.

Note that when we say “for each binding of variables to nested relations” in the definitions above, we include infinite nested relations as well as finite ones. An alternative characterization of Σ being an implicit definition, which will be more relevant to us in the sequel, is that there is a proof that Σ defines a functional relationship. Note that (\cdot) is a first-order entailment: $\Sigma(o_1^{k_1} \ldots o_{in}^{k_{in}}, o_{out}, \bar{a}) \land \Sigma(o_1^{k_1} \ldots o_{in}^{k_{in}}, o_{out}', \bar{a}') \models o_{out} = o_{out}'$ where in the entailment we omit some first-order “sanity axioms” about tuples and sets. We refer to a proof of (\cdot) for a given Σ and subset of the input variables $o_1^{k_1} \ldots o_{in}^{k_{in}}$, as a proof that Σ implicitly defines o_{out} as a function of $o_1^{k_1} \ldots o_{in}^{k_{in}}$, or simply a proof of functionality dropping Σ, o_{out}, and $o_1^{k_1} \ldots o_{in}^{k_{in}}$ when they are clear from context. By the completeness theorem of first-order logic, whenever Σ defines o_{out} as a function of $o_1^{k_1} \ldots o_{in}^{k_{in}}$ according to the semantic definition above, this is witnessed by a proof, in any of the standard complete proof calculi for classical first-order logic (e.g. tableaux, resolution). Such a proof will use the sanity axioms referred to above, which capture extensionality of sets, the compatibility of the membership relation with the type hierarchy, and properties of projections and tupling.

Example 1.1. We consider a specification in logic involving two nested collections, F and G. The collection F is of type $\text{Set}(\mathcal{U} \times \mathcal{U})$, where \mathcal{U} refers to the basic set of elements, the “\mathcal{U}-elements” in the sequel. That is, F is a set of pairs. The collection G is of type $\text{Set}(\mathcal{U} \times \text{Set}(\mathcal{U}))$, a set whose members are pairs, the first component an element and the second a set.

Our specification Σ will state that for each element g in G there is an element f_1 appearing as the first component of a pair in F, such that g represents f_1, in the sense that its first component is f_1 and its second component accumulates all elements paired with f_1 in F. This can be specified easily by a Δ_0 formula:

$$
\forall g \in G \; \exists f \in F \; \pi_1(g) = \pi_1(f) \land \forall x \in \pi_2(g) \; \langle \pi_1(f), x \rangle \in F \\
\land \forall f' \in F \; [\pi_1(f') = \pi_1(f) \rightarrow \pi_2(f') \in \pi_2(g)]
$$

Σ also states that for each element f_1 lying within a pair in F there is a corresponding element g of G that pairs f_1 with all of the elements linked with f in F.

$$
\forall f \in F \; \exists g \in G \; \pi_1(g) = \pi_1(f) \land \forall x \in \pi_2(g) \; \langle \pi_1(f), x \rangle \in F \\
\land \forall f' \in F \; [\pi_1(f') = \pi_1(f) \rightarrow \pi_2(f') \in \pi_2(g)]
$$

We can prove from Σ that G is a function of F, and thus Σ implicitly defines a transformation from F to G. We give the argument informally here. Fixing F,G and F,G' satisfying Σ, we will prove that if $g \in G$ then $g \in G'$. The proof begins by using the conjunct in the first item to obtain an $f \in F$. We can then use the second item on G' to obtain a $g' \in G'$. We now need to prove that $g' = g$. Since g and g' are pairs, it suffices to show that their two projections are the same. We can easily see that $\pi_1(g) = \pi_1(f) = \pi_1(g')$, so it suffices to prove $\pi_2(g') = \pi_2(g)$. Here we will make use of extensionality, arguing for containments between $\pi_1(g')$ and $\pi_2(g)$ in both directions. In one direction we consider an $x \in \pi_2(g')$, and we need to show x is in $\pi_2(g)$. By the second conjunct in the second item we have $\langle \pi_1(f), x \rangle \in F$. Now using the first item we can argue that $x \in \pi_2(g)$. In the other direction we consider $x \in \pi_2(g)$, we can apply the first item to claim $\langle \pi_1(f), x \rangle \in F$ and then employ the second item to derive $x \in \pi_2(g')$.

Now let us consider G as the input and F as the output. We cannot say that Σ describes F as a total function of G, since Σ enforces constraints on G: that the second component of a pair in G cannot be empty, and that any two pairs in G that agree on the first component must agree on the second. But we can prove from Σ that F is a partial function of G: fixing F,G and F',G satisfying Σ, we can prove that $F = F'$.

Our first main contribution is a polynomial time synthesis procedure that takes as input a proof that Σ implicitly defines g as a function of $o^1 \cdots o^k$, generating an NRC expression with input $o^1 \cdots o^k$ that implements the transformation that Σ defines. We require a proof of functionality in a certain intuitionistic calculus. Although the calculus is not complete for classical entailment, we argue that it is quite rich and show that it is equivalent to certain prior intuitionistic calculi.

Example 1.2. Let us return to Example 1.1. From a proof in our calculus that Σ defines G as a function of F, our synthesis algorithm will produce an expression in NRC that generates G from F. This will be an expression that simply “groups on the first component”.

From a proof from Σ that F is a function of G, our algorithm will generate an NRC expression that forms F by flattening G.

We also show that this phenomenon applies when there is a classical proof of functionality, not just an intuitionistic one. That is, we show that whenever a formula Σ projectively implicitly defines a transformation T, that transformation can be expressed in a slight variant of NRC. The result can be seen as an analog of the well-known Beth definability theorem for first-order logic [Beth 1953], stating that a property of a first-order structure is defined by a first-order open formula exactly when it is implicitly defined by a first-order sentence. In the process we prove an interpolation theorem, showing that whenever we have provable containments between nested relations, there is an NRC expression that sits between them. Overall our results show a close connection between logical specifications of transformations on nested collections and the functional transformation language NRC, a result which is not anticipated by the prior theory.

Organization. We overview related work in Section 2 and provide preliminaries in Section 3. Section 4 details our proof calculus and the algorithm that synthesizes definitions from proofs. We include an example (Figure 4) of how one would use it to prove functionality of an expression, and an illustration of how our synthesis algorithm would generate an NRC expression from the proof (Example 4.8). Section 5 concerns another logic-based specification that can be transformed into NRC expressions, based on the notion of interpretations. Section 6 shows that even for classical proofs there is a corresponding NRC expression. This conversion goes through the interpretation representation introduced in Section 6. We show a general result that implicit definitions in multi-sorted logic can be converted to interpretations, and then use the results of Section 6 to argue that these interpretations can be converted to NRC expressions.
We close with conclusions in Section 7. In the body of the paper we focus on explaining the results and some proof ideas, with most proof details deferred to the supplementary materials.

2 RELATED WORK

In the context of transformations of ordinary “flat” relations, Segoufin and Vianu [Segoufin and Vianu 2005] showed that transformations definable in relational algebra are the same as those that satisfy a variant of implicit definability (“determinacy”). The result of [Segoufin and Vianu 2005] makes use of a refinement of Craig’s interpolation theorem due to Otto [Otto 2000]. The use of interpolation theorems in moving from implicit to explicit is well-established, dating back to Craig’s proof of the Beth definability theorem [Craig 1957]. Segoufin and Vianu’s result is motivated by the ability to evaluate transformations defined over one set of “base predicates” using another set of “view predicates”, where the views are defined implicitly by a background theory relating them to the base predicate. The idea that one can use interpolation algorithms to synthesize transformations from implicit specifications first appears in the work of Toman and Weddell [Toman and Weddell 2011] and has been developed in a number of directions subsequently [Benedikt et al. 2016]. In the absence of nesting of sets, the relationship between formulas and terms of an algebra is much more straightforward; relational algebra defines exactly those transformations whose output is a comprehension by a first-order formula over the elements that are in the projection of some relation. In the presence of nesting the relationship of algebra and logic is more complex, and so in this work we will need to develop some different techniques (e.g. a new kind of interpolation result) to analyze the relationship between logical and algebraic definability.

The development of the nested relational model, culminating in the convergence on the language NRC, has a long history. The thesis of Wong [Wong 1994] and the related paper of Buneman et al. [Buneman et al. 1995] gave an elegant presentation of NRC, and summarize the equivalences known between a number of variations on the syntax. Connections with logic are implicit in results stating that NRC queries can be “simulated” by flat queries: see [Paredaens and Van Gucht 1992; Van den Bussche 2001]. Further discussion on these simulations can be found in Section 5.

More powerful languages than NRC were also considered, including an extension with an operator for forming the powerset of a set. This extension can be captured using the natural logic with membership [Abiteboul and Beeri 1995]. The increased expressiveness implies correspondingly higher complexity (e.g. non-elementary in combined complexity), and perhaps for this reason the subsequent development has focused on NRC. Much of the development of NRC in the last decades has focused primarily on integration with functional languages [Gibbons 2016; Gibbons et al. 2018; Meijer et al. 2006], rather than synthesis or expressiveness.

Quite independently of work on logics for nested relations in computer science, researchers in other areas have investigated the relationships between various restricted algebras for manipulating sets. Gandy [Gandy 1974] defines a class of Basic functions, and compares them to functions definable by \(\Delta_0 \) formulas. Later languages build on Gandy’s work, particularly for a finer-grained analysis of the constructible sets [Jensen 1972]. An important distinction from the setting of NRC is that these works do not restrict to sets built up from finitely many levels of nesting above the Ur-elements. For instance, Gandy showed that there are Basic functions checking whether an input is an ordinal, or is the ordinal \(\omega \); in fact, he showed that there are Basic functions that are not primitive recursive. In the setting of [Gandy 1974], the \(\Delta_0 \) functions are strictly more expressive than the Basic functions.

Model theorists have looked at generalizing the Beth definability theorem that relates implicit and explicit definability to the case where the “implicitly definable structure” has new elements, not just new relations. Hodges and his collaborators [Hodges 1993; Hodges et al. 1990] explore this in some restricted cases. Our approach in Section 6 to showing a relationship between implicitly definable transformations and interpretations is inspired by the unpublished draft [Andréka et al.
Generating collection transformations 1:5

2008, motivated from the perspective of algebraic logic, which provides model-theoretic tools for connecting semantic and syntactic notions of definability in multi-sorted logic.

Our effective result yields an algorithm translating intuitionistic proofs of functionality into NRC definitions. In contrast, extraction procedures related to the Curry-Howard correspondence typically take as input constructive proofs, possibly with cuts, of statements of the type \(\forall x \exists y \varphi(x, y) \) witnessing that \(\varphi(x, y) \) defines a total total relation and turn those proofs into programs for functions \(f \) such that \(\forall x \varphi(x, f(x)) \) hold. Our procedure works on cut-free proofs that a formula defines a partial function using techniques more closely related to interpolation. This leaves open the question of extracting NRC terms from constructive totality proofs. Sazonov [Sazonov 1985] addressed this question for an untyped analogue of NRC. He uses weak set theories based on intuitionistic Kripke-Platek set theory. These theories are richer than the ones we use for functionality proofs.

3 PRELIMINARIES

Despite their long history of study in several communities, we know of no succinct presentation of the basics of nested collection transformation languages. So we will give a quick introduction here that assumes no background. Indeed, for the issues that we will be concerned with in this work, the aspects of these transformation languages that have been the focus of most past work (e.g. integration with functional languages [Cooper 2009; Meijer et al. 2006] and complexity of evaluation [Koch 2006]) will not be critical.

Nested relations. We deal with schemas that describe objects of various types given by the following grammar.

\[
T, U ::= U | T \times U | \text{Unit} | \text{Set}(T)
\]

For simplicity throughout the remainder we will assume only two basic types: the one-element type Unit and \(U \), whose inhabitant are not specified further; according to the application we may think of \(U \) as being infinite or empty. We call this set the Ur-elements. From the Ur-elements and a unit type we can build up the set of types via product and the power set operation. We use standard conventions for abbreviating types, with the \(n \)-ary product abbreviating an iteration of binary products. A nested relational schema consists of declarations of variable names associated to objects of given types.

Example 3.1. An example nested relational schema declares two objects \(R : \text{Set}(U \times U) \) and \(S : \text{Set}(U \times \text{Set}(U)) \). That is, \(R \) is a set of pairs of Ur-elements: a standard “flat” binary relation. \(S \) is a collection of pairs whose first elements are Ur-elements and whose second elements are sets of Ur-elements.

The types have a natural interpretation, which we refer to as the universe over \(U \). The unit type has a unique member and the members of \(\text{Set}(T) \) are the sets of members of \(T \). An instance of such a schema is defined in the obvious way, or a \(U \)-instance if we want to emphasize the set of Ur-elements on which it is based. Notice that nested relational schemas allow one to describe programming language data structures that are built up inductively via the tupling and set constructors, rather than just sets of tuples. Thus the literature often refers also to the types above as “object types” and to the “complex object data model” [Abiteboul and Beeri 1995; Wong 1994]. In this work we will sometimes refer to the interpretation of a variable in an instance of a nested relational schema as an object. The subobjects of an object are defined in the obvious way. For example, if \(o \) is an object of type \(\text{Set}(T) \), then it is of the form \(\{t_1, \ldots \} \), where each \(t_i \) is a subobject of \(o \) of type \(T \).

For the schema in Example 3.1 above, assuming that \(U = \mathbb{N} \), one possible instance has \(R = \{\langle 4, 6 \rangle, \langle 7, 3 \rangle \} \) and \(S = \{\langle 4, \{6, 9\} \rangle \} \).

Transformation languages for nested relations. A nested relational transformation (over input schema \(\text{SCH}_{\text{in}} \) and output schema \(\text{SCH}_{\text{out}} \)) is a function that takes as input an instance of
When we say that a transformation \(T \) variables \(x \), we mean expressing an object of the input type of \(x \). Let \(E \) abuse notation by identifying an output type \(S \) an output schema of type \(T \) that given a binding associating each free variable a value of the appropriate type, returns an object \(D \) union operator has exactly two elements, and will be used to simulate Booleans.

\[
\begin{align*}
\Gamma, x : T, \Gamma' & \vdash x : T \\
\Gamma \vdash () : \text{Unit} & \quad \Gamma \vdash e_1 : T_1 & \quad \Gamma \vdash e_2 : T_2 & \quad \Gamma \vdash e : T_1 \times T_2 \quad i \in \{1, 2\} \\
& \quad \Gamma \vdash \langle e_1, e_2 \rangle : T_1 \times T_2 & \quad \Gamma \vdash \pi_i(e) : T_i \\
& \quad \Gamma \vdash e : T & \quad \Gamma \vdash \{ e_1 : \text{Set}(T_1) \} & \quad \Gamma, x : T_1 \vdash e_2 : \text{Set}(T_2) & \quad \Gamma \vdash \bigcup \{ e_2 \mid x \in e_1 \} : \text{Set}(T_2) \\
& \quad \Gamma \vdash \emptyset_T : \text{Set}(T) & \quad \Gamma \vdash e_1 : \text{Set}(T) & \quad \Gamma \vdash e_2 : \text{Set}(T) & \quad \Gamma \vdash e_1 \cup e_2 : \text{Set}(T) \\
& \quad \Gamma \vdash e_1 \cup e_2 : \text{Set}(T) & \quad \Gamma \vdash e_1 \setminus e_2 : \text{Set}(T)
\end{align*}
\]

Fig. 1. NRC syntax and typing rules

\(\text{SCH}_{in} \), and returns an instance of \(\text{SCH}_{out} \). For example, suppose our input schema consists of a declaration \(R : \text{Set}(U \times U) \) and our output schema consists also of a declaration \(S : \text{Set}(U \times (\text{Set}(U))) \). Then one possible transformation would return the nested relation formed by grouping on the first component of a tuple in the input \(R \), and \(S \) is the set of \(b \) such that \(\langle a, b \rangle \) is in \(R \).

Transformation equivalence. We say that two transformations are equivalent if they agree on all instances (finite and infinite) of a given input schema over any set of Ur-elements. It will turn out that for the transformations we are interested in, “over any set of Ur-elements” can be freely replaced by “over any infinite set of Ur-elements” or “over some fixed infinite set of Ur-elements”. When we say that a transformation \(T \) is expressible in some class of transformations \(C \), we mean that there is a transformation \(T' \) in \(C \) that is equivalent to \(T \) in the sense above.

Nested Relational Calculus. We review the main language for declaratively transforming nested relations, Nested Relational Calculus (NRC). Each expression is associated with an output type, which are in the type system described above. We let \(\text{Bool} \) denote the type \(\text{Set} \text{(Unit)} \). Then \(\text{Bool} \) has exactly two elements, and will be used to simulate Booleans.

The grammar and typing rules of NRC expressions are presented in Figure 1.

The definition of the free and bound variables of an expression is standard. For example, the union operator \(\{ E \mid x \in R \} \) binds variable \(x \).

The semantics of these expressions should be fairly evident. If \(E \) has type \(T \), and has input variables \(x_1 \ldots x_n \) of types \(T_1 \ldots T_n \), respectively, then the semantics associates with \(E \) a function that given a binding associating each free variable a value of the appropriate type, returns an object of type \(T \). For example, the expression \(() \) always returns the empty tuple, while \(\emptyset \) returns the empty set of type \(T \). The expression \(\{ e \} \) evaluates to \(\{ o \} \), where \(e \) evaluates to \(o \).

In the sequel, we thus assume that every NRC expression is implicitly associated with an input schema, which declares a list of free variables and their input types, \(X_1 : T_1 \ldots X_n : T_n \), along with an output type \(S \). We may write \(E : T_1 \ldots T_n \rightarrow S \) and refer to \(S \) as the output type of \(E \). We often abuse notation by identifying an NRC expression with the associated transformation. For example, if \(E \) is an NRC expression and \(\alpha_{in} \) is an object of the input type of \(E \), we will write \(E(\alpha_{in}) \) for the output of (the function defined by) \(E \) on \(\alpha_{in} \).
As explained in [Wong 1994], the following transformations are definable with their expected semantics.

- For every type T there is an NRC expression $=_{T}$ of type Bool representing equality of elements of type T. In particular, there is an expression $=_{U}$ representing equality between Ur-elements.
- For every type T there is an NRC expression \in_{T} of type Bool representing membership between an element of type T in an element of type $\text{Set}(T)$.

Further, if E is a NRC expression with free variable x of type T and F is an expression of type T, then the NRC expression

$$\bigcup\{(E) \mid x \in \{F\}\}$$

represents the query obtained by running E with x set to the output of F. Combining this with the first observations above, we can see that for expressions E_{1} and E_{2} of type T, we have an expression representing $E_{1} =_{T} E_{2}$ of type Bool. Using this, we will often treat $=_{T}$ and \in_{T} as additional constructors of the language.

Boolean operations \land, \lor, \neg can also be represented as NRC expressions with output type Bool. For example $\neg x$ is just $\{(\)} \setminus x$. Applying the observation about composition as we did above, we see that given E of type Bool we can obtain an expression $\neg E$ of type Bool, and thus as we did with $=_{T}$ and \in_{T} we will treat the Boolean operations as primitives.

Arbitrary arity tupling and projection operations $\langle E_{1}, \ldots, E_{n} \rangle$, $\pi_{j}(E)$ for $j > 2$ can be seen as abbreviations for a composition of binary operations. Further

- If B is an expression of type Bool and E_{1}, E_{2} expressions of type $\text{Set}(T)$, then there is an expression $\text{case}(B, E_{1}, E_{2})$ of type $\text{Set}(T)$ that implements "if B then E_{1} else E_{2}".
- If E_{1} and E_{2} are expressions of type $\text{Set}(T)$, then there is an expression $E_{1} \cap E_{2}$ of type $\text{Set}(T)$.

The derivations of these are not difficult. For example, the conditional required by the first item is given by:

$$\bigcup\{E_{1} \mid x \in B\} \cup \bigcup\{E_{2} \mid x \in (\neg B)\}$$

Example 3.2. Consider an input schema including a binary relation $F : \text{Set}(U \times U)$. The transformation T_{proj} with input F returning the projection of F on the first component can be expressed in NRC as $\bigcup \{\pi_{1}(f) \mid f \in F\}$. The transformation T_{filter} with input F and also v of type U that filters F down to those pairs which agree with v on the first component can be expressed in NRC as $\bigcup \{\text{case}(\pi_{1}(f) =_{U} v, \{f\}, \emptyset) \mid f \in F\}$. Consider now the transformation T_{Group} that groups F on the first component, returning an object of type $\text{Set}(U \times \text{Set}(U))$; this is the first transformation mentioned in Example 1.2. The transformation can be expressed in NRC as $\bigcup \{\langle v, \bigcup \{\pi_{2}(f) \mid f \in T_{\text{filter}}\} \rangle \mid v \in T_{\text{proj}}\}$. Finally, consider the second transformation T_{flatten} mentioned in Example 1.2, that flattens an input G of type $\text{Set}(U \times \text{Set}(U))$. This can be expressed in NRC as

$$\bigcup \bigcup \{\langle \pi_{1}(g), x \rangle \mid x \in \pi_{2}(g) \mid g \in G\}$$

The language NRC cannot define certain natural transformations whose output type is U, such as, for instance, $\text{case}(B, E_{1}, E_{2})$ for E_{1} and E_{2} of sort U. To get a canonical language for such transformations, we let NRC[Get] denote the extension of NRC with the family of operations $\text{Get}_{T} : \text{Set}(T) \rightarrow T$ that extracts the unique element from a singleton. Get was considered in [Wong 1994], with connection to parallel evaluation explored in [Suciu 1995]. The semantics are: if E returns a singleton set $\{x\}$, then $\text{Get}_{T}(E)$ returns x; otherwise it returns some default object of the appropriate type. The semantics of $\text{Get}_{T}(x)$ on non-singleton x is not particularly important; to fix ideas, we can define for each type T a default element d_{T} that will be the output of $\text{Get}_{T}(x)$.
when x is not a singleton assuming that we have a constant c_0 in \mathcal{U}: take $d_\mathcal{U} = c_0$, $d_{\text{Set}(T)} = \emptyset$, $d_{\text{Unit}} = ()$ and $d_{T \times T} = (d_T, d_T)$. In [Suciu 1995], it is shown that Get is not expressible in NRC at sort \mathcal{U}. However, Get_T for general T is definable from $\text{Get}_\mathcal{U}$ and the other NRC constructs.

Δ_0 formulas. We need a logic appropriate for talking about nested relations. A natural and well-known subset of first-order logic formulas with a set membership relation are the Δ_0 formulas. They are built up from equality of Ur-elements via the Boolean operators \lor, \land as well as relativized existential and universal quantification. All terms involving tupling and projections are allowed. Formally, we deal with multi-sorted first-order logic, with sorts corresponding to each of our types. We use the following syntax for Δ_0 formulas and terms. Terms are built using tupling and projections. All formulas and terms are assumed to be well-typed in the obvious way, with the expected sort of t and u being \mathcal{U} in expressions $t =_\mathcal{U} u$ and $t \neq_\mathcal{U} u$, while in $t \in_T u$ the sort of t is T and the sort of u is $\text{Set}(T)$.

$$t, u ::= x \mid () \mid \langle t, u \rangle \mid \pi_1(t) \mid \pi_2(t)$$

$$\varphi, \psi ::= t =_\mathcal{U} t' \mid t \neq_\mathcal{U} t' \mid \top \mid \bot \mid \varphi \lor \psi \mid \varphi \land \psi \mid \forall x \in_T t \varphi(x) \mid \exists x \in_T t \varphi(x)$$

Note that there is no primitive negation or equalities for sorts other than \mathcal{U}. This does not limit expressiveness of formulas with respect to classical semantics. Negation $\neg \varphi$ may be defined by induction on φ by dualizing every connective; we write $\varphi \Rightarrow \psi$ for $\neg \varphi \lor \psi$ in the sequel. Equality, inclusion and membership predicates may be defined as notations by induction on the involved types.

$$t \in_T u ::= \exists z' \in u t =_T z' \quad t \subseteq_T u ::= \forall z \in_T t z \in_T u$$

$$t =_{\text{Set}(T)} u ::= t \subseteq_T u \land u \subseteq_T t \quad t =_{\text{Unit}} u ::= \top \quad (\text{since all elements of this type are equal})$$

$$t =_{T \times T} u ::= \pi_1(t) =_{T_1} \pi_1(u) \land \pi_2(t) =_{T_2} \pi_2(u)$$

Here we have not defined \in at higher types as an atomic predicate, but rather as a derived predicate. We can think of the kind of entailments we want to prove in terms of these derived predicates, without use of a set-extensionality axiom:

$$(\forall z \in_T x z \in_T y) \land (\forall z \in_T y z \in_T x) \Rightarrow x =_{\text{Set}(T)} y$$

Alternatively, we can think of them as new primitives with extensionality as an axiom relating them to the other primitives we have given above.

The notion of a formula φ entailing another formula ψ, writing $\varphi \models \psi$, is the standard one in first-order logic, meaning that every model of φ is a model of ψ.

NRC and Δ_0 formulas. Since we have a Boolean type in NRC, one may ask about the expressiveness of NRC for defining transformations of shape $T_1, \ldots, T_n \rightarrow \text{Bool}$. It turns out that they are equivalent to Δ_0 formulas. This gives one justification for focusing on Δ_0 formulas.

Proposition 3.3. There is a polynomial time algorithm taking a Δ_0 formula $\varphi(\vec{x})$ as input and producing an NRC expression $\text{Verify}_\varphi(\vec{x})$ of type Bool such that $\text{Verify}_\varphi(\vec{x})$ returns true if and only if $\varphi(\vec{x})$ holds.

This useful result is proved by an easy induction over φ.

4 Synthesizing Transformations from Intuitionistic Proofs

We will now present our first main result, concerning synthesis of nested relational transformations from proofs.

We consider an input schema SCH_{in} with one input object o_{in} and an output schema with one output object o_{out}. Using product objects, we can easily model any nested relational transformation in this way. We deal with a Δ_0 formula $\varphi(o_{in}, o_{out}, \vec{d})$ with distinguished variables o_{in}, o_{out}. Recall
from the introduction that such a formula \emph{implicitly defines} \(o\text{\textsubscript{out}} \) \emph{as a function of} \(o\text{\textsubscript{in}} \) if for each nested relation \(o\text{\textsubscript{in}} \) there is at most one \(o\text{\textsubscript{out}} \) such that \(\varphi(o\text{\textsubscript{in}}, o\text{\textsubscript{out}}, \bar{a}) \) holds for some \(\bar{a} \). A formula \(\varphi(o\text{\textsubscript{in}}, o\text{\textsubscript{out}}, \bar{a}) \) \emph{projectively implicitly} defines a transformation \(T \) from \(o\text{\textsubscript{in}} \) to \(o\text{\textsubscript{out}} \) if for each \(o\text{\textsubscript{in}}, \varphi(o\text{\textsubscript{in}}, o\text{\textsubscript{out}}, \bar{a}) \) holds for some \(\bar{a} \) if and only if \(T(o\text{\textsubscript{in}}) = o\text{\textsubscript{out}} \). We drop “projectively” if \(\bar{a} \) is empty.

\textbf{Example 4.1.} Consider the transformation \(T\text{\textsubscript{Group}} \) from Example 3.2. It has a simple implicit \(\Delta_0 \) definition as given in Example 1.1, which we can restate as follows. First, define the auxiliary formula \(\chi(x, p, R) \) stating that \(\pi_1(p) \) is \(x \) and \(\pi_2(p) \) is the set of \(y \) such that \(\langle x, y \rangle \) is in \(R \) (the "fiber of \(R \) above \(x \)):

\[
\chi(x, p, R) := \pi_1(p) = x \land (\forall t' \in R \ [\pi_1(t') = x \Rightarrow \pi_2(t') \in \pi_2(p)]) \land \forall z \in \pi_2(p) \ [\langle x, z \rangle \in R]
\]

Then \(T\text{\textsubscript{Group}} \) is implicitly defined by \(\forall t \in R \exists p \in q \ [\chi(\pi_1(t), p, R)] \land \forall p \in q \ [\chi(\pi_1(p), p, R)] \).

\textbf{Restricted proof system.} Our synthesis result requires a proof of functionality within a restricted proof system. We present a special-purpose sequent calculus in Figure 2 deriving judgments \(\Theta; \Gamma \vdash \varphi \) where \(\Gamma \) is a multi-set of \(\Delta_0 \) formulas, \(\Theta \) a multi-set of membership formulas \(t \in u \), and \(\varphi \) is a \(\Delta_0 \) formula with one of the following shapes: \(t \in T u \), \(t = \text{Set}(T) u \) or \(t \perp T u \). A multi-set of formulas will also be called a context, and above we write \(C, C' \) for the concatenation of contexts \(C \) and \(C' \).
which does not have these predicates as atomic. We do this only for convenience, to avoid having admissible within our proof system. We also note that many natural proof rules are additional proof rules capturing extensionality in decomposing formulas on the left.

Informally, a judgment \(\Theta; \Gamma \vdash \varphi \) is meant to be read as “If all the containments in \(\Theta \) and formulas in \(\Gamma \) hold, then \(\varphi \) does”. In the figure, we use \(\text{FV} \) to denote the free variables of a context, and we use \(\varphi[t/x] \) to denote the result of substituting \(t \) for \(x \) in \(\varphi \).

The main essential restriction on the proof system is that it is intuitionistic. There is no way to deduce \(\Theta; \Gamma \vdash \varphi \) from \(\Theta; \Gamma, \neg \varphi \vdash \bot \) in general. Informally, this means that we forbid reasoning by contradiction. In particular, this means that some sequents are classically valid but not derivable in our calculus. For instance, consider \(w \in r; \forall x \in l l \in r, \forall y \in w \ l \in r \vdash l \in r \). This is seen to be classically valid by considering separately the following three cases: \(l \) non-empty, \(w \) non-empty and \(l = w = \emptyset \). However, it is also easy to check that this cannot be derived intuitionistically. The other restrictions, such as the specific shape of formulas on the right-hand side for many rules, do not limit the power of the system when it comes to functionality proofs, but allow us to prove our main extraction result more easily.

It is straightforward to capture the informal reasoning used to argue for functionality in Example 1.1 within our proof system. We also note that many natural proof rules are admissible in our system; they are conservative in terms of the set of proofs that they enable. We collect the most useful cases in Figure 3. Showing that they are admissible is done by rather elementary inductions, and it can be noted that eliminating those additional proof rules can be done in polynomial time in the size of proof trees and the types of the involved formulas. This list is not meant to be exhaustive, as it can be shown that the derivable sequents in our system are exactly those derivable in more standard sequent calculus for multi-sorted intuitionistic logic that appear in the prior literature (see e.g. [Jacobs 2001, Section 4.1]). We offer a detailed discussion of the correspondence between our proof system and several previously known intuitionistic calculi in the supplementary materials.

A technicality is that in our presentation of the proof system there is a slight asymmetry between how the set predicates \(=_T, \subseteq_T \) and \(\epsilon_T \) are treated on the left and on the right. The proof rules decomposing formulas on the right, such as \(\subseteq_-R \), are specialized to deal with the semantics of these predicates. They are justified either based on extensionality – if one thinks of these predicates as primitive – or by definition, if one thinks of these predicates as derived. On the other hand, on the left side we require that all of our formulas in \(\Gamma \) are described in the basic grammar of \(\Delta_0 \) formulas, which does not have these predicates as atomic. We do this only for convenience, to avoid having additional proof rules capturing extensionality in decomposing formulas on the left.

Provably implicit definitions. By an intuitionistic proof that \(\Sigma(o_{in}, o_{out}, \bar{a}) \) implicitly defines \(o_{out} \) as a function of \(o_{in} \) we mean a formal derivation of a sequent \(\Sigma(o_{in}, o_{out}, \bar{a}), \Sigma(o_{in}, o'_{out}, \bar{a}') \vdash o_{out} =_T o'_{out} \) in our proof system.

We can now state our main result on effectively generating NRC expressions from proofs:

Theorem 4.2. There is a PTIME procedure which takes as input an intuitionistic proof that \(\Sigma(o_{in}, o_{out}, \bar{a}) \) defines \(o_{out} \) as a function of \(o_{in} \), and returns an NRC expression \(E \) such that whenever \(\Sigma(o_{in}, o_{out}, \bar{a}) \) holds, then \(E(o_{in}) = o_{out} \).
Because \(\chi \) may deduce that \(x \) need to show that \(\chi(X, x, z) \) holds and \(\chi(X, x, a) \Rightarrow a \in o' \) (4). Recall that \(\psi(X, x, z) \) is the conjunction of \(z \in x \) and \(\chi(X, x, z) \), so that we may deduce that \(\chi(X, x, z) \Rightarrow z \in o' \) (6) and thus \(z \in o' \) (7).

Fig. 4. Formal proof tree of functionality for Example 4.3. Admissible rules are denoted with dashed lines and some instances of the admissible weakening rule (wk) are omitted for legibility. Formulas and variables specific to the left and right-hand side are respectively colored in red and blue.

Let us provide a detailed example to illustrate Theorem 4.2.

Example 4.3. Given a set of sets of Ur-elements \(X \in \text{Set}(\text{Set}(\mathcal{U})) \), say that an Ur-element \(a \) distinguishes a set \(x \in X \) if \(x \) is the unique element of \(X \) containing \(a \). Consider the transformation taking as input such an \(X \) and returning the set of Ur-elements that distinguish some element of \(X \). This is implicitly definable by a \(\Delta_0 \) formula \(\Sigma(X, o) \) stating that every \(a \in o \) distinguishes some element of \(X \) and conversely. Writing this in our restricted syntax for \(\Delta_0 \) formulas, in which membership of higher-order objects must be expressed using bounded quantification and equality, we obtain an implicit definition

\[
\Sigma(X, o) := (\forall a \in o \exists x \in X \psi(X, x, a)) \land (\forall x \in X \forall a \in x [\chi(X, x, a) \Rightarrow a \in \mathcal{U} o]) \quad \text{where} \quad \chi(X, x, a) := \forall y \in X (a \in \mathcal{U} y \Rightarrow x =_{\text{Set}(\mathcal{U})} y) \quad \text{and} \quad \psi(X, x, z) := a \in \mathcal{U} x \land \chi(X, x, a)
\]

Note that when \(a \in \mathcal{U} x \) and \(x =_{\text{Set}(\mathcal{U})} y \), and \(a \in \mathcal{U} o \) occur on the left side of a sequent, they should be thought of as abbreviations for more complex formulas built up through bounded quantification. Similarly, \(\Rightarrow \) is a derived connective, built up from the Boolean operations allowed in \(\Delta_0 \) formulas in the obvious way.

Figure 4 contains a formal derivation of functionality for \(\Sigma(X, o) \). We may render this proof informally as follows (putting references to proof steps in Figure 4 in parentheses).

Proof of functionality of Example 4.3. Assume \(\Sigma(X, o) \) and \(\Sigma(X, o') \). To show \(o = o' \), we need to show that \(o \subseteq o' \) and \(o' \subseteq o \). Since the roles of \(o \) and \(o' \) are symmetric, without loss of generality, it suffices to give the proof that \(o \subseteq o' \) (1). Fix \(z \in o \) (2). Since \(\Sigma(X, o) \) holds, according to its first conjunct, we have in particular that there exists some \(x \in X \) such that \(\psi(X, x, z) \) holds (3). Because \(\Sigma(X, o') \) holds and \(x \in X \), the second conjunct tells us that for every \(a \in x \), we have \(\chi(X, x, a) \Rightarrow a \in o' \) (4). Recall that \(\psi(X, x, z) \) is the conjunction of \(z \in x \) and \(\chi(X, x, z) \), so that we may deduce that \(\chi(X, x, z) \Rightarrow z \in o' \) (6) and thus \(z \in o' \) (7).

\[\square\]
As per Theorem 4.2, the transformation defined in Example 4.3 is NRC-definable as

\[\bigcup \left\{ \text{case}(\text{Verify}_\theta(X, a), \{a\}, \emptyset) \mid a \in \bigcup X \right\} \quad \text{with} \quad \theta(X, a) = \exists x \in X \psi(X, x, a) \]

where Verify is the filtering function given by Proposition 3.3.

We emphasize that our results apply to proofs of functionality over any subsignature of the input. In particular they apply to synthesize inverses of transformations, a problem of considerable interest in several communities [Hu and D’Antoni 2017; Srivastava et al. 2011]:

Example 4.4. Return to the setting of Example 1.1, and suppose that we are interested in the transformation over an input object \(G \) of type \(\text{Set}(\mathcal{U} \times \text{Set}(\mathcal{U})) \) which simply “flattens” \(G \). We write this explicitly in NRC, as we did in Example 3.2:

\[E = \bigcup \left\{ \{ (\pi_1(g), t) \mid t \in \pi_2(g) \mid g \in G \} \right\} \]

From \(E \) we can automatically generate a \(\Delta_0 \) formula such as \(\Sigma \) from Example 1.1, stating that \(F \) is the output of \(G \) under \(E \). Indeed, this is true for any NRC transformation: one just encodes the semantics of NRC in logic.

This transformation is invertible, as mentioned in Example 1.1, and we can prove its invertibility in our calculus. Our synthesis algorithm will generate from this proof an expression in NRC that represents the inverse, namely an expression that groups \(F \) to form \(G \).

Example 4.5. Another application are for the synthesis result of Theorem 4.2 is to rewrite transformations using cached results, a variation on the idea of “rewriting with views” in relational databases [Afrati and Chirkova 2019; Halevy 2001; Lenzerini 2002; Nash et al. 2010; Toman and Weddell 2011].

Consider a sequence where assigns to variable \(J \) of type \(\text{Set}(\mathcal{U} \times \mathcal{U}) \) the intersection of \(A \) and \(B \), and later assigns to variable \(S \) of type \(\text{Set}(\mathcal{U}) \) the set of elements that have a self-loop in both \(A \) and \(B \).

\[J := A \cap B; \ldots; S := \bigcup \left\{ \{ \text{case}(\pi_1(a) = \pi_2(a) = \pi_1(b) = \pi_2(b), \{\pi_1(a)\}, \emptyset) \mid a \in A \} \mid b \in B \right\}; \ldots \]

One can easily see that \(S \) is a function of \(J \). And from a proof of functionality, our method produces a rewriting of the assignment producing \(S \), using an NRC expression that makes use of \(J \). An example of such a rewriting is

\[S := \bigcup \{ \text{case}(\pi_1(j) = \pi_2(j), \{\pi_1(j)\}, \emptyset) \mid j \in J \} \]

Such a rewriting of \(S \) using the cached value of \(J \) may be much more efficient than recomputing \(S \) from scratch.

We now turn to explaining the ingredients that underlie the procedure of Theorem 4.2. **Interpolation for \(\Delta_0 \) formulas.** Often a key ingredient in moving from implicit to explicit definition is an interpolation theorem, stating that for each entailment between formulas \(\varphi_L \) and \(\varphi_R \) there is an intermediate formula (an interpolant for the entailment), which is entailed by \(\varphi_L \) and entails \(\varphi_R \) while using only symbols common to \(\varphi_L \) and \(\varphi_R \). We can show using a standard inductive approach to interpolation (e.g. [Fitting 1996]) that our calculus admits efficient interpolation.

Proposition 4.6. Let \(\Theta_L, \Theta_R, \Gamma_L \) and \(\Gamma_R \) be contexts and \(\psi \) a formula and call \(C = \text{FV}(\Theta_L, \Gamma_L) \cap \text{FV}(\theta_R, \Gamma_R) \) the set of common free variables. For every derivation \(\Theta_L, \Theta_R; \Gamma_L, \Gamma_R \vdash \psi \) there exists a \(\Delta_0 \) formula \(\theta \) with \(\text{FV}(\theta) \subseteq C \) such that the following holds

\[\Theta_L; \Gamma_L \models \theta \quad \text{and} \quad \Theta_R; \Gamma_R, \theta \models \psi \]

Further the interpolant \(\theta \) can be found in polynomial time from the derivation.
The interpolation result above should be thought of as giving us the result we want for transformations of Boolean type. From it we can derive that a formula whose truth value is implicitly defined by a set of input variables must be given as a \(\Delta_0 \) formula over those inputs. By Proposition 3.3, these formulas can be converted to NRC.

The higher-type interpolation lemma. Our main result is deduced from a more general interpolation result, which says that whenever a binary relationship between variables, such as the containment relationship \(t \subseteq_T u \), is provable from a theory that is partitioned into left and right formulas, and the variables \(t \) and \(u \) appear exclusively in distinct sides of the partition, then there is an interpolating expression in NRC[Get], taking as input the variables common to the left and right partitions. For an equality relationship between variables, the synthesized expression will take as input the common variables on the left and right and select an object that is equal to the variables participating in the equality. For membership relationships \(t \in u \), our algorithm derives a bounding expression \(E \) taking inputs in the common signature such that \(t \in E \); this could be strengthened to \(t \in E \subseteq u \). The result bears some similarity with other extraction procedures that produce a program from a proof, such as those based on the Curry-Howard correspondence. However, it is formally much closer to the kind of interpolation theorem from logic mentioned earlier in connection to Proposition 4.6. In the past, interpolation results have been applied to extract program invariants [Hoder et al. 2010; McMillan 2003]; here we are proving and applying interpolation results to produce a different kind of program artifact.

Lemma 4.7. [Higher-type Interpolation Lemma] Let \(\Theta = \Theta_L, \Theta_R \) be a \(\epsilon \)-context and \(\Gamma = \Gamma_L, \Gamma_R \) a context. Suppose that \(t \) and \(u \) are terms of suitable types such that \(\text{FV}(t) \subseteq \text{FV}(\Theta_L, \Gamma_L) \) and \(\text{FV}(u) \subseteq \text{FV}(\Theta_R, \Gamma_R) \) and call \(C = \text{FV}(\Theta_L, \Gamma_L) \cap \text{FV}(\Theta_R, \Gamma_R) \) the set of common free variables. Then we have:

- If \(\Theta; \Gamma \vdash t \equiv_T u \) is derivable, there is an NRC[Get] expression \(E \) of type \(T \) such that
 \[\Theta; \Gamma \vdash t = E = u \quad \text{and} \quad \text{FV}(E) \subseteq C \]

- If \(\Theta; \Gamma \vdash t \subseteq_T u \) is derivable, there is an NRC[Get] expression \(E \) of type Set\((T)\) such that
 \[\Theta; \Gamma \vdash t \subseteq E \subseteq u \quad \text{and} \quad \text{FV}(E) \subseteq C \]

- If \(\Theta; \Gamma \vdash t \in_T u \) is derivable, then there is an NRC[Get] expression \(E \) of type Set\((T)\) such that
 \[\Theta; \Gamma \vdash t \in E \quad \text{and} \quad \text{FV}(E) \subseteq C \]

Further the desired expressions can be constructed in time polynomial in the proof.

Proof of Theorem 4.2. A proof that \(\Sigma(o_{in}, o_{out}, \overline{a}) \) defines \(o_{out} \) as a function of \(o_{in} \) is exactly a proof that \(\Sigma(o_{in}, o_{out}, \overline{a}) \), \(\Sigma(o_{in}, o'_{out}, \overline{a'}) \) \(\vdash o_{out} \equiv_T o'_{out} \) where \(o'_{out} \) and \(\overline{a'} \) are new variables. Applying Lemma 4.7 with \(\Theta \) empty, \(\Gamma_L = \Sigma(o_{in}, o_{out}, \overline{a}) \), and \(\Gamma_R = \Sigma(o_{in}, o'_{out}, \overline{a'}) \) yields an NRC[Get] expression \(E(o_{in}) \) such that \(\Sigma(o_{in}, o_{out}, \overline{a}), \Sigma(o_{in}, o'_{out}, \overline{a'}) \vdash o_{out} = E(o_{in}) = o'_{out} \). Hence we have \(\Sigma(o_{in}, o_{out}, \overline{a}) \vdash o_{out} = E(o_{in}) \) and the proof of Theorem 4.2 is complete.

Lemma 4.7 is proven by induction on the derivation, which requires examining every proof rule in Figure 2. The more interesting cases are the left-hand side rules for first-order connectives (\(\wedge_L, \lor_L, \forall_L \) and \(\exists_L \)) and the rules for the right-hand side formulas \(\epsilon_{\text{Set}-R} \) and \(\equiv_{qT}-R \). Regarding the left-hand side rules, since the right-hand side formula of both the premise and conclusion is of the shape \(t \in_T u \), the inductive invariant requires us to output an NRC expression bounding the term \(t \). To prove the inductive step, we use the binary union operator \(E_1 \cup E_2 \) of NRC for the rule \(\lor_L \) and the big union operator \(\bigcup \{ E \mid x \in y \} \) for the rule \(\exists_L \). On the other hand, the inductive steps for the rules \(\wedge_L \) and \(\forall_L \) do not require modifying the expression obtained as part of the induction hypothesis. To treat the inductive steps corresponding to the rules \(\subseteq-R \) and \(\equiv_{qT}-R \), we
use a combination of the usual "Boolean" interpolation (Proposition 4.6) and the conversion of Λ_0 formulas to expressions of Boolean type in NRC (Proposition 3.3).

Example 4.8. Let us illustrate the algorithm provided by Lemma 4.7 on the proof tree in Figure 4 by providing the corresponding intermediate NRC expressions that are synthesized, starting from top to bottom: from step (7) to (5), the NRC expression is the singleton \{z\}. After the conclusion of the subsequent \exists-L rule, the expression becomes

$$\bigcup\{\{z\} \mid z \in x\}$$

which is semantically equivalent to x. After the next \exists-L rule at step (3), we obtain

$$\bigcup \left\{ \bigcup \{\{z\} \mid z \in x\} \mid x \in X \right\}$$

which is equivalent to the union $\bigcup X$. The final expression is then obtained right after step (2), by first computing an interpolant $\theta(X, z)$ such that $z \in o \land \varphi(X, o) \models \theta(X, z)$ and $\theta(X, z) \land \varphi(X, o') \models z \in o'$. Computing according to the procedure underlying Proposition 4.6 yields $\theta(X, a) = \exists x \in X \, \varphi(X, x, a)$ and the final NRC expression

$$\bigcup \left\{ \text{case} (\text{Verify}_\theta (X, a), \{a\}, \emptyset) \mid a \in \bigcup \left\{ \{z'\} \mid z' \in x\} \mid x \in X \right\} \right\}$$

We now detail two cases of the inductive argument required to prove Lemma 4.7, the other cases being relegated to the supplementary materials. We also omit the routine complexity analysis of the underlying algorithm.

Rule \forall-L: Assume that the last proof rule used introduces a universal quantifier on the left.

$$\forall \text{-L} \quad \Theta, \ w \in_T y; \Gamma, \varphi[w/x] \vdash t \in_T \Theta, \ w \in_T y; \Gamma, \ \forall x \in_T y \varphi \vdash t \in_T u$$

To simplify matters, assume that w is a variable. We apply the induction hypothesis to obtain a NRC expression, say E' with $\text{FV}(E') \subseteq \{w\} \cup C$, by splitting the $\Theta, \ w \in_T y; \Gamma, \varphi[w/x]$ in the obvious way (e.g., if $\forall x \in_T y \varphi$ was on the left context in the conclusion, we make $\varphi[w/x]$ part of the left context in the premise). If $w \notin \text{FV}(E')$, then it also satisfies the invariant in the conclusion. Otherwise, it must be the case that $y \in C$. Hence, we may show that the invariant is satisfied by

$$E = \bigcup \{E' \mid w \in y\}$$

Rule \subseteq-R: If the last proof rule used introduces an inclusion on the right

$$\subseteq \text{-R} \quad \Theta, \ z \in_T t; \Gamma \vdash z \in_T u \quad z \notin \text{FV}(\Theta, \Gamma, t, u) \Rightarrow \Theta; \Gamma \vdash t \subseteq_T u$$

then the inductive hypothesis gives us an expression E' such that $\Theta, z \in_T t; \Gamma \models z \in_T E'$ and $\text{FV}(E') \subseteq C$. Apply interpolation to the premise so as to obtain a Λ_0 formula θ with $\text{FV}(\theta) \subseteq \{z\} \cup C$ such that $\Theta_L; \Gamma_L, z \in_T t \models \theta$ and $\Theta_R; \Gamma_R, \theta \models z \in_T u$. In this case, we take $E = \{z \in E' \mid \theta\}$, which is NRC[Get]-definable as

$$\bigcup \{\text{case} (\text{Verify}_\theta, \{z\}, \emptyset) \mid z \in E'\}$$

Now, let us assume that Γ holds and show that $t \subseteq E$ and $E \subseteq u$.

- Suppose that $z \in t$. By the induction hypothesis, we know that $z \in E'$. But we also know that Γ_L is satisfied, so that θ holds. By definition, we thus have $z \in E$.
- Now suppose that $z \in E$, that is, that $z \in E'$ and θ holds. The latter directly implies that $z \in u$ since Γ_R holds.
5 INTERPRETATIONS AND NESTED RELATIONS

We will be interested in extending our synthesis result to classical proofs. But first we give another characterization of NRC, an equivalence with transformations defined by interpretations.

We first review the notion of an interpretation, which has become a common way of defining transformations using logical expressions [Bojanczyk et al. 2018; Colcombet and Löding 2007]. Let \(\mathcal{SCH}_\text{in}\) and \(\mathcal{SCH}_\text{out}\) be multi-sorted vocabularies. A first-order interpretation with input signature \(\mathcal{SCH}_\text{in}\) and output signature \(\mathcal{SCH}_\text{out}\) consists of:

- for each output sort \(S'\), a sequence of input sorts \(\tau(S') = \vec{S}\),
- a formula \(\phi^S_\equiv(\vec{x}_1, \vec{x}_2)\) for each output sort \(S'\) in \(\mathcal{SCH}_\text{out}\) (where both tuples of variables \(\vec{x}_1\) and \(\vec{x}_2\) have types \(\tau(S')\)),
- a formula \(\phi^S_{\text{Domain}}(\vec{x}_1)\) for each output sort \(S'\) in \(\mathcal{SCH}_\text{out}\) (the variables \(\vec{x}_1\) have types \(\tau(S')\)),
- a formula \(\phi^S_R(\vec{x}_1, \ldots, \vec{x}_n)\) for every relation \(R\) of arity \(n\) in \(\mathcal{SCH}_\text{out}\) (where the variables \(\vec{x}_i\) have types \(\tau(S'_i)\), provided the \(i\)-th argument of \(R\) has sort \(S'_i\)),
- for every function symbol \(f(x_1, \ldots, x_k)\) of \(\mathcal{SCH}_\text{out}\) with output sort \(S'\) and input \(x_i\) of sort \(S_i\), a sequence of terms \(\vec{f}_1(\vec{x}_1, \ldots, \vec{x}_k), \ldots, \vec{f}_m(\vec{x}_1, \ldots, \vec{x}_k)\) with sorts \(\tau(S_{out})\) and \(\vec{x}_i\) of sorts \(\tau(S_i)\).

subject to the following constraints:

- \(\phi^S_\equiv(\vec{x}_1, \vec{y})\) should define a partial equivalence relation, i.e. be symmetric and transitive,
- \(\phi^S_{\text{Domain}}(\vec{x})\) should be equivalent to \(\phi^S_\equiv(\vec{x}, \vec{x})\),
- \(\phi^S_R(\vec{x}_1, \ldots, \vec{x}_n)\) and \(\phi^S_\equiv(\vec{x}_1, \vec{y}_i)\) for \(1 \leq i \leq n\), where \(S_i\) is the output sort associated with position \(i\) of the relation \(R\), should jointly imply \(\phi^S_R(\vec{y}_1, \ldots, \vec{y}_n)\).
- the formulas \(\phi^S_\equiv\) should be congruent with the interpretation of terms: for every output function symbol \(f(x_1, \ldots, x_k)\) represented by terms \(\vec{f}_1(\vec{x}_1, \ldots, \vec{x}_k), \ldots, \vec{f}_m(\vec{x}_1, \ldots, \vec{x}_k)\), writing \(\vec{x}\) for the concatenation of \(\vec{x}_1, \ldots, \vec{x}_k\), and \(\vec{y}\) for the concatenation of \(\vec{y}_1, \ldots, \vec{y}_k\), we enforce

\[
\forall \vec{x} \vec{y} \left(\bigwedge_{i=1}^{k} \phi^S_\equiv(\vec{x}_i, \vec{y}_i) \implies \phi^S_{\equiv}(\vec{f}_1(\vec{x}), \ldots, \vec{f}_m(\vec{x}), \vec{f}_1(\vec{y}), \ldots, \vec{f}_m(\vec{y})) \right)
\]

where \(S'\) is the sort of the output of \(f\) and the \(S_i\) correspond to the arities.

In \(\phi^S_\equiv\) and \(\phi^S_{\text{Domain}}\), each \(\vec{x}_1, \vec{x}_2\) is a tuple containing variables of sorts agreeing with the prescribed sequence of input sorts for \(S'\). Given a structure \(M\) for the input sorts and a sort \(S\) we call a binding of these variables to input elements of the appropriate input sorts an \(M, S\) input match. If in output relation \(R\) position \(i\) is of sort \(S_i\), then in \(\phi^R(\vec{t}_1, \ldots, \vec{t}_n)\) we require \(\vec{t}_i\) to be a tuple of variables of sorts agreeing with the prescribed sequence of input sorts for \(S_i\). Each of the above formulas is over the vocabulary of \(\mathcal{SCH}_\text{in}\). An interpretation \(\mathcal{I}\) defines a function from structures over vocabulary \(\mathcal{SCH}_\text{in}\) to structures over vocabulary \(\mathcal{SCH}_\text{out}\) as follows:

- The domain of sort \(S'\) is the set of equivalence classes of the partial equivalence relation defined by \(\phi^S_\equiv\) over the \(M, S'\) input matches.
- A relation \(R\) in the output schema is interpreted by the set of those tuples \(\vec{a}\) such that \(\phi^R(\vec{t}_1, \ldots, \vec{t}_n)\) holds for some \(\vec{t}_1, \ldots, \vec{t}_n\) with each \(\vec{t}_i\) a representative of \(a_i\).

An interpretation \(\mathcal{I}\) also defines a map \(\phi \mapsto \phi^*\) from formulas over \(\mathcal{SCH}_\text{out}\) to formulas over \(\mathcal{SCH}_\text{in}\) in the obvious way. This map commutes with all logical connectives and thus preserves logical consequence.

In the sequel, we are concerned with interpretations preserving certain theories consisting of sentences in first-order logic. Recall that a theory \(\Sigma\) in first-order logic is just a set of sentences. Given a theory \(\Sigma\) over \(\mathcal{SCH}_\text{in}\) and a theory \(\Sigma'\) over \(\mathcal{SCH}_\text{out}\), we say that \(\mathcal{I}\) is an interpretation of \(\Sigma'\) in \(\Sigma\) if \(\mathcal{I}\) is an interpretation such that for every theorem \(\phi\) of \(\Sigma'\), \(\phi^*\) is a theorem of \(\Sigma\). Since
\(\varphi \mapsto \varphi^* \) preserves logical consequence, if \(\Sigma' \) is generated by a set of axioms \(A \), it suffices to check that \(\Sigma \) proves \(\varphi^* \) for \(\varphi \in A \).

Finally, we are also interested in interpretations restricting to the identity on part of the input. Suppose that \(SCH_{out} \) and \(SCH_{in} \) share a sort \(S \). An interpretation \(I \) of \(SCH_{out} \) within \(SCH_{in} \) is said to preserve \(S \) if the output sort associated to \(S \) is \(S \) itself and the induced map of structures is the identity over \(S \). Up to equivalence, that means we fix \(\varphi^*_S(x) \) to be, up to equivalence, \(\top \), \(\varphi^*_S(x, y) \) to be the equality \(x = y \) and map constants of type \(S \) to themselves.

Interpretations defining nested relational transformations. We now consider how to define nested relational transformations via interpretations. The main idea will be to restrict all the constituent formulas to be \(\Delta_0 \) and to relativize the notion of interpretation to a background theory that corresponds to our sanity axioms about tupling and sets.

We define the notion of *component types* of a type \(T \) inductively as follows.

- \(T \) is a component type of \(Set(T') \) if \(T = Set(T') \) or if it is a component type of \(T' \).
- \(T \) is a component type of \(T_1 \times T_2 \) if \(T = T_1 \times T_2 \) or if it is a component type of either \(T_1 \) or \(T_2 \).
- The only component types of \(U \) and \(Unit \) are themselves.

Note in particular that if we have a complex object of sort \(T \), the possible sorts over its subobjects are exactly the component types of \(T \).

For every type \(T \), we build a multi-sorted vocabulary \(SCH_T \) as follows.

- The sorts are all component types of \(T \), \(Unit \) and \(Bool = Set(Unit) \).
- The function symbols are the projections, tupling, the unique element of type \(Unit \), the constants \(\text{ff}, \text{tt} \) of sort \(Bool \) representing \(\emptyset, \{ \} \) and a special constant \(o \) of sort \(T \).
- The relation symbols are the equalities at every sort and the membership predicates \(\in_T \).

Let \(T_{\text{obj}} \) be a type which will represent the type of a complex object \(\text{obj} \). We build a theory \(\Sigma(T_{\text{obj}}) \) on top of \(SCH_{T_{\text{obj}}} \) from the following axioms:

- Equality should satisfy the congruence axioms for every formula \(\varphi \)
 \[\forall x y \ (x = y \land \varphi \Rightarrow \varphi[y/x]) \]

 Note that it is sufficient to require this for atomic formulas to infer it for all formulas.
- We require that projection and tupling obey the usual laws for every type of \(SCH_{T_{\text{obj}}} \).
 \[\forall x^{T_1} y^{T_2} \pi_1((x, y)) = x \quad \forall x^{T_1} y^{T_2} \pi_2((x, y)) = y \]
- We require that \(Unit \) be a singleton and every \(Set(T) \) in \(SCH_{T_{\text{obj}}} \)
 \[\forall x^{Unit} \ (\) = x \]
- Lastly our theory imposes set extensionality
 \[\forall x^{Set(T)} y^{Set(T)} \left([\forall z^T (z \in_T x \iff z \in_T y)] \Rightarrow x =_T y \right) \]

 Note that in interpretations we associate the input to a structure that includes a distinguished constant. For example, an input of type \(Set(U) \) will be coded by a structure with an element relation, an Ur-element sort, and a constant whose sort is the type \(Set(U) \). In other contexts, like NRC expressions and implicit definitions of transformations, we considered inputs to be *free variables*. This is only a change in terminology, but it reflects the fact that in evaluating the interpretation on any input \(i_0 \) we will keep the interpretation of the associated constant fixed, while we need to look at multiple bindings of the variables in each formula in order to form the output structure.

We will show that \(NRC \{ \text{Get} \} \) expressions defining transformations from a nested relation of type \(T_1 \) to a nested relation of type \(T_2 \) correspond to a subset of interpretations of \(\Sigma(T_2) \) within \(\Sigma(T_1) \) that preserve \(U \). The only additional restriction we impose is that all formulas \(\varphi^T_{\text{Domain}} \) and \(\varphi^*_{\equiv} \) in the definition of such an interpretation must be \(\Delta_0 \). This forbids, for instance, universal
We now describe how the output of an interpretation is mapped back to an object. The output of an interpretation is a multi-sorted structure with a distinguished constant Δ_0, which contains two elements; these technicality are important to ensure that interpretation be expressive enough.

We now formally describe how such an interpretation to define a transformation from an instance of one nested relational schema to another; that is, to map one object to another. We will denote the distinguished constant lying in the input sort by o_{in} and the distinguished constant in the output sort by o_{out}. Given any object o of type T, define M_o as the least structure such that

- every subobjects of o is part of M_o
- when $T_1 \times T_2$ is a component type of T and a_1, a_2 are objects of sort T_1, T_2 of M_o, then $\langle a_1, a_2 \rangle$ is an object of M_o
- a copy of \emptyset is part of M_o for every sort $\text{Set}(T)$ in SCH_T

The map $o \mapsto M_o$ shows how to translate an object to a logical structure that is appropriate as the input of an interpretation. Note that M_o satisfies $\Sigma(T)$ and that every sort has at least one element in M_o and that there is one sort, Bool, which contains two elements; these technicality are important to ensure that interpretation be expressive enough.

We now discuss how the output of an interpretation is mapped back to an object. The output of an interpretation is a multi-sorted structure with a distinguished constant o_{out} encoding the output nested relational schema, but it is not technically a nested relational instance as required by our semantics for nested relational transformations. For example, an element of $M_{\text{Set}(U)}$ is not a set of Ur-elements, but simply a value connected to Ur-elements by a membership relation. We can convert the output to a semantically appropriate entity via a modification of the well-known Mostowski collapse [Mostowski 1949]. We define $\text{Collapse}(e, M)$ on elements e of the domain of a structure M for the multi-sorted encoding of a schema, by structural induction on the type of e:

- If e has sort $T_1 \times T_2$ then we set $\text{Collapse}(e, M) = \langle \text{Collapse}(\pi_1(e), M), \text{Collapse}(\pi_2(e), M) \rangle$
- If e has sort $\text{Set}(T)$, then we set $\text{Collapse}(e, M) = \{ \text{Collapse}(t, M) \mid t \in e \}$
- Otherwise, if e has sort Unit or U, we set $\text{Collapse}(e, M) = e$

We now formally describe how Δ_0 interpretations define functions between objects in the nested relational data model.

Definition 5.1. We say that a nested relational transformation T from T_1 to T_2 is defined by a Δ_0 interpretation I if, for every object o_{in} of type T_1, the structure M associated with o_{in} is mapped to M' where $T(o_{in})$ is equal to $\text{Collapse}(o_{out}, M')$.

We will often identify a Δ_0 interpretation with the corresponding transformation, speaking of its input and output as a nested relation (rather than the corresponding structure). For such an interpretation I and an input object o_{in} we write $I(o_{in})$ for the output of the transformation defined by I on o_{in}.

Example 5.2. Consider an input schema consisting of a single binary relation $R : \text{Set}(U \times \text{Set}(U))$, so an input object is a set of pairs, with each pair consisting of an Ur-element and a set of Ur-elements. The corresponding theory is $\Sigma(\text{Set}(U \times \text{Set}(U)))$, which has sorts $\text{Set}(U \times \text{Set}(U))$, $U \times \text{Set}(U)$, $\text{Set}(U)$, and U and relation symbols \in_U and $\in_{U \times \text{Set}(U)}$ and one equality symbol for each above sort. If we consider the following instance of the nested relational schema

$$R_0 = \{ \langle a, \{ a, b \} \rangle, \langle a, \{ a, c \} \rangle, \langle b, \{ b, c \} \rangle \}$$

Then the corresponding encoded structure M consists of:

- $M_{\text{Set}(U \times \text{Set}(U))}$ containing only the constant R_0
- $M_{U \times \text{Set}(U)}$ consisting of the elements of R_0,
- M_U consisting of $\{ a, b, c \}$
- $M_{\text{Set}(U)}$ consisting of the sets $\{ a, b \}$, $\{ a, c \}$.

Michael Benedikt and Pierre Pradic

- \(M_{\text{Unit}} = \{()\} \) and \(M_{\text{Bool}} = \{\emptyset, \{()\}\} \)
- the element relations interpreted in the natural way

Consider the transformation that groups on the first component, returning an output object of type \(\text{Set}(U \times \text{Set}(\text{Set}(U))) \). This is a variation of the grouping transformation from Example 1.2 and Example 3.2. On the example input \(R_0 \) the transformation would return

\[
\{\langle a, \{\{a, b\}, \{a, c\}\} \rangle, \langle b, \{\{a, c\}\} \rangle\}
\]

The output would be represented by a structure having sorts \(\text{Set}(U \times \text{Set}(\text{Set}(U))), U \times \text{Set}(\text{Set}(U)), \text{Set}(\text{Set}(U)) \) and \(\text{Set}(U) \) in addition to \(\text{Unit} \) and \(\text{Bool} \). It is easy to capture this transformation with a \(\Delta_0 \) interpretation. For example, the interpretation could code the output sort \(\text{Set}(U \times \text{Set}(\text{Set}(U))) \) as \(\text{Set}(U \times \text{Set}(U)) \), representing each group by the corresponding Ur-element.

We will often make use of the following observation about interpretations:

Proposition 5.3. \(\Delta_0 \) interpretations can be composed, and their composition corresponds to the underlying composition of transformations.

The composition of nested relational interpretations amounts to the usual composition of FO-interpretations (see e.g. [Benedikt and Koch 2009]) and an easy check that the additional requirements we impose on nested relational interpretations are preserved.

We can now state the equivalence of NRC and interpretations formally:

Theorem 5.4. Every transformation in NRC[Get] can be translated effectively to a \(\Delta_0 \) interpretation. Conversely, for every \(\Delta_0 \) interpretation, one can effectively form an equivalent NRC[Get] expression. The translation from NRC[Get] to interpretations can be done in EXPTIME while the converse translation can be performed in PTIME.

This characterization holds when equivalence is over finite nested relational inputs and also when arbitrary nested relations are allowed as inputs to the transformations.

From this theorem one can easily derive many of the “conservativity results”; e.g. [Paredaens and Van Gucht 1992], which states that every nested relational algebra query from flat type \(\text{Set}(U^n) \) to flat types can be expressed in relational algebra: we simply convert to an interpretation and then note that in going backward from an interpretation to an NRC expression we will not introduce additional levels of nesting on top of those present in the input and output.

Note that a number of very similar results occur in the literature. The underlying idea in one direction is that one can “shred” a transformation of collections to work on a flat representation. This has been investigated in several communities for NRC and related languages [Benedikt and Koch 2009; Cheney et al. 2014], in databases going at least as far back as [Abiteboul and Bidoit 1986]. The connection extends to richer collection types such as multi-sets, which have been the focus in using the shredding technique in systems [Cheney et al. 2014; Grust et al. 2010; Ulrich 2019]. Algorithms for shredding can also be useful as a technique for lifting optimizations, such as incremental query processing, from relational languages to nested languages [Koch et al. 2016]. And even in the collection of richer collection types, many of the conservativity properties of NRC are maintained [Wong 1996]. But with these additional type-formers, one needs to move beyond first-order logic in the simulating language. Thus although they are still extremely relevant to implementation, reasoning with the resulting representations becomes problematic. The thesis [Ulrich 2019] provides a detailed look at shredding techniques, and also additional historical background.

Results of [Koch 2006] show that a PTIME translation of NRC expressions to interpretations would imply a collapse of the complexity class \(TA[2^{O(n)}, n] \) to PSPACE, even at Boolean type. The early paper [Van den Bussche 2001] proves a translation of NRC similar to the one in the first half.
of Theorem 5.4 for flat-to-nested queries, and the nested-to-nested case can be easily obtained from this. However [Van den Bussche 2001] does not formalize the output of the interpretation as an interpretation, and we will need this connection to obtain our other characterizations. In the context of the XML query language XQuery, [Benedikt and Koch 2009] proves a transformation to first-order interpretations over trees. As noted in [Koch 2006], there is a very close relationship between XQuery and NRC, and the translation to interpretations in [Benedikt and Koch 2009] can be easily lifted to NRC.

There is also similarity to results from the 1960’s of Gandy [Gandy 1974]. Gandy defines a class of set functions that are similar to NRC, and shows that they are “substitutable”. This is the core of the argument for translating NRC to interpretations.

6 SYNTHESIZING INTERPRETATIONS FROM CLASSICAL PROOFS

In Section 4 we showed that from an intuitionistic proof that \(\Sigma (o_{in}, \ldots, o_{out}) \) defines \(o_{out} \) as a function of \(o_{in} \), we could synthesize an NRC expression that produces \(o_{out} \) from \(o_{in} \). One might believe such a “witnessing theorem” to be specific to intuitionistic calculi. But we will now demonstrate that this result extends to classical proofs, and that it is actually a general phenomenon connecting implicit definitions to interpretations. We will show that whenever we have a \(\Delta_0 \) specification where there is a classical proof that the specification is functional, we can generate an interpretation that realizes the function. We can then rely on Theorem 5.4 from the previous section to infer that an NRC[Get] expression realizes the function as well. That is, we will prove:

Theorem 6.1. For any \(\Delta_0 \) formula \(\Sigma(o_{in}, o_{out}, \bar{a}) \) which implicitly defines \(o_{out} \) as a function of \(o_{in} \), there is a \(\Delta_0 \) interpretation \(I \) such that whenever \(\Sigma(o_{in}, o_{out}, \bar{a}) \) holds, then \(I(o_{in}) = o_{out} \).

In particular, if in addition for each \(o_{in} \) there is some \(o_{out} \) and \(\bar{a} \) such that \(\Sigma(o_{in}, o_{out}, \bar{a}) \) holds, then the interpretation and the formula define the same transformation.

Recall from Section 4 that projective implicit definitions allow extra parameters \(\bar{a} \) while implicit definitions allow only the input and output variables \(o_{in} \) and \(o_{out} \). From Theorem 6.1 we easily get the following characterization:

Corollary 6.2. The following are equivalent for a transformation \(\mathcal{T} \):

- \(\mathcal{T} \) is projectively implicitly definable by a \(\Delta_0 \) formula
- \(\mathcal{T} \) is implicitly definable by a \(\Delta_0 \) formula
- \(\mathcal{T} \) is definable via a \(\Delta_0 \) interpretation
- \(\mathcal{T} \) is NRC[Get] definable

Finite instances versus all instances. In Theorem 6.1 and Corollary 6.2 we emphasize that our results concern the class \(\text{Fun}_{\text{All}} \) of transformations \(\mathcal{T} \) such that there is a \(\Delta_0 \) formula \(\Sigma \) which defines a functional relationship between \(o_{in} \) and \(o_{out} \) on all instances, finite and infinite, and where the function agrees with \(\mathcal{T} \). We can consider \(\text{Fun}_{\text{All}} \) as a class of transformations on all instances or of finite instances, but the class is defined by reference to all instances for \(o_{in} \). Expressed semantically

\[
\Sigma(o_{in}, o_{out}, \bar{a}) \wedge \Sigma(o_{in}, o'_{out}, \bar{a}') \models o'_{out} = o_{out}
\]

An equivalent characterization of \(\text{Fun}_{\text{All}} \) is proof-theoretic: these are the transformations such that there is a classical proof of functionality in a complete first-order proof system using some basic axioms about Ur-elements, products and projection functions, and the extensionality axiom for the membership relation. For example, it is easy to extend the intuitionistic proof system given in Section 4 to be complete for classical entailment.

Whether one thinks of \(\text{Fun}_{\text{All}} \) semantically or proof-theoretically, our results say that \(\text{Fun}_{\text{All}} \) is identical with the set of transformations given by NRC expressions. But the proof-theoretic perspective is crucial for the synthesis procedure.
It is natural to ask about the analogous class Fun_{Fin} of transformations \mathcal{T} over finite inputs for which there is a Δ_0 $\Sigma \mathcal{T}$ which is functional, when only finite inputs are considered, and where the corresponding function agrees with \mathcal{T}. It is well-known that Fun_{Fin} is not identical to NRC and is not so well-behaved. The transformation returning the powerset of a given input relation o_{in} is in Fun_{Fin}: the powerset of a finite input o_{in} is the unique collection o_{out} of subsets of o_{in} that contains the empty set and such that for each element e of o_{in}, if a set s is in o_{out} then $s - \{ e \}$ and $s \cup \{ e \}$ are in o_{out}. From this we can see that Fun_{Fin} contains transformations of high complexity. Indeed, even when considering transformations from flat relations to flat relations, Fun_{Fin} contains transformations whose membership in polynomial time would imply that UP $\cap \text{coUP}$, the class of problems such that both the problem and its complement can be solved by an unambiguous non-deterministic polynomial time machine, is identical to PTIME [Kolaitis 1990]. Most importantly for our goals, membership in Fun_{Fin} is not witnessed by proofs in any effective proof system, since this set is not computably enumerable.

Total versus partial functions. When we have a proof that $\Sigma(o_{in}, o_{out}, \bar{a})$ defines o_{out} as a function of o_{in}, the corresponding function may still be partial. Our procedure will synthesize an expression E defining a total function that agrees with the partial function defined by Σ. If \bar{a} is empty, we can also synthesize a Boolean NRC expression $\text{Verify}_{\text{InDomain}}$ that verifies whether a given o_{in} is in the domain of the function: that is whether there is o_{out} such that $\Sigma(o_{in}, o_{out})$ holds. $\text{Verify}_{\text{InDomain}}$ can be taken as:

$$\bigcup \{ \text{Verify}_\Sigma(o_{in}, e) \mid e \in \{ E(o_{in}) \} \}$$

where Verify_Σ is from Proposition 3.3.

Recall the second transformation from Example 1.2, where the domain of the function is the set of G such that the second component of each pair is never empty and the value of the second component is determined by the value of the first component. This property can clearly be described by a Δ_0 formula, and thus by Proposition 3.3 it can be verified in NRC.

When \bar{a} is not empty we cannot generate a domain check, since the auxiliary parameters might enforce some second-order property of o_{in}: for example $\Sigma(o_{in}, a, o)$ might state that a is a bijection from $\pi_1(o_{in})$ to $\pi_2(o_{in})$ and $o = o_{in}$. This clearly defines a functional relationship between i_0, i_1 and o, but the domain consists of i_0, i_1 that have the same cardinality, which cannot be expressed in first-order logic.

Organization of the proof of the theorem. Our proof of Theorem 6.1 will proceed first by some reductions (Subsection 6.1), showing that it suffices to prove a general result about implicit definability and definability by interpretations in multi-sorted first-order logic, rather than dealing with higher-order logic and Δ_0 formulas. In Subsection 6.2 we sketch the argument for this multi-sorted logic theorem.

6.1 Reduction to a characterization theorem in multi-sorted logic

The first step in the proof of Theorem 6.1 is to reduce to a more general statement relating implicit definitions in multi-sorted logic to interpretations. The first part of this reduction is to argue that we can suppress auxiliary parameters \bar{a} in implicit definitions:

Lemma 6.3. For any Δ_0 formula $\Sigma(o_{in}, o_{out}, \bar{a})$ that implicitly defines o_{out} as a function of o_{in}, there is another Δ_0 formula $\Sigma'(o_{in}, o_{out})$ which implicitly defines o_{out} as a function of o_{in}, such that $\Sigma(o_{in}, o_{out}, \bar{a}) \Rightarrow \Sigma'(o_{in}, o_{out})$.

The lemma is proven using two applications of classical Δ_0 interpolation.

Proposition 6.4. For any Δ_0 formulas φ and ψ such that $\varphi \models \psi$, there exists another Δ_0 formula θ such that $\varphi \models \theta$ and $\theta \models \psi$.

This proposition generalizes Proposition 4.6 since we allow classical validity for \(\varphi \models \psi \). That being said, we may prove Proposition 6.4 using similar tools, i.e., a complete cut-free sequent calculus for \(\Delta_0 \) formulas and a standard proof as in [Fitting 1996]. With Lemma 6.3 in hand, from this point on we assume that we do not have auxiliary parameters \(\vec{a} \) in our implicit definitions.

Reduction to Monadic schemas. A *monadic type* is a type built only using the atomic type \(\mathcal{U} \) and the type constructor \(\text{Set} \). To simplify notation we define \(\mathcal{U}_0 := \mathcal{U}, \mathcal{U}_1 := \text{Set}(\mathcal{U}_0), \ldots \mathcal{U}_{n+1} := \text{Set}(\mathcal{U}_n) \). A monadic type is thus a \(\mathcal{U}_n \) for some \(n \in \mathbb{N} \). A nested relational schema is monadic if it contains only monadic types, and a \(\Delta_0 \) formula is monadic if all of its variables have monadic types.

Restricting to monadic schemas simplifies the type system significantly and thus, certain arguments by induction. It turns out that by the usual “Kuratowski encoding” of pairs by sets, we can reduce all of our questions about implicit versus explicit definability to the case of monadic schemas. The following proposition implies that we can derive all of our main results for arbitrary schemas from their restriction to monadic formulas. We will thus restrict to monadic formulas for the remainder of the argument.

Proposition 6.5. For any nested relational schema \(\text{SCH} \), there is a monadic nested relational schema \(\text{SCH'} \), an injection \(\text{Convert} \) from instances of \(\text{SCH} \) to instances of \(\text{SCH'} \) that is definable in NRC, and an NRC \(\rho \text{Get} \) expression \(\text{Convert}^{-1} \) such that \(\text{Convert}^{-1} \circ \text{Convert} \) is the identity transformation from \(\text{SCH} \rightarrow \text{SCH} \).

Furthermore, there is a \(\Delta_0 \) formula \(\text{Im}_{\text{Convert}} \) from \(\text{SCH'} \) to \(\text{Bool} \) such that \(\text{Im}_{\text{Convert}}(i') \) holds if and only if \(i' = \text{Convert}(i) \) for some instance \(i \) of \(\text{SCH} \).

These translations can also be given in terms of \(\Delta_0 \) interpretations rather than NRC expressions.

Given Proposition 6.5 it suffices to consider only monadic nested relational schemas. Given a \(\Delta_0 \) implicit definition \(\Sigma(o_{in}, o_{out}) \) we can form a new definition that computes the composition of the following transformations: \(\text{Convert}^{-1}_{\text{SCH}_{in}} \), a projection onto the first component, the transformation defined by \(\Sigma \), and \(\text{Convert}_{\text{SCH}_{out}} \). Our new definition captures this composition by a formula \(\Sigma'(o'_{in}, o'_{out}) \) that defines \(o'_{out} \) as a function of \(o'_{in} \), where the formula is over a monadic schema. Assuming that we have proven the theorem in the monadic case, we would get an NRC expression \(E' \) from \(\text{SCH'}_{in} \) to \(\text{SCH'}_{out} \) agreeing with this formula on its domain. Now we can compose \(\text{Convert}_{\text{SCH}_{in}}, E', \text{Convert}^{-1}_{\text{SCH}_{out}} \), and the projection to get an NRC expression agreeing with the partial function defined by \(\Sigma(o_{in}, o_{out}) \) on its domain, as required.

Reduction to a result in multi-sorted logic. Now we are ready to give our last reduction, relating Theorem 6.1 to a general result concerning multi-sorted logic.

Let \(\text{SIG} \) be any multi-sorted signature, \(\text{Sort}_1 \) be its sorts and \(\text{Sort}_0 \) be a subset of \(\text{Sort}_1 \). We say that a relation \(R \) is *over* \(\text{Sort}_0 \) if all of its arguments are in \(\text{Sort}_0 \). Let \(\Sigma \) be a set of sentences in \(\text{SIG} \). Given a model \(M \) for \(\text{SIG} \), let \(\text{Sort}_0(M) \) be the union of the domains of relations over \(\text{Sort}_0 \), and let \(\text{Sort}_1(M) \) be defined similarly.

We say that \(\text{Sort}_1 \) is *implicitly interpretable* over \(\text{Sort}_0 \) relative to \(\Sigma \) if:

For any models \(M_1 \) and \(M_2 \) of \(\Sigma \), if there is a mapping \(m \) from \(\text{Sort}_0(M_1) \) to \(\text{Sort}_0(M_2) \) that preserves all relations over \(\text{Sort}_0 \), then \(m \) extends to a unique mapping from \(\text{Sort}_1(M_1) \) to \(\text{Sort}_1(M_2) \) which preserves all relations over \(\text{Sort}_1 \).

Informally, implicit interpretability states that the sorts in \(\text{Sort}_1 \) are semantically determined by the sorts in \(\text{Sort}_0 \). The property implies in particular that if \(M_1 \) and \(M_2 \) agree on the interpretation of sorts in \(\text{Sort}_0 \), then the identity mapping on sorts in \(\text{Sort}_0 \) extends to a mapping that preserves sorts in \(\text{Sort}_1 \).
We relate this semantic property to a syntactic one. We say that \(\text{Sorts}_1 \) is \textit{explicitly interpretable} over \(\text{Sorts}_0 \) relative to \(\Sigma \) if for all \(S \) in \(\text{Sorts}_1 \) there is a formula \(\psi_S(x, y) \) where \(x \) are variables with sorts in \(\text{Sorts}_0 \), \(y \) a variable of sort \(\text{Sorts}_1 \), such that:

- In any model \(M \) of \(\Sigma \), \(\psi_S \) defines a partial function \(F_S \) mapping \(\text{Sorts}_0 \) tuples on to \(S \).
- For every relation \(R \) of arity \(n \) over \(\text{Sorts}_1 \), there is a formula \(\psi_R(\vec{x}_1, \ldots, \vec{x}_n) \) using only relations over \(\text{Sorts}_0 \) and only quantification over \(\text{Sorts}_0 \) such that in any model \(M \) of \(\Sigma \), the pre-image of \(R \) under the mappings \(F_S \) for the different arguments of \(R \) is defined by \(\psi_R(\vec{x}_1, \ldots, \vec{x}_n) \).

Explicit interpretability states that there is an interpretation in the sense of the previous section that produces the structure in \(\text{Sorts}_1 \) from the structure in \(\text{Sorts}_0 \), and in addition there is a definable relationship between an element \(e \) of a sort in \(\text{Sorts}_1 \) and the tuple that codes \(e \) in the interpretation. Note that \(\psi_S \), the mapping between the elements \(y \) in \(S \) and the tuples in \(\text{Sorts}_0 \) that interpret them, can use arbitrary relations. The key property is that when we pull a relation \(R \) over \(\text{Sorts}_1 \) back using the mappings \(\psi_S \), then we obtain something definable using \(\text{Sorts}_0 \).

With these definitions in hand, we are ready to state a result in multi-sorted logic which allows us to generate interpretations from classical proofs of functionality:

\textbf{Theorem 6.6.} \textit{For any} \(\Sigma, \text{Sorts}_0, \text{Sorts}_1 \) \textit{such that} \(\Sigma \) \textit{entails that a sort of} \(\text{Sorts}_0 \) \textit{has at least two elements,} \(\text{Sorts}_1 \) \textit{is explicitly interpretable over} \(\text{Sorts}_0 \) \textit{if and only if it is implicitly interpretable over} \(\text{Sorts}_0 \).

This can be thought of as an analog of Beth’s theorem [Beth 1953; Craig 1957] for multi-sorted logic. The proof is sketched in the next subsection. For now we explain how it implies Theorem 6.1.

In this explanation we assume a monadic schema for both input and output. Thus every element \(e \) of the input sorts lie underneath \(o \) of them. We refer to these as \textit{input sorts}. \(U \) is the identity on \(\text{Sorts}_0 \). Further, any isomorphism of \(\text{Sorts}_1 \) \((M) \) on to \(\text{Sorts}_1 \) \((M') \) that is the identity on \(U \) must be equal to \(m \): one can show this by induction on the depth \(i \) using the fact that \(\Sigma^* \) includes the extensionality axiom.
From this, we see that the output sorts are implicitly interpretable over the input sorts relative to Σ^*. Using Theorem 6.6, we conclude that the output sorts are explicitly interpretable in the input sorts relative to Σ^*. Applying the conclusion to the formula $x = x$, where x is a variable of a sort corresponding to object type T of the output, we obtain a first-order formula $\varphi^T_{\text{Domain}}(\bar{x})$ over the input sorts. Applying the conclusion to the formula $x = y$ for x, y variables corresponding to the object type T we get a formula $\varphi_{\text{cover}}(\bar{x}, \bar{x}')$ over the input sorts. Finally applying the conclusion to the element relation e_T at every level of the output, we get a first-order formula $\varphi_{e_T}(\bar{x}, \bar{x}')$ over the input sorts. Because Σ^* asserts that each element of the input sorts lies beneath a constant for o_{in}, we can convert all quantifiers to bind only beneath o_{in}, giving us Δ_0 formulas. It is easy to verify that these formulas give us the desired interpretation. This completes the proof of Theorem 6.1, assuming Theorem 6.6.

6.2 Proof of the multi-sorted logic result

In the previous subsection we reduced our goal result about generating interpretations from proofs to a result in multi-sorted first-order logic, Theorem 6.6. We will sketch the proof of Theorem 6.6. The direction from explicit interpretability to implicit interpretability is straightforward, so we will be interested only in the direction from implicit to explicit. Although the theorem appears to be new, each of the components is a variant of arguments that already appear in the model theory literature.

In the body of the paper we make use of only quite basic results from model theory:

- the **compactness theorem** for first-order logic, which states that for any theory Γ, if every finite subcollection of Γ is satisfiable, then Γ is satisfiable;
- the **downward Lowenheim-Skolem theorem**, which states that if Γ is countable and has a model, then it has a countable model;
- the **omitting types theorem** for first-order logic. A first-order theory Σ is said to be **complete** if for every other first-order sentence φ in the vocabulary of Σ, either φ or $\neg\varphi$ is entailed by Σ. Given a set of constants B, a **type** over B is an infinite collection $\tau(\bar{x})$ of formulas using variables \bar{x} and constants from B. A type is **complete** with respect to a theory Σ if every first-order formula with variables in \bar{x} and constants from B is either entailed or contradicted by $\tau(\bar{x})$ and Σ. A type τ is said to be **realized** in a model M if there is a \bar{x}_0 in M satisfying all formulas in τ. τ is **non-principal** (with respect to a first-order theory Σ) if there is no formula $\gamma_0(\bar{x})$ such that $\Sigma \land \gamma_0(\bar{x})$ entails all of $\tau(\bar{x})$. The version of the omitting types theorem that we will use states that:

 if we have a countable set Γ of complete types that are all non-principal relative to a complete theory Σ, there is some model M of Σ in which none of the types in Γ are realized.

Each of these results follows from a standard model construction technique [Hodges 1993].

We can easily show that to prove the multi-sorted result, it suffices to consider Σ that is a complete theory.

Proposition 6.7. Theorem 6.6 follows from its restriction to Σ a complete theory.

Recall that our assumption is that Σ yields a function from o_{in} to o_{out}. Our next step will be to show that the output of this function is always "sub-definable"; each element in the output is definable from the input if we allow ourselves to guess some parameters. For example, consider the grouping transformation mentioned in Example 1.2 and Example 3.2. Each output is obtained from grouping input relation F over some Ur-element a. So each member of the output is definable from the input constant F and a "guessed" input element a. We will show that this is true in general.

Given a model M of Σ and $\bar{x}_0 \in \text{Sorts}_1$ within M, the **type of \bar{x}_0 with parameters from Sorts_0** is the set of all formulas satisfied by \bar{x}_0, using any sorts and relations but only constants from Sorts_0.

A type \(p \) is isolated over \(\text{Sorts}_0 \) if there is a formula \(\varphi(x, \bar{a}) \) with parameters \(\bar{a} \) from \(\text{Sorts}_0 \) such that \(M \models \varphi(x, \bar{a}) \rightarrow \gamma(x) \) for each \(\gamma \in p \). The following is a step towards showing that elements in the output are well-behaved:

LEMMA 6.8. Suppose \(\text{Sorts}_1 \) is implicitly interpretable over \(S_0 \) with respect to \(\Sigma \). Then in any model \(M \) of \(\Sigma \) the type of any \(\bar{b} \) over \(\text{Sorts}_1 \) with parameters from \(\text{Sorts}_0 \) is isolated over \(\text{Sorts}_0 \).

Proof. Fix a counterexample \(\bar{b} \), and let \(\Gamma \) be the set of formulas in \(\text{Sorts}_1 \) with constants from \(\text{Sorts}_0 \) satisfied by \(\bar{b} \) in \(M \). We claim that there is a model \(M' \) with \(\text{Sorts}_0(M') \) identical to \(\text{Sorts}_0(M) \) where there is no tuple satisfying \(\Gamma \). This follows from the failure of isolation and the omitting types theorem.

Now we have a contradiction of implicit interpretability, since the identity mapping on \(\text{Sorts}_0 \) cannot extend to an isomorphism of relations over \(\text{Sorts}_1 \) from \(M \) to \(M' \).

The next step is to argue that every element of \(\text{Sorts}_1 \) is definable by a formula using parameters from \(\text{Sorts}_0 \).

LEMMA 6.9. Assume implicit interpretability of \(\text{Sorts}_1 \) over \(\text{Sorts}_0 \) relative to \(\Sigma \). In any model \(M \) of \(\Sigma \), for every element \(e \) of a sort \(S_1 \) in \(\text{Sorts}_1 \), there is a first-order formula \(\psi_e(\bar{y}, x) \) with variables \(\bar{y} \) having sort in \(\text{Sorts}_0 \) and \(x \) a variable of sort \(S_1 \), along with a tuple \(\bar{a} \) in \(\text{Sorts}_0(M) \) such that \(\psi_e(\bar{a}, x) \) is satisfied only by \(e \) in \(M \).

Proof. Since a counterexample involves only formulas in a countable language, by the Lowenheim-Skolem theorem mentioned above, it is enough to consider the case where \(M \) is countable. By Lemma 6.8, the type of every \(e \) is isolated by a formula \(\varphi(x, \bar{a}) \) with parameters from \(\text{Sorts}_0 \) and relations from \(\text{Sorts}_1 \). We claim that \(\varphi \) defines \(e \): that is, \(e \) is the only satisfier. If not, then there is \(e' \neq e \) that satisfies \(\varphi \). Consider the relation \(\bar{c} \equiv \bar{c}' \) holding if \(\bar{c} \) and \(\bar{c}' \) satisfy all the same formulas using relations and variables from \(\text{Sorts}_1 \) and parameters from \(\text{Sorts}_0 \). Isolation implies that \(e \equiv e' \). Further, isolation of types shows that \(\equiv \) has the “back-and-forth property” given \(\bar{d} \equiv \bar{d}' \), and \(\bar{e} \) we can obtain \(\bar{c}' \) with \(\bar{d} \bar{c} \equiv \bar{d}' \bar{c}' \). To see this, fix \(\bar{d} \equiv \bar{d}' \) and consider \(\bar{c} \). We have \(\gamma(x, \bar{y}, \bar{a}) \) isolating the type of \(\bar{d}, \bar{c} \), and further \(\bar{d} \) satisfies \(\exists \bar{y} \gamma(x, \bar{y}, \bar{a}) \) and thus so does \(\bar{d}' \) with witness \(\bar{c}' \). But then using \(\bar{d} \equiv \bar{d}' \) again we see that \(\bar{d}, \bar{c} \equiv \bar{d}', \bar{c}' \). Using countability of \(M \) and this property we can inductively create a mapping on \(M \) fixing \(\text{Sorts}_0 \) pointwise, preserving all relations in \(\text{Sorts}_1 \), and taking \(\bar{b} \) to \(\bar{b}' \). But this contradicts implicit interpretability.

LEMMA 6.10. The formula in Lemma 6.9 can be taken to depend only on the sort \(S \).

Proof. Consider the type over the single variable \(x \) in \(S \) consisting of the formulas \(\neg \delta_{\varphi}(x) \), taking \(\delta_{\varphi}(x) \) to be defined as

\[
\exists \bar{b} \ [\ \varphi(\bar{b}, x) \land \forall x' \ (\varphi(\bar{b}, x') \Rightarrow x' = x)]
\]

where the tuple \(\bar{b} \) ranges over \(\text{Sorts}_0 \). By Lemma 6.9, this type cannot be satisfied in a model of \(\Sigma \). Since it is unsatisfiable, by compactness, there are finitely many formulas \(\varphi_1(\bar{b}, x), \ldots, \varphi_n(\bar{b}, x) \) such that \(\forall x \ \bigvee_{i=1}^n \varphi_i(x) \) is satisfied. Therefore, each \(\varphi_i(\bar{b}, x) \) defines a partial function from tuples of \(S_0 \) to \(S \) and every element of \(S \) is covered by one of the \(\varphi_i \). Recall that we assumed that \(\Sigma \) enforces that \(\text{Sorts}_0 \) has a sort with at least two elements. Thus we can combine the \(\varphi_i(\bar{b}, x) \) into a single formula \(\psi(\bar{b}, \bar{c}, x) \) defining a surjective partial function from \(S_0 \) to \(S \) where \(\bar{c} \) is an additional parameter in \(\text{Sorts}_0 \) selecting some \(i \leq n \).
We now need to go from the “sub-definability” or “element-wise definability” result above to an interpretation. Consider the formulas ψ_S produced by Lemma 6.10. For a relation R of arity n over $Sorts_1$, where the i^{th} argument has sort S_i, consider the formula

$$\psi_R(\bar{x}_1 \ldots \bar{x}_n) = \exists y_1 \ldots y_n \ R(y_1 \ldots y_n) \land \bigwedge_i \psi_{S_i}(\bar{x}_i, y_i)$$

where \bar{x}_i is a tuple of variables of sorts in $Sorts_0$. The formulas ψ_S for each sort S and the formulas ψ_R for each relation R are as required by the definition of explicitly interpretable, except that they may use quantified variables and relations of $Sorts_1$, while we only want to use variables and relations from $Sorts_0$. We take care of this in the following lemma, which says that formulas over $Sorts_1$ do not allow us to define any more subsets of $Sorts_0$ than we can with formulas over $Sorts_0$.

Lemma 6.11. Under the assumption of implicit interpretability, for every formula $\varphi(\bar{x})$ over $Sorts_1$ with \bar{x} variables of sort in $Sorts_0$ there is a formula $\varphi(\bar{x})$ over $Sorts_0$ – that is, containing only variables, constants, and relations from $Sorts_0$ – such that for every model M of Σ,

$$M \models \forall \bar{x} \varphi(\bar{x}) \leftrightarrow \varphi(\bar{x})$$

Proof. Assume not, with φ as a counterexample. By the compactness and Lowenheim-Skolem theorems, we know that there is a countable model M of Σ containing \bar{c}, \bar{c}' that agree on all formulas in $Sorts_0$ but that disagree on φ. As in Lemma 6.9, we can obtain a mapping on M preserving $Sorts_0$ but sending \bar{c} to \bar{c}'. This contradicts implicit interpretability, since the mapping cannot be extended. \square

Above we obtained the formulas ψ_R for each relation symbol R needed for an explicit interpretation. We can obtain formulas defining the necessary equivalence relations ψ_{\equiv} and ψ_{Domain} easily from these. Thus, putting Lemmas 6.9, 6.10, and 6.11 together yields a proof of Theorem 6.6.

6.3 Putting it all together

We summarize our results on extracting NRC[Get] expressions from classical proofs of functionality. We have shown in Subsection 6.1 how to convert the problem to one with no extra variables other than input and output and with only monadic schemas – and thus no use of products or tupling. We also showed how to convert the resulting formula into a theory in multi-sorted first-order logic. That is, we no longer need to talk about Δ_0 formulas.

In Subsection 6.2 we showed that from a theory in multi-sorted first-order logic we can obtain an interpretation. This first-order interpretation in a multi-sorted logic can then be converted back to a Δ_0 interpretation, since the background theory forces each of the input sorts in the multi-sorted structure to correspond to a level of nesting below one of the constants corresponding to an input object. Finally, the results of Section 5 allow us to convert this interpretation to an NRC[Get] expression. With the exception of the result in multi-sorted logic, all of the constructions are effective. Further, these effective conversions are all in polynomial time except for the transformation from an interpretation to an NRC[Get] expression, which is exponential time in the worst case. Outside of the multi-sorted result, which makes use of infinitary methods, the conversions are each sound when equivalence over finite input structures is considered as well as the default case when arbitrary inputs are considered. As explained in Subsection 6.1, when equivalence over finite inputs is considered, we cannot hope to get a synthesis result of this kind.

7 CONCLUSION

We have provided a method taking a proof that a logical formula defines a functional transformation and generating an expression in a functional transformation language that implements it. In the
process we provide a more general synthesis procedure (Lemma 4.7) that can generate expressions interpolating between variables whenever there is a provable containment. This connection between provably functional formulas and the functional transformation language NRC studied in data management and programming languages is, to our knowledge, new and non-trivial.

We are currently working on an implementation of our effective synthesis result in the COQ proof assistant [Coq 2020]. This involves formalizing the proof calculus, the semantics of Δ_0 formulas, the syntax and semantics of NRC, in COQ, as well as the synthesis algorithm. In addition to giving us a verified proof, we will gain the ability to create proofs of functionality within a COQ session, allowing us to build up tactics and definitions on top of the basic rules of the proof calculus.

An open issue is to make the classical interpolation result effective. There is an obvious extension of our proof system that gains completeness for classical logic: we allow multiple disjuncts in the consequence, and revise the rules in the obvious way. For instance, the rule $\in \text{Set}(T) - R$ would become

$$\in \text{Set}(T) - R \Theta, t \in \text{Set}(T) \upsilon; \Gamma \vdash t = \text{Set}(T) u, t_1 \in T_1 u_1, \ldots, t_k \in T_k u_k$$

Theorem 6.1 shows that when we have a proof in such a system we can create an NRC definition, and we conjecture that it is possible to do this efficiently. In fact, we can also show that the higher-type interpolation lemma, Lemma 4.7, holds for classical entailment. Although our proof of Lemma 4.7 is via induction on proofs, the extension for classical entailment can be done using model-theoretic techniques, in particular a dichotomy theorem for automorphisms stemming from work of Makkai [Makkai 1964]. We are investigating an extension of our proof system that will allow us to lift our current inductive argument for Lemma 4.7 to the classical setting. We conjecture that it will lead us to an efficient procedure for extracting NRC terms from classical functionality proofs, thereby simultaneously generalizing Theorem 4.2 and Theorem 6.1.

In addition to the application areas exhibited in Examples 4.4 and 4.5, we think that procedures for generating implementations in functional languages from implicit definitions should have other applications in programming languages and verification. For example they could be relevant for generating programs transforming structured data in the context of more specialized input structures, such as strings and trees [Bojanczyk et al. 2018].

We focused here on a stripped-down setting where at the base level we have no additional structure, but many of our results (e.g. Theorem 6.1) generalize in the presence of additional axiomatizable structure on the base set. Another important direction is to generalize the algorithmic development (e.g. Theorem 4.2) to incorporate specialized decision procedures available on this additional structure.

Acknowledgements: We are very grateful to Szymon Toruńczyk, who outlined a route to show that implicitly definable transformations over nested relations can be defined via interpretations, in the process conjecturing a more general result concerning definability in multi-sorted logic. Szymon also helped in simplifying the mapping of NRC expressions to interpretations, a basic component in one of our characterizations. We also thank Ehud Hrushovski, who sketched a proof of the Beth-style result for multi-sorted logic that serves as another component. His proof proceeds along very similar lines to the one we present in the appendix of this submission, but making use of a prior Beth-style result in classical model theory [Makkai 1964].

REFERENCES

Supplementary Material for “Generating collection transformations from proofs”

MICHAEL BENEDIKT, Oxford University, United Kingdom
PIERRE PRADIC, Oxford University, United Kingdom

Additional Key Words and Phrases: nested collections, synthesis, proofs

1 PROOFS FOR SECTION 3

1.1 Proof that we can obtain NRC expressions that verify Δ_0 formulas

Recall that in the body of the paper, we claimed the following statement, concerning the equivalence of NRC expressions of Boolean type and Δ_0 formulas:

There is a polynomial time function taking a Δ_0 formula $\varphi(\vec{x})$ and producing an NRC expression $\text{Verify}_\varphi(\vec{x})$, where the expression takes as input \vec{x} and returns true if and only if φ holds.

We refer to this as the “Verification Proposition” later on in these supplementary materials.

Proof. First, one should note that every term in the logic can be translated to a suitable NRC expression of the same sort. For example, a variable in the logic corresponds to a variable in NRC.

We prove the proposition by induction over the formula $\varphi(\vec{x})$.

\bullet If $\varphi(\vec{x})$ is an equality $t = t'$ or a membership $t \in t'$, it is straightforward to write out NRC expressions that verify them by simultaneous induction on the type. For equality, the expression verifies two containments, with a containment $t \subseteq t'$ verified as $\{x \in t \mid E'(x, t')\}$, where $E'(x, t')$ is the expression obtained for membership inductively.

\bullet If $\varphi(\vec{x})$ is a disjunction $\varphi_1(\vec{x}) \lor \varphi_2(\vec{x})$, we take $\text{Verify}_\varphi(\vec{x}) = \text{Verify}_{\varphi_1} \cup \text{Verify}_{\varphi_2}$. We proceed similarly for disjunction thanks to \cap.

\bullet If $\varphi(\vec{x})$ is a negation, we use the definability of negation in NRC.

\bullet If $\varphi(\vec{x})$ begins with a bounded existential quantification $\exists z \in y \, \psi(\vec{x}, y, z)$, we simply set $\text{Verify}_\varphi(\vec{x}, y) = \cup \{\text{Verify}_{\psi(\vec{x}, y, z)} \mid z \in y\}$. Universal quantification is then treated similarly by using negation in NRC.

\[\square \]

Note that the converse (without the polynomial time bound) also holds; this will follow from the more general result on moving from NRC to interpretations that is proven later in the supplementary materials.

Authors’ addresses: Michael Benedikt, Computer science department, Oxford University, United Kingdom; Pierre Pradic, Computer science department, Oxford University, United Kingdom, pierre.pradic@cs.ox.ac.uk.

2021. 2475-1421/2021/1-ART1 $15.00
https://doi.org/
2 PROOFS FOR SECTION 4: PROPERTIES OF THE PROOF SYSTEM, DETAILS OF THE SYNTHESIS RESULTS

2.1 Strength of the proof system

In the body of the paper we claimed that although our proof system does not derive every classically valid Δ₀ sequent, we can show that it derives all sequents of the shape we consider that are constructively derivable in the sense of intuitionistic logic. In this subsection we present variants of prior intuitionistic calculi formally, and detail the argument for their equivalence with our system.

![Fig. 1. The intuitionistic sequent calculus (LJ) for multi-sorted first-order logic with equality and pairs](image-url)

Let us first recall the syntax of multi-sorted first-order logic, with equality at every sort and a predicate \(-\in T\) for every sort \(T\) representing membership.

\[
\varphi, \psi ::= t \in T \mid t =_T u \mid \top \mid \bot \mid \varphi \land \psi \mid \varphi \lor \psi \mid \varphi \Rightarrow \psi \mid \forall x^T \varphi \mid \exists x^T \varphi
\]

We will deal with the case where the terms are built up using Ur-element constants, the unit constant, the pairing function and the projection functions. The intuitionistic sequent calculus we adopt for first-order logic with equality, projection, and pairing is shown in Figure 1, with
the structural rules (weakening and contraction) omitted. It is a straightforward extension of the textbook definition of the sequent calculus LJ for intuitionistic first-order logic (see e.g. [Sørensen and Urzyczyn 2006, Sections 7.2 and 9.3] and [Troelstra and Schwichtenberg 2000, Chapter 3]) due to Gentzen [Gentzen 1935] to accommodate our typing discipline and additional rules concerning equalities, projection and pairing. The main technical distinction between LJ and the sequent calculus for classical logic LK is that there is a single conclusion formula on the right, rather than a list of formulas. This prevents one from deriving the law of excluded middle \(\top \lor \neg \varphi \) for arbitrary \(\varphi \) in LJ. Note that this does not imply that the calculus is incomplete for (translations of) the restricted sequents that we deal with in our calculus.

The extensions of LJ to accommodate typed terms, equality, and the projection and pairing functions are straightforward. Although we are not aware of a source describing exactly the proof system above, [Jacobs 2001, Chapter 4] describes an equivalent system based on natural deduction and [Troelstra and Schwichtenberg 2000, Section 4.7] extends LJ with rules for equality without types.

In this section, we define a translation of the sequents \(\Theta; \Gamma \vdash \varphi \) of our restricted proof system into sequents \(\tilde{\Theta}, \tilde{\Gamma} \vdash \tilde{\varphi} \) of the calculus displayed in Figure 1, which we refer to as LJ from now on.

As is customary for two-sided sequent calculi, rules introducing logical connectives can be split into left-hand side and right-hand side rules. We make this distinction in our naming conventions, using L and R in rule names to indicate left and right rules. Informally speaking, a rule is left if the right-hand side formula stays the same in the premises and the conclusion and the corresponding connective occurs in the left-hand side of the conclusion. Right rules can be similarly characterized. Some rules are neither right nor left. For LJ, these would be the axiom rule AX and the rules \(\times_\eta, \times_\beta \) and Unit_\eta.

Translation to LJ sequents. We will need to perform some translations from the membership contexts and \(\Delta_0 \) formulas used in our context to the multi-sorted first-order formulas used in LJ. \(\Delta_0 \) formulas \(\varphi \) as defined in the paper can be regarded as a particular case of general formulas with an abbreviated syntax. Formally, for each \(\Delta_0 \) formula \(\varphi \) we have a corresponding first-order formula \(\varphi^* \) defined in the usual way

\[
\begin{align*}
(t =_T u)^* &::= t =_T u \\
T^* &::= T \\
(\varphi \land \psi)^* &::= \varphi^* \land \psi^* \\
(\forall x \in_T t \varphi)^* &::= \forall x^T (x \in_T \varphi^*) \\
(\exists x \in_T \varphi)^* &::= \exists x^T (x \in_T \varphi^*)
\end{align*}
\]

Recall that sequents in our restricted system are of the shape \(\Theta; \Gamma \vdash \psi \) where \(\Theta \) is a multiset of pairs of formulas \(t \in_T \), \(\Gamma \) a list of \(\Delta_0 \) formulas and \(\psi \) a special right-hand side formula of shape either \(t \in_T u \), \(t \subseteq_T u \) or \(t =_T u \). Given such contexts, we write \(\tilde{\Gamma} \) for the multiset of formulas \(\{ \varphi^* \mid \varphi \in \Gamma \} \) and \(\tilde{\Theta} \) for the multiset \(\{ t \in_T u \mid (t \in_T u) \in \Theta \} \). As for right-hand side formulas \(\psi \), we define the notation \(\tilde{\psi} \) by recursion on the type of the main connective of \(\psi \) as follows:

\[
\begin{align*}
t \tilde{\in}_T &::= \exists z' (z' \in u \land t \equiv_T z') \\
t \tilde{\subseteq}_T &::= t \subseteq_T u \land u \subseteq_T t \\
t \tilde{\equiv}_T &::= t \equiv_T u \\
t \tilde{\equiv}_{\text{Set}(T)} &::= \exists z' (z' \in u \land t \equiv_T z') \\
t \tilde{\equiv}_{\text{Unit}} &::= T
\end{align*}
\]

Translating proofs to LJ. We are now ready to state the first direction concerning the equivalence between LJ and our proof system.

Lemma 2.1. If \(\Theta; \Gamma \vdash \varphi \) is derivable in our restricted system, then LJ derives \(\tilde{\Theta}, \tilde{\Gamma} \vdash \tilde{\varphi} \).
Towards a proof of Lemma 2.1, first notice that for every rule
\[
\Theta; \Gamma \vdash \psi \\
\Theta'; \Gamma' \vdash \psi'
\]
of our restricted system, the rule
\[
\Theta, \Gamma \vdash \psi \\
\Theta', \Gamma' \vdash \psi'
\]
is easily seen to be admissible in LJ, save for one:
\[
\Theta, t \in \mathcal{U} z; \Gamma \vdash u \in \mathcal{U} z \quad z \notin \text{FV}(\Theta, \Gamma, t, u)
\]
It is helpful to treat the sequents of the type
\[
\Theta, t \in \mathcal{U} z; \Gamma \vdash u \in \mathcal{U} z \quad z \notin \text{FV}(\Theta, \Gamma, t, u)
\]
as a special case.

Proposition 2.2. For every contexts Θ, Γ and terms t and u of type \mathcal{U} whose free variables do not include z, if the sequent $\Theta, t \in \mathcal{U} z; \Gamma \vdash u \in \mathcal{U} z$ is derivable in the restricted system, then LJ derives $\Theta, \Gamma \vdash t =_{\mathcal{U}} u$.

Proof. The proof goes by induction on the proof in the restricted system. For most cases, the induction hypothesis is used in a very simple way. We focus on one representative subcase.

- If the last rule applied is a \forall rule, with $\Gamma = \Gamma'$, $\forall x \in \mathcal{T} y \varphi$
\[
\Theta, t \in \mathcal{U} z; \Gamma', \varphi[v/x] \vdash u \in \mathcal{U} z
\]
then we must have $v \in \mathcal{T} y$ occurring in $\Theta, t \in \mathcal{U} z$. By assumption, z does not occur freely in Θ, so we have necessarily that v does not have z as a free variable. Therefore z does not occur free in either Θ, Γ' or $\varphi[v/x]$, so we can conclude by applying the inductive hypothesis and using the rule \forall-L of LJ.

\[
\Theta, t \in \mathcal{U} z, \Gamma', \varphi^*[v/x] \vdash t =_{\mathcal{U}} u
\]

\[
\Theta, t \in \mathcal{U} z, \Gamma', v \in \mathcal{T} y \varphi + u \in \mathcal{U} z
\]

\[
\Theta, t \in \mathcal{U} z, \Gamma', (\forall x \in \mathcal{T} y \varphi)^* \vdash t =_{\mathcal{U}} u
\]

\[\square\]

Proof of Lemma 2.1. The proof goes by induction over the proof of $\Theta; \Gamma \vdash \psi$ in the restricted system. Now that we have proven Proposition 2.2, all the cases are straightforward. We only outline a few.

- If the last rule applied is $=_{\mathcal{U}}$-R
\[
\Theta, t \in \mathcal{U} z; \Gamma \vdash u \in \mathcal{U} z \quad z \notin \text{FV}(\Theta, \Gamma, t, u)
\]
then we may use the induction hypothesis together with Proposition 2.2.

- If the last rule applied is $\in_{\mathcal{Set}}$-R
\[
\Theta, t \in \mathcal{T} u; \Gamma \vdash t =_{\mathcal{T}} t'
\]
\[
\Theta, t \in \mathcal{T} u; \Gamma \vdash t' \in \mathcal{T} u
\]
recalling that \(t' \in_T u \) is defined as \(\exists x \, (x \in_T u \land x \equiv_T t') \), we give the following derivation in \(\text{LJ} \)

\[
\frac{\forall-LBV}{\forall-LBV} \quad \frac{\exists-LBV}{\exists-LBV} \quad \frac{\exists-RBV}{\exists-RBV} \quad \frac{\forall-RBV}{\forall-RBV}
\]

\[
\Theta, \, t \in_T u, \, \Gamma \vdash t \equiv_T t' \\
\Theta, \, t \in_T u, \, \Gamma \vdash t \equiv_T t' \\
\Theta, \, t \in_T u, \, \Gamma \vdash t \equiv_T t' \\
\Theta, \, t \in_T u, \, \Gamma \vdash t' \equiv_T u
\]

From LJ to our restricted calculus. Now, we prove the converse of Lemma 2.1.

Lemma 2.3. If the sequent \(\Theta, \, \Gamma \vdash \psi \) is derivable in \(\text{LJ} \), then \(\Theta; \, \Gamma \vdash \psi \) is derivable in the restricted system.

This direction is harder to prove than Lemma 2.1, so we will decompose this result in multiple steps:

1. First, we note that we have the subformula property for \(\text{LJ} \): any formula \(\varphi \) occurring in a \(\text{LJ} \)-proof tree is necessarily a subformula of some formula occurring at the root, up to substitution of terms. This allows us to distinguish a special class of formulas which we call \(\text{subA}_0 \) formulas and consider \(\text{LJ} \) sequents containing only such formulas.

2. For sequents containing only \(\text{subA}_0 \) formulas, we note that if we replace the rules \(\exists-L, \forall-L, \exists-R \) and \(\forall-R \) by the bounded variants

 \[
 \begin{align*}
 &\forall-LBV \quad \frac{\forall-LBV}{\forall-LBV} \quad \frac{\exists-LBV}{\exists-LBV} \quad \frac{\exists-RBV}{\exists-RBV} \quad \frac{\forall-RBV}{\forall-RBV} \\
 &\Gamma, \, t \in u, \, \forall x \, (x \in u \Rightarrow \varphi) \vdash \psi \\
 &\Gamma, \, t \in u, \, \forall x \, (x \in u \Rightarrow \varphi) \vdash \psi \\
 &\Gamma, \, \exists x \, (x \in u \land \varphi) \vdash \psi \\
 &\Gamma, \, \exists x \, (x \in u \land \varphi) \vdash \psi \\
 &\Gamma, \, \forall z \, (z \in u \Rightarrow \varphi) \vdash \psi \\
 &\Gamma, \, \forall z \, (z \in u \Rightarrow \varphi) \vdash \psi \\
 &\Gamma, \, t \in y \vdash \varphi \land \varphi' \\
 &\Gamma, \, t \in y \vdash \varphi \land \varphi' \\
 &\Gamma, \, \exists x \, (x \in y \land \varphi) \vdash \psi \\
 &\Gamma, \, \exists x \, (x \in y \land \varphi) \vdash \psi \\
 \end{align*}
 \]

 while deriving the same sequents as \(\text{LJ} \), while retaining the constraint that the right-hand side formula be neither a conjunct, universal quantification or implication when left-hand side rules are applied. We will call the corresponding system \(\text{LJBoundVarQ} \).

3. Then, we note that \(\text{LJBoundVarQ} \) is equivalent to its restriction where left rules cannot be applied if the right-hand side formula under consideration is a conjunction, an implication or a universal quantification.

4. Finally, the translation can go by induction on such restricted proofs.

We now go through these steps in more detail.

Step 1. That \(\text{LJ} \) has the subformula property is obvious from inspection of the proof rules. We identify the set of subformulas of (translation of) \(\text{A}_0 \) formulas, that we call \(\text{subA}_0 \) formulas.

Definition 2.4. A \(\text{subA}_0 \) formula is a formula of \(\text{LJ} \) which is either of the shape \(t \in_T u \), \(t \in_T u \land \varphi' \), \(t \in_T u \Rightarrow \varphi'' \), where \(\varphi' \) is a \(\text{A}_0 \) formula.

From now on, we will suppose that all sequents under consideration exclusively contain \(\text{subA}_0 \) formulas. We call \(\text{LJA}_0 \) the subsystem of \(\text{LJ} \) where all sequents contain exclusively \(\text{subA}_0 \) formulas.

Step 2. Now we need to show that replacing the rules \(Q-D \) by their counterpart \(Q-DBV \), with \(Q \in \{\forall, \exists\} \) and \(D \in \{L, R\} \) does not limit \(\text{LJ} \)’s power, as far as \(\text{subA}_0 \) formulas are concerned. It is actually more convenient to do this in multiple steps, which are all proven by straightforward (if lengthy) induction on the proofs. To this end, we consider the following three set of rules.
we want to show that \(\Gamma \vdash t \in u \) and \(\Gamma \vdash \varphi \). To this end, we make a case analysis according to the last rule applied to derive \(\Gamma \vdash t \in u \). As they are many cases, we only outline a few representative ones. Most cases are easy because it cannot be the case that a right-hand side rule of LJBoundedConn may be applied, since \(t \in u \) is an atomic formula.

- If the last rule applied was an axiom, this means that \(t \in u \) was part of \(\Gamma \). In this case

\[
\Gamma \vdash \varphi \\
\Gamma \vdash t \in u \\
\Gamma \vdash t \in u \land \varphi
\]

is an instance of \(\land \text{-RB} \), the designated replacement of \(\land \text{-R} \).

and the corresponding proof systems:

- We call LJBoundedConn the system \(LJ\Lambda_0 \) with the addition of the rules \(\Rightarrow \text{-LB} \) and \(\land \text{-RB} \) but omitting the rules \(\Rightarrow \text{-L} \) and the following instances of \(\land \text{-R} \):

\[
\begin{align*}
\Gamma &\vdash t \in u \\
\Gamma &\vdash \varphi \\
\Gamma &\vdash t \in u \land \varphi
\end{align*}
\]

- We call LJBoundedQ, the system LJBoundedConn with the addition of the rules \(\forall \text{-LB} \), \(\forall \text{-RB} \), \(\exists \text{-LB} \) and \(\exists \text{-RB} \), but omitting the rules \(\forall \text{-L} \), \(\forall \text{-R} \), \(\exists \text{-L} \) and \(\exists \text{-R} \).

- We call LBoundedVarQ the system LJB2 with the addition of the rules \(\forall \text{-LBV} \), \(\forall \text{-RBV} \), \(\exists \text{-LBV} \) and \(\exists \text{-RBV} \), but omitting the rules \(\forall \text{-LB} \), \(\forall \text{-RB} \), \(\exists \text{-LB} \) and \(\exists \text{-RB} \).

We can now show that all those systems derive the same sequents thanks to a series of lemmas stating that when moving from \(LJ\Lambda_0 \) to LJBoundedConn to LJBoundedQ to LBoundedVarQ, in each step the rules we have removed remain admissible using the rules we have added. The admissibility of each individual rule mentioned in the lemmas can be shown by a lengthy induction.

Lemma 2.5. The rules \(\Rightarrow \text{-L} \) and \(\land \text{-R} \) are admissible in LJBoundedConn.

Proof. Let us first focus on the admissibility of \(\land \text{-R} \). By induction on the depth of a LJBoundedConn proof of

\[
\Gamma \vdash t \in u \quad \text{and} \quad \Gamma \vdash \psi
\]

we want to show that \(\Gamma \vdash t \in u \land \psi \) is derivable in LJBoundedConn. Note that if the first conjunct is not a formula of the shape \(t \in u \), we may conclude using an instance of \(\land \text{-R} \) of LJBoundedConn.

Proof. Let us first focus on the admissibility of \(\land \text{-R} \). By induction on the depth of a LJBoundedConn proof of

\[
\Gamma \vdash \varphi \\
\Gamma \vdash \psi
\]

we want to show that \(\Gamma \vdash t \in u \land \psi \) is derivable in LJBoundedConn. Note that if the first conjunct is not a formula of the shape \(t \in u \), we may conclude using an instance of \(\land \text{-R} \) of LJBoundedConn.

Proof. Let us first focus on the admissibility of \(\land \text{-R} \). By induction on the depth of a LJBoundedConn proof of

\[
\Gamma \vdash \varphi \\
\Gamma \vdash t \in u \\
\Gamma \vdash t \in u \land \varphi
\]

we want to show that \(\Gamma \vdash t \in u \land \varphi \) is derivable in LJBoundedConn. Note that if the first conjunct is not a formula of the shape \(t \in u \), we may conclude using an instance of \(\land \text{-R} \) of LJBoundedConn.

Proof. Let us first focus on the admissibility of \(\land \text{-R} \). By induction on the depth of a LJBoundedConn proof of

\[
\Gamma \vdash \varphi \\
\Gamma \vdash t \in u \\
\Gamma \vdash t \in u \land \varphi
\]

we want to show that \(\Gamma \vdash t \in u \land \varphi \) is derivable in LJBoundedConn. Note that if the first conjunct is not a formula of the shape \(t \in u \), we may conclude using an instance of \(\land \text{-R} \) of LJBoundedConn.
• If the last rule applied was \land-L, assuming that $\Gamma = \Gamma', \phi_1 \land \phi_2$

\[
\frac{\Gamma', \phi_1, \phi_2 \vdash t \in_T u}{\Gamma', \phi_1 \land \phi_2 \vdash t \in_T u}
\]

then the induction hypothesis gives us a proof of $\Gamma', \phi_1, \phi_2 \vdash t \in_T u \land \psi$, so we may build the tree

\[
\frac{\text{Induction hypothesis}}{\frac{\Gamma', \phi_1, \phi_2 \vdash t \in_T u \land \psi}{\Gamma \vdash \psi}}
\]

by applying the rule \land-L.

The admissibility of \Rightarrow-L is handled similarly, noticing that, since we are dealing with sub-Δ_0 formulas, the antecedent of an implication in such a rule is also an atomic formula $t \in_T u$.

\[\square\]

Corollary 2.6. LJ_0 and $LJBoundedConn$ derive the same sequents.

Proof. Thanks to Lemma 2.5, it is then obvious that all the rules of LJ_0 are admissible in $LJBoundedConn$, so every sequent derivable in LJ_0 is derivable in $LJBoundedConn$. The converse is obvious. \[\square\]

Lemma 2.7. The rules \forall-L, \forall-R, \exists-L and \exists-R are admissible in $LJBoundedQ$.

Proof. Let us focus on \forall-L. We assume that we have a $LJBoundedQ$ derivation of

\[
\Gamma, t \in_T u \Rightarrow \phi[t/x] \vdash \psi
\]

and we show, by induction on its depth, that we may obtain a $LJBoundedQ$ derivation of $\Gamma, \forall x (x \in_T u \Rightarrow \psi)$. As usual, one should proceed by case analysis on the last rule applied to get $\Gamma, t \in_T u \Rightarrow \phi[t/x] \vdash \psi$. In all but one case, the main formula under consideration is not $t \in_T u \Rightarrow \phi[t/x]$ and it is easy to use the induction hypothesis. The only interesting case thus occurs when the last rule applied was the \Rightarrow-LB rule

\[
\frac{\Gamma, \phi \vdash \psi}{\Gamma, t \in_T u \Rightarrow \phi[t/x] \vdash \psi}
\]

In such a case, we know that $t \in_T u$ is a formula occurring in Γ, so we replace the application of this rule with the new rule \forall-LB of $LJBoundedQ$ to conclude.

\[
\frac{\Gamma, \phi \vdash \psi}{\Gamma, \forall x (x \in_T u \Rightarrow \phi) \vdash \psi}
\]

The reasoning for the other rule \exists-R is extremely similar, where the only interesting case occurs upon applying a rule \land-RB. The last two rules are also handled similarly, the interesting case for the admissibility of \forall-R (respectively \exists-L) being \Rightarrow-R (respectively \land-L).

\[\square\]

Corollary 2.8. $LJBoundedConn$ and $LJBoundedQ$ derive the same sequents.

Lemma 2.9. The rules \forall-LB, \forall-RB, \exists-LB and \exists-RB are admissible in $LJBoundVarQ$.

Proof. All four cases are proven in a similar manner. Exceptionally, the induction this time is not over the size of the proofs, but rather on a quantity computed from the bounding term occurring in the main quantifier of the rule. For instance, this would be t in the following instance of \exists-LB:

\[
\frac{\Gamma, x \in t, \phi \vdash \psi}{\exists x \in t \wedge \phi \vdash \psi}
\]

The "size" of such a term t is the pair $\langle v_t, r_t \rangle$ computed as follows:

• There is an intuitive notion of size for types defined by induction:

\[
\begin{align*}
s(\mathcal{U}) &= 1 \\
s(\text{Unit}) &= 1 \\
s(T_1 \times T_2) &= 1 + s(T_1) + s(T_2) \\
s(\text{Set}(T)) &= 1 + s(T) \\
s(T_1 \times T_2) &= 1 + s(T_1) + s(T_2)
\end{align*}
\]

From this we can define the “variable size” of a term \(t\), denoted \(v_t\), to be the sum of the size of the free variables of \(t\).

\[
v_t = \sum_{x \in \text{FV}(t) \mid x \text{ of type } T} s(T)
\]

• \(r_t\) is the intuitive notion of size for terms, computed by induction over \(t\):

\[
\begin{align*}
r_{c_i} &= 1 \\
r_{(t,u)} &= 1 + r_t + r_u \\
r_{()} &= 1 \\
r_{\pi_i(t)} &= 1 + r_t
\end{align*}
\]

Then we can use the fact that the lexicographic product of \(\mathbb{N}\) with itself is well-founded to run induction over the pair \((v_t, r_t)\). Let us do so for the rule \(\exists\text{-LB}\). To this end, suppose that \(t\) is a term such that the rule \(\Gamma, x \in u, \varphi \vdash \psi \) is admissible in \(\text{LJBoundVarQ}\) for every \(u\) such that either \(v_u < v_t\) or \(v_u = v_t\) and \(r_u < r_t\). We proceed with a case analysis to show that the same rule with \(t\) instead of \(u\) is admissible.

• If \(t\) is a variable, then this is an instance of the rule \(\exists\text{-LBV}\) of \(\text{LJBoundVarQ}\).
• Otherwise, if \(t\) has a free variable \(z\) of type \(T_1 \times T_2\), one may apply the rule \(\times\eta\)

\[
\Gamma[\langle z_1, z_2 \rangle / z], \exists x \in t[\langle z_1, z_2 \rangle / z] \varphi[\langle z_1, z_2 \rangle / z] \vdash \psi[\langle z_1, z_2 \rangle / z] \\
\Gamma, \exists x \in t \varphi \vdash \psi
\]

and conclude using our induction hypothesis since \(v_{t[\langle z_1, z_2 \rangle / z]} < v_t\).

• Otherwise, if \(t\) has no such free variable, but is itself not a free variable, then it is necessarily of the shape \(\pi_i(\langle t_1, t_2 \rangle)\) for some \(i \in \{1, 2\}\), so we may apply the rule \(\times\beta\)

\[
\Gamma, \exists x \in t_i \varphi \vdash \psi \\
\Gamma, \exists x \in t \varphi \vdash \psi
\]

and conclude using our induction hypothesis as we have \(v_{t_i} \leq v_t\) and \(r_{t_i} < r_t\).

\[\square\]

Corollary 2.10. \(\text{LJBoundedQ}\) and \(\text{LJBoundVarQ}\) derive the same sequents.

Lemma 2.11. \(\text{LJ}\Delta_0\) and \(\text{LJBoundVarQ}\) derive the same sequents.

Proof. Combine Corollaries 2.6, 2.8 and 2.10. \[\square\]

Step 3. Recall that a right-hand side rule is one that changes the right-hand side formula. Among the rules of \(\text{LJBoundVarQ}\), these are the rules \(\Rightarrow\text{-R}, \land\text{-R}, \land\text{-RB}, \Rightarrow\text{-R}, \lor\text{-RBV}\) and \(\exists\text{-RBV}\). We call a proof tree right-focused if every occurrence of sequent \(\Gamma \vdash \psi\) in the tree such that the top-level connective of \(\psi\) is either \(\lor, \Rightarrow\) or \(\land\) is necessarily the conclusion of a right-hand side rule.

The rationale behind this choice is that the rules \land-R, \land-RB, \Rightarrow-R and \forall-RBV are invertible (if their conclusion is true, so are all the premises), so they may be safely applied eagerly.

Lemma 2.12. If $\Gamma \vdash \varphi$ is derivable in LJBoundVarQ, then there is a right-focused LJBoundVarQ proof tree of deriving $\Gamma \vdash \varphi$.

Proof. The result is proven by induction over the depth of the proof-tree, and is straightforward. We sketch one of the case: if the last rule applied is \lor-L and the right-hand side formula is an implication

$$\frac{\frac{\Gamma, \phi_1 \vdash \psi \Rightarrow \theta}{\Gamma, \phi_1 \lor \phi_2 \vdash \psi \Rightarrow \theta}}{\Gamma, \phi_1 \lor \phi_2 \vdash \psi \Rightarrow \theta}$$

by the induction hypotheses, we have right-focused proofs π_i with conclusion $\Gamma, \phi_i, \psi \vdash \theta$ for $i \in \{1, 2\}$. We may then build the tree

$$\frac{\pi_1}{\Gamma, \phi_1 \lor \phi_2 \vdash \psi \Rightarrow \theta} \quad \frac{\pi_2}{\Gamma, \phi_1 \lor \phi_2 \vdash \psi \Rightarrow \theta}$$

which is right-focused. □

Step 4. First, we observe that LJBoundVarQ has a stronger variant of the subformula property: if all formulas in the conclusion sequent $\Gamma \vdash \psi$ is the translation of some Δ_0 formula, then all formulas occurring in a proof tree are actually Δ_0 formulas.

Lemma 2.13. If $\Theta, \Gamma \vdash \tilde{\psi}$ has a right-focused proof tree in LJBoundVarQ, then there is a proof of $\Theta; \Gamma \vdash \psi$ in our restricted system.

The proof goes by induction over the right-focused LJBoundVarQ proof tree. All cases are immediate, except for the case of the congruence rule

$$\frac{\Gamma[s/x, t/y] \vdash \psi[s/x, t/y]}{\Gamma[t/x, s/y], \ t =_{\Delta_0} s \vdash \psi[t/x, s/y]}$$

This particular case can be treated by showing that the obvious counterpart to this rule is admissible in the restricted system before embarking on the proof of Lemma 2.13.

Proposition 2.14. The following rule is admissible in our restricted proof system

$$\frac{\Theta[s/x, t/y]; \Gamma[s/x, t/y] \vdash \psi[s/x, t/y]}{\Theta[t/x, s/y]; \Gamma[t/x, s/y], \ t =_{\Delta_0} s \vdash \psi[t/x, s/y]}$$

Proposition 2.14 can be proven in a similar way as Lemma 2.9, by reducing to the case where s and t are variables using the rules \times_β and \times_η. Then, similarly to Lemma 2.1, Lemma 2.13 is proven by a routine induction on the proof of the desired sequent in LJBoundVarQ, which allows us to complete the proof of Lemma 2.3.

Proof of Lemma 2.3. Assume $\Theta, \Gamma \vdash \tilde{\psi}$ is derivable in LJ. Because of the subformula property, it is also derivable in $LJ\Delta_0$ and thus, by Lemma 2.11, it is also derivable in LJBoundVarQ. Then, Lemma 2.12 shows that it can be done using a right-focused proof, and then Lemma 2.13 allows us to conclude that $\Theta; \Gamma \vdash \psi$ is derivable in the restricted system. □
2.2 Proof of interpolation for Δ_0 formulas in the intuitionistic proof system

Recall that in the body of the paper we made use of a Craig interpolation result for Δ_0 formulas, both for classical validity and intuitionistic provability. Both may be proven in similar way, but we only give the proof for the intuitionistic case here. The classical result is obtained by taking a system with multiple conclusions. With this caveat, the inductive proof is essentially the same. The The precise rule can be found in the conclusion of the body of the paper.

We restate the result, abusing notation by eliding the difference between membership contexts and Δ_0 formulas:

Let Λ_L and Λ_R be multi-sets each consisting possibly of formulas and membership contexts and ψ a formula. Let \tilde{t} be the collection of variables that occur in Λ_L and which also occur in Λ_R, ψ. Then for every derivation $\Lambda_L, \Lambda_R \vdash \psi$

there exists a Δ_0 formula θ with free variables \tilde{t} such that the following holds

$\Lambda_L \models \theta$ and $\Lambda_R, \theta \models \psi$

Further, there is a polynomial-time algorithm which outputs Θ when given as input a formal derivation of $\Lambda_L, \Lambda_R \vdash \psi$.

We use induction on the complexity of the proofs, following the template presented in Fitting’s textbook [Fitting 1996], see also the expositions of this method in [Toman and Weddell 2011; Wernhard 2018]. We present here further representative cases of the rules, omitting many cases that are either trivial or similar to rules that are already covered below.

In order for the inductive argument to go through, we assume that if we have $t \in u$ in a ϵ-context, then t does not contain a projection π_i as a subterm. This can be guaranteed by transforming the proof so that the initial steps consist of application of the rules \times_β and \times_η, which are invertible.

The base case consists of rules with no hypotheses.

Consider first the case of a proof consisting only of an application of the rule:

\[\Lambda, t \not\equiv_{\Delta} t \vdash u \in_T v \]

Note that $t \not\equiv_{\Delta} t$ is a Δ_0 formula representing False, just as $t =_{\Delta} t$ represents True.

If $t \not\equiv_{\Delta} t$ is in Λ_L we generate $t \not\equiv_{\Delta} t$, while if it is in Λ_R we generate $t =_{\Delta} t$.

For the hypothesis-free rule:

\[\Theta, t_0 \in_{\forall} u, \Gamma, t_0 =_{\forall} t_1, \ldots, t_{k-1} =_{\forall} t_k \vdash t_k \in_{\forall} u \]

we will generate $t \in_{\forall} u$ if $t \in_{\forall} u$ is in Λ_L, and otherwise $\neg(t \in_{\forall} u)$.

We now consider the case where the final rule applied is:

\[\Lambda, t \in_{\text{Set}(T)} u \vdash t =_{\text{Set}(T)} u \]

\[\Lambda, t \in_{\text{Set}(T)} u \vdash u \in_{\text{Set}(T)} v \]

First consider the subcase where $t \in_{\text{Set}(T)} u$ is in Λ_L within the bottom sequent. Thus our goal is to find an interpolant θ' which contains only variables common to Λ_L, $t \in_{\text{Set}(T)} u$ and Λ_R, $u \in_{\text{Set}(T)} v$.

We apply the induction hypothesis with the same decomposition of the left side into L and R. It gives us a θ such that $\Lambda_L, t \in_{\text{Set}(T)} u \vdash \theta$ and $\Lambda_R, \theta \vdash x =_{\text{Set}(T)} u$, and θ includes only variables that are common to Λ_L, $t \in_{\text{Set}(T)} u$ and Λ_R, $x =_{\text{Set}(T)} u$. Thus all the variables in θ meet the criteria for θ' except possibly for t.

We set $\theta' = \exists t \in v \theta$. The free variables in θ' are those of θ other than t, and also v, and thus they meet the desired criteria.
It is easy to see using the properties of θ' that Λ_L, $t \in \text{Set}(T)$ $v \models \theta'$ and Λ_R, $\theta' \models u \in \text{Set}(T)$ u as required.

In the other subcase, where $t \in \text{Set}(T)$ v is in Λ_R, we can apply the induction hypothesis as above and set $\theta' = \theta$.

We now turn to the case where the last proof rule is:

$$\Lambda, z \in T, t \vdash z \in T \quad z \notin \text{FV}(\Lambda, t, u)$$

We call the induction hypothesis on the top sequent, splitting the formulas the same way but putting $z \in T$ t in Λ_R. We can use the inductively formed interpolant directly.

Let us turn to the case where the last rule applied is:

$$\Lambda, t \in T, z, \varphi[t/y] \vdash \sigma \in T, w$$

To simplify matters, let us assume that t is a single variable. We first consider the subcase where $\forall y \in T, z \varphi$ is in Λ_R in the bottom. We can apply the induction hypothesis to the top sequent with the partition of formulas being the one induced from the partition on the bottom. The induction gives us a θ that may use the variable t, which may not occur in any formula within Λ_R in the bottom sequent, and hence is not allowed in our interpolant for the bottom. If this happens, then this implies that $t \in T$ z is in Λ_L on the bottom. In this case we set $\theta' = \exists y \in T, z \theta$. It is clear that Λ_L, $t \in T z \models \theta'$. Since t does not occur in Λ_L and $\Lambda_L \cup \varphi[t/y]$, $\theta \models \sigma \in T, w$ by induction, we conclude that $\Lambda_L \cup \varphi, \theta' \models \sigma \in T, w$ as required.

Now consider the subcase where $\forall y \in z \varphi$ is in Λ_L in the bottom sequent. We apply induction in the same way, to obtain θ as above. The only difficult case is when t only occurs in formulas within Λ_R on the bottom. In this case we can check that $\theta' = \forall y \in z \varphi$ can be used as the desired interpolant.

2.3 Proof of the higher-type interpolation lemma

Recall the higher-type interpolation lemma from the body of the paper, which gives the inductive invariant used in the synthesis of NRC[Set] expressions from proof:

Let $\Theta = \Theta_L, \Theta_R$ be a ε-context and $\Gamma = \Gamma_L, \Gamma_R$ a context. Call $L = \text{FV}(\Theta_L, \Gamma_L)$ the set of left-hand side variables, $R = \text{FV}(\Theta_R, \Gamma_R)$ the set of right-hand side variables, and $C = \text{FV}(\Theta_L, \Gamma_L) \cap \text{FV}(\Theta_R, \Gamma_R)$ the set of common free variables. Suppose that t and u are terms of suitable types such that $\text{FV}(t) \subseteq L$ and $\text{FV}(u) \subseteq R$ and Then we have:

- If $\Theta; \Gamma \vdash t = E \models u$ and $\text{FV}(E) \subseteq C$.
- If $\Theta; \Gamma \vdash t \subseteq E \models u$ and $\text{FV}(E) \subseteq C$.
- If $\Theta; \Gamma \vdash t \subseteq E \models u$ and $\text{FV}(E) \subseteq C$.

Further the desired expressions can be constructed in time polynomial in the size of the proof (e.g., measured in terms of the number of steps and the maximal size of a sequent in each step).

Proof. First, we assume that if we have $t \in u \in \Theta_L, \Theta_R$, then t does not contain a projection π_i as a subterm. This can be guaranteed by transforming the proof so that the initial steps consist of application of the rules \times_{β} and \times_{η_i}, which are invertible.
We proceed by induction over the proof tree, calling E the desired expression that we want to create in the inductive step. In each case we will prove the result for the bottom sequent of a proof rule by making a single call to the induction hypothesis for each sequent on top of the proof rule. We will require a partition of the symbols in the top sequent, but it will always be clear from the bottom sequent.

- If the last proof rule used is contraction, we directly use the induction hypothesis.
- If the last proof rule used is =Set-R then we directly use the induction hypothesis as well.

\[
\Theta; \Gamma \vdash t \subseteq u \quad \Theta; \Gamma \vdash u \subseteq t \quad \Theta; \Gamma \vdash t = u
\]

then one has a transformation E' such that $\Gamma \models t \subseteq E' \subseteq u$ by applying the induction hypothesis on the first subproof. Since the system is sound, we do have $\Gamma \models t = u$, so $\Gamma \models t = E' = u$. We can thus take $E = E'$.

- If the last proof rule used is =×-R

\[
\Theta; \Gamma \vdash \pi_1(t) =_{T_1} \pi_1(u) \quad \Theta; \Gamma \vdash \pi_2(t) =_{T_2} \pi_2(u)
\]

The induction hypothesis yields NRC expressions E_1 and E_2 such that

\[
\Theta; \Gamma \models \pi_1(t) = E_1 = \pi_1(u) \quad \text{and} \quad \Theta; \Gamma \models \pi_2(t) = E_2 = \pi_2(u)
\]

It suffices to take $E = (E_1, E_2)$.

- If the last proof rule used is =Unit-R

\[
\Theta; \Gamma \vdash t =_{\text{Unit}} u
\]

Then the expression returning the unique element of Unit works.

- If the last proof used is =U-R

\[
\Theta; t \in_{\mathcal{U}} z; \Gamma \vdash u \in_{\mathcal{U}} z \quad z \notin \text{FV}(\Theta, \Gamma, t, u)
\]

The induction hypothesis gives us an expression E' of type $\text{Set}(\mathcal{U})$ such that

\[
\Theta; \Gamma, t \in_{\mathcal{U}} z \models u \in E'
\]

Note that since z is fresh, we must actually have

\[
\Theta; \Gamma \models u \in E'
\]

Applying interpolation, there is a Δ_0 formula $\theta(\bar{t}, z)$ such that

\[
\Theta_I, \Theta_L, \Gamma_L, t \in_{\mathcal{U}} z \models \theta(\bar{t}, z) \quad \text{and} \quad \Theta_R; \Gamma_R, \theta(\bar{t}, z) \models u \in_{\mathcal{U}} z
\]

This means that we have

\[
\Theta; \Gamma \models \theta(\bar{t}, z) \iff t \in z
\]

In particular $\Theta; \Gamma$ entails that $\{t\}$ is the unique singleton set z satisfying $\theta(\text{vec}(\bar{t}), z)$. So we may take E to be the unique element of $\{x \in E' \mid \theta(\bar{t}, \{x\})\}$, which can be formally defined in NRC as

\[
E = \text{Get}\left(\bigcup \{\text{case}(\text{Verify}_\theta(\bar{t}, \{x\}), \{x\}, \emptyset) \mid x \in E'\}\right)
\]
• If the last proof rule used is \(\subseteq \)-R

\[
\Theta, \ z \in_T t; \ \Gamma \vdash z \in_T u \quad z \notin \text{FV}(\Theta; \Gamma, t, u)
\]

then the inductive hypothesis gives us an expression \(E'(\tilde{i}) \) such that

\[
\Theta; \ \Gamma \vdash z \in E'
\]

Apply interpolation to the premise so as to obtain a \(\lambda_0 \) formula \(\theta(\tilde{i}, z) \) with

\[
\Theta_I, \ \Theta_L; \ \Gamma_L, \ z \in t \models \theta(\tilde{i}, z) \quad \text{and} \quad \Theta_R; \ \Gamma_R, \ \theta(\tilde{i}, z) \vdash z \in u
\]

In this case, we take

\[
E(\tilde{i}) = \{ z \in E'(\tilde{i}) \mid \theta(\tilde{i}, z) \}
\]

which is NRC-definable as

\[
\bigcup \{ \text{case(Verify}_\theta(\tilde{i}, z), \{ z \}, \emptyset) \mid z \in E'(\tilde{i}) \}
\]

Now, let us assume that \(\Gamma \) is valid and show that \(t \subseteq E \) and \(E \subseteq u \).

- Suppose that \(z \in t \). By the induction hypothesis, we know that \(z \in E' \). But we also know that \(\Gamma_L \) is valid, so that \(\theta(\tilde{i}, z) \) holds. By definition, we thus have \(z \in E \).
- Now suppose that \(z \in E \), that is, that \(z \in E' \) and \(\theta(\tilde{i}, z) \) holds. The latter directly implies that \(z \in u \) since \(\Gamma_R \) is valid.

• If the last proof rule used is \(\in_{\text{Set}-R} \)

\[
\Theta, \ t \in_{\text{Set}(T)} v; \ \Gamma \vdash t =_{\text{Set}(T)} u
\]

then, by using the induction hypothesis on the premise, we get an expression \(E' \) which is equal to \(u \) assuming \(\Theta, t \in_{\text{Set}(T)} v; \ \Gamma \). So we may take \(E = \{ E' \} \).

• If the last proof rule used is \(\in_{\text{Eq-R}} \)

\[
\Theta, \ t \in_{\text{Eq}} u; \ \Gamma \vdash t \in_{\text{Eq}} u
\]

then it means that \(\text{FV}(t) \subseteq C \), so we may take the expression \(\{ t \} \).

• If the last proof rule used is \(\times_{\beta} \) or \(=_{\text{SUBST}} \)

\[
\Theta[t_i/y]; \ \Gamma[t_i/y] \vdash (t \in_T u)[t_i/y] \quad i \in \{ 1, 2 \} \quad \Theta[y/x]; \ \Gamma[y/x] \vdash v[y/x] \in_T w[y/x]
\]

\[
\Theta[\pi_i((t_1, t_2))/y] \vdash (t \in_T u)[\pi_i((t_1, t_2))/y] \quad \Theta; \ \Gamma, \ x =_{\text{Eq}} y \vdash w \in_T v
\]

the expression obtained using the induction hypothesis allows to reach our conclusion.

• If the last rule used is \(\times_\eta \)

\[
\Theta[(x_1, x_2)/x]; \ \Gamma[(x_1, x_2)/x] \vdash (t \in_T u)[(x_1, x_2)/x] \quad x_1, x_2 \notin \text{FV}(\Theta; \Gamma, t, u)
\]

\[
\Theta; \ \Gamma \vdash t \in_T u
\]

then the induction hypothesis yields an expression \(E' \). If \(x \not\in L \cap R \), then we also have that \(x_1, x_2 \not\in L \cap R \), so \(E' \) has the expected free variables and we may set \(E = E' \). Otherwise, \(x_1 \) and \(x_2 \) are among the free variables of \(E' \) and \(x \in L \cap R \). Writing \(E'(\tilde{z}, x_1, x_2) \) to clarify the free variables, it suffices to set

\[
E(\tilde{z}, x) = E'(\tilde{z}, \pi_1(x), \pi_2(x))
\]
If the last proof rule is \perp-L

$$\Theta; \Gamma, \perp \vdash t \in_T u$$

then, any expression can be used since the premise is contradictory. This is also the case for the rule \neq-L.

If the last proof rule is \land-L

$$\Theta; \Gamma, \phi, \psi \vdash t \in_T u$$

$$\Theta; \Gamma, \phi \land \psi \vdash t \in_T u$$

one may directly take the expression given by the induction hypothesis.

If the last proof rule used is \lor-L

$$\Theta; \Gamma, \phi \vdash t \in_T u$$

$$\Theta; \Gamma, \psi \vdash t \in_T u$$

the induction hypothesis yields expressions E_1 and E_2 of sort $\text{Set}(T)$ such that

$$\Theta; \Gamma, \phi \models t \in E_1$$

and

$$\Theta; \Gamma, \psi \models t \in E_2$$

So we may take $E = E_1 \cup E_2$.

Suppose the last proof rule used is \forall-L

$$\Theta, t \in_T z; \Gamma, \phi[t/y] \vdash v \in_T' w$$

$$\Theta, t \in_T z; \Gamma, \forall y \in_T z \phi \vdash v \in_T' w$$

If $t \in_T z$ and $\forall y \in_T z \phi$ are both part of the left-hand side or right-hand side, then we may directly use the inductive hypothesis to obtain an expression E', and we may check that $E = E'$ satisfies the inductive invariant. Otherwise, it might be the case that E' contains some additional variables x_1, \ldots, x_k from the term t and that $z \in L \cap R$. Recall that our preliminary assumption means that t does not contain any projection, so that we have terms p_1, \ldots, p_k with a single variable u such that $p_i[t/u]$ is semantically equivalent to x_i. Then, we may show that

$$E = \bigcup \{E'[p_1/x_1, \ldots, p_k/x_k] \mid u \in y\}$$

satisfies the invariant.

If the last proof rule used is \exists-L

$$\Theta, x \in_T y; \Gamma, \phi \vdash t \in_T' v$$

$$\Theta, \exists x \in_T y \phi \vdash t \in_T' v$$

we may apply the induction hypothesis to obtain E' that also satisfy the invariant in the conclusion (note that $\text{FV}(E') \subseteq L \cap R$ since x is fresh), so we can conclude by taking $E = E'$. □
3 REDUCTION TO MONADIC SCHEMAS

In the body of the paper we mentioned a reduction of problems about NRC and interpretations to the case of Monadic schemas. This was explicitly stated in Section 6, but we make use of it also in the arguments for converting between interpretations and NRC[Get] in Section 5.

Reduction to monadic schemas for NRC

In the body of the paper we mentioned that it is possible to reduce questions about definability within NRC to the case of monadic schemas. We now give the details of this reduction.

Recall that monadic type is a type built only using the atomic type \(\mathcal{U} \) and the type constructor Set. Monadic types are in one-to-one correspondence with natural numbers by setting \(\mathcal{U}_0 := \mathcal{U} \) and \(\mathcal{U}_{n+1} := \text{Set}(\mathcal{U}_n) \). A monadic type is thus a \(\mathcal{U}_n \) for some \(n \in \mathbb{N} \). A nested relational schema is monadic if it contains only monadic types, and a \(\Delta_0 \) formula is said to be monadic if it all of its variables have monadic types.

We start with a version of the reduction only for NRC expressions:

Proposition 3.1. For any nested relational schema \(\text{SCH} \), there is a monadic nested relational schema \(\text{SCH}' \), an injection \(\text{Convert} \) from instances of \(\text{SCH} \) to instances of \(\text{SCH}' \) that is definable in NRC, and an NRC[Get] expression \(\text{Convert}^{-1} \) such that \(\text{Convert}^{-1} \circ \text{Convert} \) is the identity transformation from \(\text{SCH} \rightarrow \text{SCH} \).

Furthermore, there is a \(\Delta_0 \) formula \(\text{Im}_{\text{Convert}} \) from \(\text{SCH}' \) to \(\text{Bool} \) such that \(\text{Im}_{\text{Convert}}(i') \) holds if and only if \(i' = \text{Convert}(i) \) for some instance \(i \) of \(\text{SCH} \).

To prove this we give an encoding of general nested relational schemas into monadic nested relational schemas that will allow us to reduce the equivalence between NRC expression, interpretations, and implicit definitions to the case where input and outputs are monadic.

Note that it will turn out to be crucial to check that this encoding may be defined either through NRC expressions or interpretations, but in this subsection we will give the definitions in terms of NRC expressions.

The first step toward defining these encodings is actually to emulate in a sound way the cartesian product structure for types \(\mathcal{U}_n \). Here “sound” means that we should give terms for pairing and projections that satisfy the usual equations associated with cartesian product structure.

Proposition 3.2. For every \(n_1, n_2 \in \mathbb{N} \), there are NRC expressions \(\text{Pair}(x, y) : \mathcal{U}_{n_1} \times \mathcal{U}_{n_2} \rightarrow \mathcal{U}_{\max(n_1, n_2)+2} \) and NRC[Get] expressions \(\hat{\pi}_1(x) : \mathcal{U}_{\max(n_1, n_2)+2} \rightarrow \mathcal{U}_{n_i} \) for \(i \in \{1, 2\} \) such that the following equations hold

\[
\hat{\pi}_1\left(\text{Pair}(a_1, a_2)\right) = a_1 \quad \hat{\pi}_2\left(\text{Pair}(a_1, a_2)\right) = a_2
\]

Furthermore, there is a \(\Delta_0 \) formula \(\text{Im}_\text{Pair}(x) \) such that \(\text{Im}_\text{Pair}(a) \) holds if and only if there exists \(a_1, a_2 \) such that \(\text{Pair}(a_1, a_2) = a \). In such a case, the following also holds

\[
\text{Pair}(\hat{\pi}_1(a), \hat{\pi}_2(a)) = a
\]

Proof. We adapt the Kuratowski encoding of pairs \((a, b) \mapsto \{\{a\}, \{a, b\}\}\). The notable thing here is that, for this encoding to make sense in the typed monadic setting, the types of \(a \) and \(b \) need to be the same. This will not be an issue because we have NRC-definable embeddings

\[
\Upparrow^m_n : \mathcal{U}_n \rightarrow \mathcal{U}_m
\]

for \(n \leq m \) defined as the \(m - n \)-fold composition of the singleton transformation \(x \mapsto \{x\} \). This will be sufficient to define the analogues of pairing for monadic types and thus to define \(\text{Convert}_T \) by induction over \(T \). On the other hand, \(\text{Convert}_T^{-1} \) will require a suitable encoding of projections.
This means that to decode an encoding of a pair, we need to make use of a transformation inverse to the singleton construct \(\uparrow \). But we have this thanks to the Get construct. We let

\[
\iota^m_n : \mathcal{U}_m \rightarrow \mathcal{U}_n
\]

the transformation inverse to \(\uparrow^m_n \), defined as the \(m - n \)-fold composition of Get.

Firstly, we define the family of transformations \(\widehat{\text{Pair}}_{n,m}(x_1, x_2) \), where \(x_i \) is an input of type \(\mathcal{U}_{n_i} \) for \(i \in \{1, 2\} \) and the output is of type \(\mathcal{U}_{\max(n_1, n_2) + 2} \), as follows

\[
\widehat{\text{Pair}}_{n_1,n_2}(x_1, x_2) := \{ \uparrow x_1, \{ \uparrow x_1, \uparrow x_2 \} \}
\]

The associated projections \(\hat{\pi}^{n_1,n_2}_i(x) \) where \(x \) has type \(\mathcal{U}_{\max(n_1, n_2) + 2} \) and the output is of type \(\mathcal{U}_{n_i} \) are a bit more challenging to construct. The basic idea is that there is first a case distinction to be made for encodings \(\text{Pair}_{n,m}(x_1, x_2) \): depending on whether \(\uparrow x_1 = \uparrow x_2 \) or not. This can be actually tested by a NRC expression. Once this case distinction is made, one may informally compute the projections as follows:

- if \(\uparrow x_1 = \uparrow x_2 \), both projections can be computed as a suitable downcasting \(\downarrow \) (the depth of the downcasting is determined by the output type, which is not necessarily the same for both projections).
- otherwise, one needs to single out the singleton \(\{ \uparrow x_1 \} \) and the two-element set \(\{ \uparrow x_1, \uparrow x_2 \} \) in NRC. Then, one may compute the first projection by downcasting the singleton, and the second projection by first computing \(\{ \uparrow x_2 \} \) as a set difference and then downcasting with \(\downarrow \).

We now give the formal encoding for projections, making a similar case distinction. To this end, we first define a generic NRC expression

\[
\text{AllPairs}_T(x) : \text{Set}(T) \rightarrow \text{Set}(T \times T)
\]

computing all the pairs of distinct elements of its input \(x \)

\[
\text{AllPairs}_T(x) = \bigcup \bigcup \{ ((y, z)) \mid y \in x \setminus \{ z \} \} \mid z \in x
\]

Note in particular that \(\text{AllPairs}(i) = \emptyset \) if and only if \(i \) is a singleton or the empty set. The projections can thus be defined as

\[
\begin{align*}
\hat{\pi}_1(x) &:= \text{case } (\text{AllPairs}(x) = \emptyset, \downarrow x, \downarrow \{ \pi_1(z) \cap \pi_2(z) \mid z \in \text{AllPairs}(x) \}) \\
\hat{\pi}_2(x) &:= \text{case } (\text{AllPairs}(x) = \emptyset, \downarrow x, \downarrow (x' \uparrow \hat{\pi}_1(x')))
\end{align*}
\]

These definitions crucially ensure that, for every object \(a_i \) with \(i \in \{1, 2\} \), we have

\[
\hat{\pi}_i(\text{Pair}(a_1, a_2)) = a_i
\]

Now all remains to be done is to define \(\text{Im}^{\text{Pair}}_{\text{max}} \). Before that, it is helpful to define a formula \(\text{Im}^{\text{Pair}}_m(x) \) which holds if and only if \(x \) is in the image of \(\text{Im}^{\text{Pair}}_m \).

As a preliminary step, define generic \(\Delta_0 \) formulas \(\text{IsSing}(x) \) and \(\text{IsTwo}(x) \) taking an object of type \(\text{Set}(T) \) and returning a Boolean indicating whether the object is a singleton or a two-element set. Defining \(\text{Im}^{\text{Pair}}_m \) is straightforward using \(\text{IsSing} \) and Boolean connectives. Then \(\text{Im}^{\text{Pair}}_{\text{max}}(x) \) can be defined as follows for each \(n \in \mathbb{N} \)

\[
\begin{align*}
\text{Im}^{\text{Pair}}_{\text{max}}_{n,n}(x) &:= (\text{IsSing}(x) \land \text{Im}^{\text{IsSing}}_{\text{Pair},n,n}(x)) \lor (\text{IsTwo}(x) \land \text{Im}^{\text{IsSing}}_{\text{Pair},n,n}(x)) \\
\text{Im}^{\text{IsSing}}_{\text{Pair},n,n}(x) &:= \exists z \in x \text{ IsSing}(z) \\
\text{Im}^{\text{IsTwo}}_{\text{Pair},n,n}(x) &:= \exists z \ z' \in x \ (\text{IsTwo}(z) \land \text{IsSing}(z') \land \forall y \in z \ y \in z')
\end{align*}
\]
Then, the more general $\text{Im}_{\text{Pair}_{n_1,n_2}}$ can be defined using $\text{Im}^m_{\text{Pair}_{n_1}}$ where $m = \max(n_1, n_2)$.

$$\text{Im}_{\text{Pair}_{n_1,n_2}}(x) := \text{Im}_{\text{Pair}_{m,m}}(x) \cap \text{Im}^m_{\text{Pair}_{1}}(\hat{x}_1(x)) \cap \text{Im}^m_{\text{Pair}_{2}}(\hat{x}_2(x))$$

One can then easily check that Im_{Pair} does have the advertised property: if $\text{Im}_{\text{Pair}}(a)$ holds for some object a, then there are a_1 and a_2 such that $\text{Pair}(a_1, a_2) = a$ and we have

$$\text{Pair}(\hat{x}_1(a), \hat{x}_2(a)) = a$$

We are now ready to give the proof of the proposition given at the beginning of this subsection.

Proof. Convert_T, Convert^{-1}_T and $\text{Im}_{\text{Convert}_T}$ are defined by induction over T. Beforehand, define the map d taking a type T to a natural number $d(T)$ so that Convert maps instances of type T to monadic types $\mathcal{U}(d(T))$.

$$d(\emptyset) = 0 \quad d(\text{Set}(T)) = 1 + d(T)$$
$$d(T_1 \times T_2) = 2 + \max(d(T_1), d(T_2)) \quad d(\text{Unit}) = 0$$

Convert_T, Convert^{-1}_T and $\text{Im}_{\text{Convert}_T}$ are then defined by the following clauses, where we write $\text{Map}(z \mapsto E)(x)$ for the NRC expression $\bigcup \{ \{ E \mid z \in x \}$.

\begin{align*}
\text{Convert}_T(x) & := x \\
\text{Convert}_{\text{Set}(T)}(x) & := \text{Map}(z \mapsto \text{Convert}_T(z))(x) \\
\text{Convert}_{\text{Unit}}(x) & := c_0 \\
\text{Convert}_{T_1 \times T_2}(x) & := \text{Pair}(\text{Convert}_{T_1}(\pi_1(x)), \text{Convert}_{T_2}(\pi_2(x))) \\
\text{Convert}^{-1}_T(x) & := x \\
\text{Convert}^{-1}_{\text{Set}(T)}(x) & := \text{Map}(z \mapsto \text{Convert}^{-1}_T(z))(x) \\
\text{Convert}^{-1}_{\text{Unit}}(x) & := () \\
\text{Convert}^{-1}_{T_1 \times T_2}(x) & := \big\{ \text{Convert}^{-1}_{T_1}(\hat{x}_1(x)), \text{Convert}^{-1}_{T_2}(\hat{x}_2(x)) \big\} \\
\text{Im}_{\text{Convert}_T}(x) & := \text{True} \\
\text{Im}_{\text{Convert}_{\text{Set}(T)}}(x) & := \forall z \in x. \text{Im}_{\text{Convert}_T}(z) \\
\text{Im}_{\text{Convert}_{T_1 \times T_2}}(x) & := \text{Im}_{\text{Pair}}(d(T_1), d(T_2))(x) \land \text{Im}_{\text{Convert}_{T_1}}(\hat{x}_1(x)) \land \text{Im}_{\text{Convert}_{T_2}}(\hat{x}_2(x))
\end{align*}

It is easy to check, by induction over T, that for every object a of type T

$$\text{Convert}^{-1}(\text{Convert}(a)) = a$$

and that for every object b of type $\mathcal{U}(d(T))$, if $\text{Im}_{\text{Convert}_T}(b) = \text{True}$, then it lies in the image of Convert_T and $\text{Convert}(\text{Convert}^{-1}(b)) = b.$

\section{3.1 Monadic reduction for interpretations}

We have seen so far that it is possible to reduce questions about definability within NRC to the case of monadic schema. Now we turn to the analogous statement for interpretations, given by the following proposition:

Proposition 3.3. For any object schema SCH, there is a monadic nested relational schema SCH', a Δ_0 interpretation $\mathcal{I}_{\text{Convert}}$ from instances of SCH to instances of SCH', and another interpretation $\mathcal{I}_{\text{Convert}^{-1}}$ from instances of SCH to instances of SCH' compatible with Convert and Convert^{-1} as...
defined in Proposition 3.3 in the following sense: for every instance I of SCH and for every instance J of SCH’ in the codomain of Convert, we have

$$\text{Convert}^{-1}(J) = \text{Collapse}(I_{\text{Convert}^{-1}}(J)) \quad \text{Convert}(I) = \text{Collapse}(I_{\text{Convert}}(I))$$

Before proving Proposition 3.3, it is helpful to check that a number of basic NRC connectives may be defined at the level of interpretations. To do so, we first present a technical result for more general interpretations.

Proposition 3.4. For any sort T, there is an interpretation of SCH$_T$ into SCH$_T$ taking a models M whose every sort is non-empty and Bool has at least two elements to a model M of O(T). Furthermore, we have that M' is (up to isomorphism) the largest quotient of M' satisfying O(T).

Proof. This interpretation corresponds to a quotient of the input, that is definable at every sort

$$\phi_{\text{Set}(T)}^\text{Set}(x, y) = \forall z \ (z \in x \iff z \in y)$$
$$\phi_{\text{Unit}}^\text{Unit}(x, y) = T$$
$$\phi_{\equiv}^\equiv(x, y) = \top$$
$$\phi_{\bot}^\bot(x, y) = x = \bot y$$

\[\Box\]

Proposition 3.5. The following Δ_0-interpretations are definable:

- $\mathcal{I}_{\text{Sing}}$ defining the transformation $x \mapsto \{x\}$.
- \mathcal{I}_{\cup} defining the transformation $x, y \mapsto x \cup y$.

Furthermore, assuming that I is a Δ_0-interpretation defining a transformation E and I' is a Δ_0-interpretation defining a transformation R, the following Δ_0-interpretations are also definable:

- $\langle I, I' \rangle$ defining the transformation $x, y \mapsto (E(x), F(y))$.

Proof.

- For the singleton construction $\{e\}$ with e of type T, we take the interpretation I_e for e, where e itself is interpreted by a constant c and we add an extra level represented by an input constant c'. Then $\phi_{\text{Domain}}^\text{Set}(T)(x)$ is set to $y = c'$ and $\phi_{\equiv}^\text{Set}(T)(x, y)$ to $x = c \land y = c'$.
- The empty set \emptyset at type Set(T) is given by the trivial interpretation where $\phi_{\text{Domain}}^\text{Set}(T)(x)$ is set to $x = e$ for some constant c and $\phi_{\equiv}^\text{Set}(T)(x, y)$ is set to false for T' a component type of T, as well as all the $\phi_{\equiv}^T_e$.
- For the binary union $\mathcal{U} : \text{Set}(T), \text{Set}(T) \to \text{Set}(T)$, the interpretation is easy: T is interpreted as itself. The difference between input and output is that $\text{Set}(T) \times \text{Set}(T)$ is not an output sort and that $\text{Set}(T)$ is interpreted as a single element, the constant $()$ of Unit.

$$\phi_{\text{Domain}}^\text{Set}(T)(x) := x = ()$$
$$\phi_{\bot}^\text{Unit}(z, x) := z \in \pi_1(o_{in}) \lor z \in \pi_2(o_{in})$$

- We now discuss the Map operator. Assume that we have an interpretation \mathcal{I} defining a transformation $S \to T$ that we want to lift to an interpretation $\text{Map}(\mathcal{I}) : \text{Set}(S) \to \text{Set}(T)$. Let us write ψ_{Domain}^T, ψ_{\equiv}^T and ψ_{\bot}^T for the formulas making up \mathcal{I} and reserve the ϕ formulas for $\text{Map}(\mathcal{I})$. At the level of sort, let us write t^T and $r^\text{Map}(\mathcal{I})$ to distinguish the two. For every $T' \leq T$ such that T' is not a cartesian product or a component type of Bool, we set $r^\text{Map}(\mathcal{I})(T') = S, t^T$. This means that objects of sort T' are interpreted as in \mathcal{I} with an additional tag of sort S. We interpret the output object $\text{Set}(T)$ as a singleton by setting $r^\text{Map}(\mathcal{I})(\text{Set}(T)) = \text{Unit}$.
Assuming that $T \neq \mathcal{U}$, Unit, $\text{Map}(I)$ is determined by setting the following

\[
\begin{align*}
\varphi^\mathcal{U}_{\text{Domain}}(a) & := \exists s \in o_{in} \psi_{\text{Domain}}(a)[s/o_{in}] \\
\varphi^\mathcal{U}_e(a, s, \vec{x}) & := \psi^\mathcal{U}_e(a, \vec{x})[s/o_{in}]
\end{align*}
\]

\[
\begin{align*}
\varphi^T_{\text{Domain}}(s, \vec{x}) & := \psi^T_{\text{Domain}}(s)[s/o_{in}] \\
\varphi^T_e(s, \vec{x}, s', \vec{y}) & := \exists x' \psi^T_e(x', \vec{y})[s'/o_{in}] \land \varphi^T_e(s, \vec{x}, s', \vec{x}') \\
\varphi^T_{\text{Domain}}(s, \vec{x}) & := s \in o_{in} \\
\varphi^T_e(s, \vec{x}) & := \varphi^T_{\text{Domain}}(s, \vec{x})
\end{align*}
\]

where $[x/o_{in}]$ means that we replace occurrences of the constant o_{in} by the variable x and sorts T' and $T' \times T''$ are component types of T. Note that this definition is technically by induction over the type, as we use φ^T_e to define $\varphi^T_{\text{Domain}}$. In case $T \equiv \mathcal{U}$ or Unit, the last two formulas $\varphi^T_{\text{Domain}}$ and φ^T_e need to change. If $T = \text{Unit}$, then we set

\[
\varphi^\text{Unit}_{\text{Domain}}(c_0) := \varphi^\text{Unit}_e(c_0, c_0) := \exists s \in o_{in} \ T
\]

and if $T = \mathcal{U}$, we set

\[
\varphi^\mathcal{U}_{\text{Domain}}(a) := \varphi^\mathcal{U}_e(a) := \exists s \in o_{in} \psi_{\text{Domain}}(a)[s/o_{in}]
\]

Finally we need to discuss the pairing of two interpretation-definable transformations $\langle I_1, I_2 \rangle : S \rightarrow T_1 \times T_2$. Similarly as for map we reserve $\varphi^T_{\text{Domain}}$, φ^T_e and φ^T formulas for the interpretation $\langle I_1, I_2 \rangle$. We write ψ^T_{Domain}, ψ^T_e and ψ^T for components of I and θ^T_{Domain}, θ^T_e and θ^T for components of I'.

Now, the basic idea is to interpret output sorts of $\langle I_1, I_2 \rangle$ as tagged unions of elements that either come from I_1 or I_2. Here, we exploit the assumption that SCH_T contains the sort Bool and that every sort is non-empty to interpret the tag of the union. The union itself is then encoded as a concatenation of a tuple representing a would-be element form I_1 with another tuple representing a would-be element from I_2, the correct component being selected with the tag. For that second trick to work, note that we exploit the fact that every sort has a non-empty denotation in the input structure. Concretely, for every T component type of either T_1 or T_2, we thus set

\[
\begin{align*}
\tau^{(I_1, I_2)}(T) & := \text{Bool}, \tau^{I_1}(T), \tau^{I_2}(T) \\
\varphi^T_{\text{Domain}}(u, \vec{x}, \vec{y}) & := (u = \text{tt} \land \psi^T_{\text{Domain}}(\vec{x})) \lor (u \neq \text{tt} \land \theta^T_{\text{Domain}}(\vec{y})) \\
\varphi^T_e(u, \vec{x}, \vec{y}, u', \vec{x}', \vec{y}', \vec{y}'') & := (u = u' = \text{tt} \land \psi^T_e(\vec{x}, \vec{x}')) \lor (u = u' = \text{ff} \land \theta^T_e(\vec{y}, \vec{y}'')) \\
\varphi^T(u, \vec{x}, \vec{y}, u', \vec{x}', \vec{y}'') & := (u = u' = \text{tt} \land \psi^T(\vec{x}, \vec{x}')) \lor (u = u' = \text{ff} \land \theta^T(\vec{y}, \vec{y}''))
\end{align*}
\]

Note that this interpretation does not quite correspond to a pairing because it is not a complex object interpretation: the interpretation of common subobjects of T_1 and T_2 are not necessarily identified, so the output is not necessarily a model of O. This is fixed by postcomposing with the interpretation of Proposition 3.4 to obtain $\langle I_1, I_2 \rangle$.

\[\square\]
I_\uparrow, I_\downarrow, and $IPair$ are easy to define through Proposition 3.5, so we focus on the projections $I_{\hat{\pi}n_1,n_2}$ and $I_{\hat{\pi}n_1,n_2}$, defining transformations from U_m to U_n_i for $i \in \{1, 2\}$ where $m := \max(n_1,n_2)$. Note that in both cases, the output sort is part of the input sorts. Thus an output sort will be interpreted by itself in the input, and the formulas will be trivial for every sort lying strictly below the output sort: we take

$$\forall z \in o_{in} ~ \exists z' \in z x \in m - n_1 z'$$

for every $k < n_i$ (i according to which projection we are defining). The only remaining important data that we need to provide are the formulas φ_{Domain}, which, of course, differ for both projections. We provide those below, calling o_{in} the designated input object. For both cases, we use an auxiliary predicate $x \in^k y$ standing for $\exists y_1 \in y \ldots \exists y_{k-1} \in y_{k-2} x \in y_{k-1}$ for $k > 1$; for $k = 0, 1$, we take $x \in^1 y$ to be $x \in y$ and $x \in^0 y$ for $x = y$.

- For $I_{\hat{\pi}n_1,n_2}$, we set

$$\varphi_{\text{Domain}}(x) := \forall z \in o_{in} \exists z' \in z x \in^{m-n_1} z'$$

The basic idea is that the outermost $\forall \exists$ ensures that we compute the intersection of the two sets contained in the encoding of the pair.

- For $I_{\hat{\pi}n_1,n_2}$, first note that there are obvious Δ_0-predicates $\text{IsSing}(x)$ and $\text{IsTwo}(x)$ classifying singletons and two element sets. This allows us to write the following Δ_0 formula

$$\varphi_{\text{Domain}}(x) := \bigvee \begin{cases} \text{IsSing}(x) \land \forall z \in o_{in} \exists z' \in z x \in^{m-n_1} z' \\ \text{IsTwo}(x) \land \exists z \in o_{in} \exists y \in z' (y \notin z \land x \in^{m-n_2} z') \end{cases}$$

It is then easy to check that, regarded as transformations, those interpretation also implement the projections for Kuratowski pairs.

□
4 PROOFS FOR SECTION 5: EQUIVALENCE OF NESTED RELATIONAL TRANSFORMATIONS AND INTERPRETATIONS

From NRC[Get] expressions to interpretations. In the body of the paper we claimed that NRC[Get] expressions have the same expressiveness as interpretations. One direction of this expressive equivalence is given in the following lemma:

Lemma 4.1. There is an \textsc{ExpTime} computable function taking an NRC[Get] expression \(E \) to an equivalent FO interpretation \(I_E \).

As we mentioned in the body of the paper, very similar results occur in the prior literature, going as far back as [Van den Bussche 2001].

Proof. We can assume that the input and output schemas are monadic, using the reductions to monadic schemas given previously. Indeed, if we solve the problem for expressions where input and output schemas are monadic, we can reduce the problem of finding an interpretation for an arbitrary NRC[Get] expression \(E(x) \) as follows: construct a \(\Delta_0 \) interpretation \(I \) for the expression \(\text{Convert}(E(\text{Convert}^{-1}(x))) \) – where Convert and Convert\(^{-1}\) are taken as in Proposition 3.1 – and then, using closure under composition of interpretations (see e.g., [Benedikt and Koch 2009]), one can then leverage Proposition 3.3 to produce the composition of \(I_{\text{Convert}^{-1}}, I \) and \(I_\text{Convert} \) which is equivalent to the original expression \(E \).

The argument proceeds by induction on the structure of \(E : T \rightarrow S \) in NRC. Some atomic operators were treated in the prior section, like singleton \(\cup \), tupling, and projections. Using closure of interpretations under composition, we are thus able to translate compositions of those operators. We are only left with a few cases.

- For the set difference, since interpretations are closed under composition, it suffices to prove that we can code the transformation

 \[(x, y) \mapsto x \setminus y\]

 at every sort \(\text{Set}(U_n) \). Each sort gets interpreted by itself. We thus set

 \[\varphi_{\text{Domain}}(z) := z \in \pi_1(o_{\text{in}}) \land z \notin \pi_1(o_{\text{out}})\]

 \[\varphi_{\text{Domain}}(z) := \exists z' (\varphi_{\text{Domain}}(z) \land z \in \pi_{n-k}(z'))\]

 \[\varphi_{\text{Domain}}(z, z') := z \in z' \land \varphi_{\text{Domain}}(z) \land \varphi_{\text{Domain}}(z')\]

- To get NRC[Get] expressions, it suffices to create a \(\Delta_0 \) interpretation corresponding to Get which follows

 \[\varphi_{\text{Domain}}(a) := (\exists ! z \in o_{\text{in}} z = a) \lor (\neg (\exists ! z \in o_{\text{in}}) \land a = c_0)\]

- For the binding operator

 \[\bigcup \{E_1 \mid x \in E_2\}\]

 we exploit the classical decomposition

 \[\bigcup \circ \text{Map}(E_1) \circ E_2\]

 As interpretations are closed under composition and the mapping operations was handled in Proposition 3.5, it suffices to give an interpretation for the expression \(\bigcup : \text{Set}(\text{Set}(T)) \rightarrow \text{Set}(T) \) for every sort \(T \). This is straightforward: each sort gets interpreted as itself, except for \(\text{Set}(T) \) itself which gets interpreted as the singleton \(\{c_0\} \). The only non-trivial clause are the following

 \[\varphi_{\text{Domain}}^T(x, y) := \exists y' \in o_{\text{in}} x \in y'\]

\(\square\)
From interpretations to NRC[Get] expressions. The other direction of the expressivity equivalence is provided by the following lemma:

Lemma 4.2. There is a polynomial time function taking a Δ_0 interpretation to an equivalent NRC[Get] expression.

This direction is not used directly in the conversion from implicitly definable transformations to NRC[Get], but it is of interest in showing that NRC[Get] and Δ_0 interpretations are equally expressive.

Proof. (of Lemma 4.2) Using the reductions to monadic schemas, it suffices to show this for transformations that have monadic input schemas as input and output.

Fix a Δ_0 interpretation I with input U_n and output U_m.

Before we proceed, first note that for every $d \leq m$, there is an NRC expression

$$E_d : U_n \rightarrow \text{Set}(U_d)$$

collecting all of the subobjects of its input of sort U_d. It is formally defined by the induction over $n - d$.

$$E_m(x) := \{x\}$$

$$E_d(x) = \bigcup E_{d-1}(x)$$

Write $E_{d_1,...,d_k}(x)$ for $(E_{d_1},...,E_{d_k})(x)$ for every tuple of integers $d_1,...,d_k$.

For $d \leq m$, let $d_1,...,d_k$ be the tuple such that the output sort U_d is interpreted by the list of input sorts $U_{d_1},...,U_{d_k}$. By induction over d, we build NRC expressions

$$E_d : U_m, U_{d_1},...,U_{d_k} \rightarrow U_d$$

such that, provided that $\varphi_{\text{Domain}}(\vec{a})$ and $\varphi_{\text{Domain}}(\vec{b})$ hold, we have

$$\varphi_{U_d}^{\text{Domain}}(\vec{a}, \vec{b}) \quad \text{if and only if} \quad E_d(\vec{a}) \in E_{d+1}(\vec{b})$$

For $E_0 : U_m, U \rightarrow U$, we simply take the second projection. Now assume that E_d is defined and that we are looking to define E_{d+1}. We want to set

$$E_{d+1}(x_{i_1}, y) := \{E_d(x_{i_1}, \vec{x}) \mid \vec{x} \in E_{d_1,...,d_k}(x_{i_1}, y) \land \text{Verify}_{\varphi_{U_d}^m}(x_{i_1}, \vec{x}, y_{i_1}, y)\}$$

which is NRC-definable as follows

$$\bigcup \left\{ \text{case} \left(\text{Verify}_{\varphi_{U_d}^m}(x_{i_1}, \vec{x}, y_{i_1}, y), \{E_d(x_{i_1})\}, \{\} \right) \mid \vec{x} \in E_{d_1,...,d_k}(x_{i_1}) \right\}$$

where Verify is given as in the Verification Proposition proven earlier in the supplementary materials and $\{E(x, \vec{y}) \mid \vec{x} \in E'(\vec{y})\}$ is a notation for $\bigcup \{\cdots \bigcup \{E(x, \vec{y}) \mid x_1 \in \pi_1(E'(\vec{y})) \cdots \mid x_k \in \pi_k(E'(\vec{y}))\}\}$. It is easy to check that the inductive invariant holds.

Now, consider the transformation $E_m : U_n, U_{m_1},...,U_{m_k} \rightarrow U_m$. The transformation

$$R := \{E_m(x_{i_1}, \vec{y}) \mid \vec{y} \in E_{m_1,...,m_k}(x_{i_1}) \land \varphi_{U_m}^m(\vec{y})\}$$

is also NRC-definable using Verify. Since the inductive invariant holds at level m, R returns the singleton containing the output of I. Therefore NRC[Get]$(R) : U_n \rightarrow U_m$ is the desired NRC[Get] expression equivalent to the interpretation I.

\square

Note that the argument can be easily modified to produce an NRC[Get] expression that is composition-free: in union expressions $\bigcup \{E_1 \mid x \in E_2\}$, the range E_2 of the variable x is always another variable. In composition-free expressions, we allow as a native construct case(B, E_1, E_2) where B is a Boolean combination of atomic transformations with Boolean output, since we cannot use composition to derive the conditional from the other operations.
Thus every NRC[Get] expression can be converted to one that is composition-free, and similarly for NRC[Get]. The analogous statements have been observed before for related languages like XQuery [Benedikt and Koch 2009].
5 PROOFS FOR SECTION 6: PROOF DETAILS CONCERNING GENERATING INTERPRETATIONS FROM CLASSICAL PROOFS

5.1 Requirement that not all input sorts be singletons
Recall from Section 6 that in our main theorem relating implicit and explicit interpretability within multi-sorted logic, we required that the theory Σ entails the existence of a sort in $Sorts_0$ with more than one element.

We now explain that this requirement is essential. Otherwise we might have $Sorts_0$ entailed by Σ to consist of a single element which is named by a constant, while $Sorts_1$ has another sort with two elements, each named by a constant. Since every element of the models of Σ is named by a constant, all models are isomorphic, and hence we have implicit interpretability vacuously. But we cannot explicitly interpret $Sorts_1$ in $Sorts_0$ simply for cardinality reasons.

5.2 Details of the reduction allowing us to drop additional parameters
Recall that in the body of the paper we claimed that to be able to generate NRC[Get] expressions from projective implicit definitions, it suffices to deal with implicit definitions: formulas $\Sigma'(o_{in}, o_{out})$ with no auxiliary variables \vec{a}:

For any Δ_0 formula $\Sigma(o_{in}, o_{out}, \vec{a})$ that implicitly defines o_{out} as a function of o_{in}, there is another Δ_0 formula $\Sigma'(o_{in}, o_{out})$ which implicitly o_{out} as a function of o_{in} such that $\Sigma(o_{in}, o_{out}, \vec{a}) \Rightarrow \Sigma'(o_{in}, o_{out})$.

We now give the proof:

Proof. The assumption that Σ implicitly defines o_{out} as a function of o_{in} means that we have an entailment

$$\Sigma(o_{in}, o_{out}, \vec{a}) \models \Sigma(o_{in}, o_{out}', \vec{a}')$$

Applying Δ_0 interpolation we may obtain a formula $\theta(o_{in}, o_{out})$ such that

$$\Sigma(o_{in}, o_{out}, \vec{a}) \models \theta(o_{in}, o_{out}) \quad \text{and} \quad \theta(o_{in}, o_{out}) \land \Sigma(o_{in}, o_{out}', \vec{a}') \models o_{out} = o_{out}'$$

Now we can derive the following entailment

$$\Sigma(o_{in}, o_{out}, \vec{a}) \models [\theta(o_{in}, o_{out}') \land \theta(o_{in}, o_{out}'')] \Rightarrow o_{out}' = o_{out}''$$

This entailment is obtained from the second property of θ, since we can infer that $o_{out}' = o_{out}$ and $o_{out}'' = o_{out}$.

Now we can apply interpolation again to obtain a formula $D(o_{in})$ such that

$$\Sigma(o_{in}, o_{out}, \vec{a}) \models D(o_{in}) \quad \text{and} \quad D(o_{in}) \land \theta(o_{in}, o_{out}') \land \theta(o_{in}, o_{out}'') \models o_{out}' = o_{out}''$$

We now claim that $\Sigma'(o_{in}, o_{out}) := D(o_{in}) \land \theta(o_{in}, o_{out})$ is an implicit definition extending Σ. Functionality of Σ' is a consequence of the second entailment witnessing that D is an interpolant. Finally, the implication $\exists \vec{a} \Sigma(o_{in}, o_{out}, \vec{a}) \models \Sigma'(o_{in}, o_{out})$ is given by the combination of the first entailments witnessing that θ and D are interpolants.

Reduction to complete theories
Recall the result on multi-sorted first-order logic in the body of the paper:

For any Σ, $Sorts_0$, $Sorts_1$ such that Σ entails that a sort of $Sorts_0$ has at least two elements, $Sorts_1$ is explicitly interpretable over $Sorts_0$ if and only if it is implicitly interpretable over $Sorts_0$.

In the body of the paper, we argued that it suffices to prove this for the case when Σ is a complete theory. We now prove this:
The hypothesis of the theorem, implicit interpretability of \(\text{Sorts}_1 \) over \(\text{Sorts}_0 \) relative to \(\Sigma \), is preserved under extending \(\Sigma \), and thus both \(\Sigma \cup \{ \rho \} \) and \(\Sigma \cup \{ \neg \rho \} \) implicitly define \(\text{Sorts}_1 \) as well. Suppose by way of contradiction that in both extensions \(\text{Sorts}_1 \) is explicitly interpretable over \(\text{Sorts}_0 \). That is, suppose \(\text{Sorts}_1 \) is explicitly interpretable over \(\text{Sorts}_0 \) via \(\Theta_1 \) relative to \(\Sigma \cup \{ \rho \} \), and also that \(\text{Sorts}_1 \) is explicitly interpretable over \(\text{Sorts}_0 \) via \(\Theta_2 \) relative to \(\Sigma \cup \{ \neg \rho \} \). At this point we would like to combine \(\Theta_1 \) and \(\Theta_2 \) to get an explicit interpretation relative to \(\Sigma \), contradicting the assumption. The obvious way to do this would be to apply \(\Theta_1 \) or \(\Theta_2 \) conditioning on \(\rho \). However, \(\rho \) may make use of sorts outside of \(\text{Sorts}_0 \).

Consider the sentence \(\Sigma_1 \) stating that \(\Sigma \) holds and if \(\rho \) holds then \(\text{Sorts}_1 \) is interpreted via \(\Theta_1 \) applied to \(\text{Sorts}_0 \). Then \(\Sigma_1 \) is implicitly definable over \(\text{Sorts}_0 \), and thus by the standard Beth Definability theorem [Beth 1953; Craig 1957], there is a sentence \(\Sigma'_1 \) over \(\text{Sorts}_0 \) that holds of models \(M \) that extend to a \(\Sigma_1 \) structure. Similarly we get a sentence \(\Sigma'_2 \) over \(\text{Sorts}_0 \) that holds of a \(\text{Sorts}_0 \) structure \(M \) whenever \(M \) has an expansion that either satisfies \(\rho \) or agrees with \(\Theta_2 \). We can then form an interpretation that acts as \(\Theta_1 \) when \(\Sigma'_1 \) holds and as \(\Theta_2 \) when \(\Sigma'_2 \) holds, and this gives a contradiction of the assumption that the theorem failed for \(\Sigma \).

\(\square \)

Proof of the final equivalence

Recall that in the body of the paper we stated the following result:

The following are equivalent for a transformation \(\mathcal{T} \):

- \(\mathcal{T} \) is projectively implicitly definable by a \(\Lambda_0 \) formula
- \(\mathcal{T} \) is implicitly definable by a \(\Lambda_0 \) formula
- \(\mathcal{T} \) is definable via a \(\Lambda_0 \) interpretation
- \(\mathcal{T} \) is NRC[Get] definable

The directions from the first bullet through to the fourth are proven in the paper. What remains is to show the following “easy implication”.

For every NRC[Get] expression \(E \) we can obtain a \(\Lambda_0 \) formula that implicitly defines \(E \).

This can be done by induction on the structure of \(E \). For example, consider the case of the singleton constructor \(E = \{ F \} \). Inductively we have \(\varphi_F(\vec{x}, q_2) \) defining \(F \), and from there we can define \(E \) by:

\[
(\exists q_2 \in q_1 \top) \land (\forall q_2 \in q_1 \varphi_F(\vec{x}, q_2))
\]

We discuss briefly the inductive case of the union operator. One approach, is to break this operator down into a simpler union operator where the variable can only iterate over another variable. The full union operator can be recovered if we also allow a composition operation. The simpler operator is easy to handle inductively. Composition can be handled without a blow-up if we allow *projective implicit definitions*, because projective implicit definitions are closed under composition. From our prior results, we know that projective implicit definitions are no more expressive than implicit ones.

An alternative is to rely on the NRC[Get] normalization result mentioned at the end of Lemma 4.2: we can pre-process NRC[Get] expressions to be composition-free: in unions we do not iterate over complex expressions. For these normalized expressions, the creation of implicit definitions can be done in PTIME.
REFERENCES