Extracting nested relational queries from implicit definitions

Pierre Pradic
(j.w.w. Michael Benedikt)

University of Oxford

November 6th, 2020
Plan of the talk

- The nested relational calculus (NRC)
- Implicit definability, implicit \rightarrow explicit for the flat case
- Our contribution: implicit \rightarrow explicit for NRC
The nested relational calculus (NRC)

Implicit definition

Implicit to explicit: the nested case

Perspectives
The nested relational calculus (NRC)

Syntax

Types: \[T, U ::= \emptyset | \text{Set}(T) | 1 | T \times U \]

Terms: \[Q, R ::= x | \emptyset | Q \cup R | Q \setminus R | \{Q\} | \bigcup\{Q \mid x \in R\} | \langle Q, \ldots, R \rangle | \pi_i \]

Terms represent *nested queries* of some given type \(T \to U \)

- Cartesian structure
- Monad structure on Set
- Idempotent monoid \(\text{Set}(T) \)
- Set difference \(Q \setminus R \)

Generalizes flat relational queries with higher-order types

\[
\text{flat} \cong \text{Set}(\Upsilon^1) \times \ldots \times \text{Set}(\Upsilon^k) \to \text{Set}(\Upsilon^m)
\]
Examples

A flat query

The fiber of a relation f at some point x

$$\text{fib} : \mathcal{U} \times \text{Set}(\mathcal{U} \times \mathcal{U}) \rightarrow \text{Set}(\mathcal{U})$$

$$(x, f) \mapsto f^{-1}(x)$$

- “concrete instance”: \mathcal{U} contains names, f = “is the parent of”
- can be written as $(x, f) \mapsto \bigcup \{ \text{case}(\pi_2(p) = \mathcal{U} x, \{\pi_1(p)\}, \emptyset) \mid p \in f\}$

syntactic sugar: case, $=_{\mathcal{U}}$
Examples

A flat query

The fiber of a relation f at some point x

$$
\text{fib} : \, U \times \text{Set}(U \times U) \rightarrow \text{Set}(U) \\
(x, f) \quad \mapsto \quad f^{-1}(x)
$$

- “concrete instance”: U contains names, f = “is the parent of”
- can be written as $(x, f) \mapsto \bigcup \{\text{case}(\pi_2(p) =_U x, \{\pi_1(p)\}, \emptyset) \mid p \in f\}$

syntactic sugar: case, $=_U$

A genuine nested query

Collect all fibers of f

$$
\text{fibs} : \, \text{Set}(U \times U) \rightarrow \text{Set}(U \times \text{Set}(U)) \\
f \quad \mapsto \quad \{(a, f^{-1}(a)) \mid a \in \text{cod}(f)\}
$$

- can be written as $f \mapsto \bigcup \{\{\text{fib}(x, f)\} \mid x \in \{\pi_1(p) \mid p \in f\}\}$
Expressiveness of NRC

From now on, set $\text{Bool} := \text{Set}(1)$.
Derivable constructs:

- maps $\{Q(x) \mid x \in R\}$
- set intersection $Q \cap R$
- case analyses
- basic predicates $=^T : T \times T \rightarrow \text{Bool}$, $\in^T : T \times \text{Set}(T) \rightarrow \text{Bool}$
Expressiveness of NRC

From now on, set $\text{Bool} := \text{Set}(1)$.
Derivable constructs:

- maps $\{Q(x) \mid x \in R\}$
- set intersection $Q \cap R$
- case analyses if the output is some $\text{Set}(T)$
- basic predicates $\equiv_T: T \times T \rightarrow \text{Bool}$, $\in_T: T \times \text{Set}(T) \rightarrow \text{Bool}$

Proposition

NRC queries $Q(x^T): T \rightarrow \text{Bool}$ correspond exactly to Δ_0 formulas $\varphi(x^T)$.
Expressiveness of NRC

From now on, set $\text{Bool} := \text{Set}(1)$. Derivable constructs:

- maps $\{Q(x) \mid x \in R\}$
- set intersection $Q \cap R$
- case analyses (if the output is some $\text{Set}(T)$)
- basic predicates $\equiv_T: T \times T \to \text{Bool}$, $\in_T: T \times \text{Set}(T) \to \text{Bool}$

Proposition

NRC queries $Q(x^T): T \to \text{Bool}$ correspond exactly to Δ_0 formulas $\varphi(x^T)$.

$\iff \Delta_0$-separation is encodable in NRC

$\{x \in Q \mid \varphi(x)\}$
Limits to the expressiveness of NRC

For practical purposes, NRC is not be too expressive

- NRC is *conservative* over idealized SQL i.e., for flat queries
- for finite inputs, the output has *polynomial* size

Consequences

- rules out $x \mapsto \mathcal{P}(x)$
- rules out *curryfication!*

Consider $(x, y) \mapsto \text{tt}

$[T \to \text{Set}(U)] \not\cong [T \times U \to \text{Bool}]$

$[T \to \text{Set}(U)] \hookrightarrow [T \times U \to \text{Bool}]$

(For the rest of the talk: no finiteness assumptions)
The nested relational calculus (NRC)

Implicit definition

Implicit to explicit: the nested case

Perspectives
Implicit definability

$\varphi(i, o)$ is a *functional* definition of o in terms of i if

$$\varphi(i, o) \land \varphi(i, o') \Rightarrow o = o'$$

Defines a *partial* function $I \rightarrow O$
Implicit definitions

Implicit definability

\(\varphi(i, o) \) is a functional definition of \(o \) in terms of \(i \) if

\[\varphi(i, o) \land \varphi(i, o') \Rightarrow o = o' \]

 Defines a partial function \(I \rightarrow O \)

Main theorem

Expressible in NRC \(\iff \) Has an implicit definition

- We call a NRC term an explicit definition
- Partial implicit definitions \(\rightarrow \) compatible total explicit definitions
- (Orthogonal to C-H approaches, where totality proofs are used)
- \(\Rightarrow \): easy to map a NRC expression to an implicit definition
Main theorem

| Expressible in NRC | ⇔ | Has an implicit definition |

Implicit definitions might arguably be more convenient for users at times.
Main theorem

Expressible in NRC \iff Has an implicit definition

Implicit definitions might arguably be more convenient for users at times.

Use-case: inverting a query

Consider an injective NRC query such as fibs

$$\text{fibs} : \text{Set}(\mathcal{U} \times \mathcal{U}) \to \text{Set}(\mathcal{U} \times \text{Set}(\mathcal{U}))$$

$$f \mapsto \{(a, f^{-1}(a)) \mid a \in \text{cod}(f)\}$$
Main theorem

Expressible in NRC \iff Has an implicit definition

Implicit definitions might arguably be more convenient for users at times.

Use-case: inverting a query

Consider an injective NRC query such as fibs

$$\text{fibs} : \text{Set}(\mathcal{U} \times \mathcal{U}) \rightarrow \text{Set}(\mathcal{U} \times \text{Set}(\mathcal{U}))$$

$$f \quad \mapsto \quad \{(a, f^{-1}(a)) \mid a \in \text{cod}(f)\}$$

- can be converted to an implicit $\varphi(f, F)$
Use-case for implicit→explicit

Main theorem

Expressible in NRC ⇐⇒ Has an implicit definition

Implicit definitions might arguably be more convenient for users at times.

Use-case: inverting a query

Consider an injective NRC query such as fibs

\[
\text{fibs} : \text{Set}(\mathcal{U} \times \mathcal{U}) \rightarrow \text{Set}(\mathcal{U} \times \text{Set}(\mathcal{U}))
\]

\[
f \mapsto \{(a, f^{-1}(a)) | a \in \text{cod}(f)\}
\]

- can be converted to an implicit \(\varphi(f, F)\)
- \(\varphi(f, F)\) defines a partial function \(f \mapsto F\)
Main theorem

Expressible in NRC \iff Has an implicit definition

Implicit definitions might arguably be more convenient for users at times.

Use-case: inverting a query

Consider an injective NRC query such as fibs

\[
fibs : \text{Set}(U \times U) \to \text{Set}(U \times \text{Set}(U))
\]

\[
f \mapsto \{(a, f^{-1}(a)) | a \in \text{cod}(f)\}
\]

- can be converted to an implicit $\varphi(f, F)$
- $\varphi(f, F)$ defines a partial function $f \mapsto F$
- \leadsto a NRC-definable retract of fibs
Interpolation

The result was already known for the flat case.

Beth definability

Let $\varphi(R)$ be a first-order formula. If $\varphi(R) \land \varphi(R') \Rightarrow R \equiv R'$, then there is a FO $\psi(\vec{x})$ such that $\varphi(\psi)$. i.e., R first-order definable
Interpolation

The result was already known for the flat case.

Beth definability

Let $\varphi(R)$ be a first-order formula. If $\varphi(R) \land \varphi(R') \Rightarrow R \equiv R'$, then there is a FO $\psi(\bar{x})$ such that $\varphi(\psi)$. i.e., R first-order definable

- Model-theoretic proof using amalgamation
Interpolation

The result was already known for the flat case.

Beth definability

Let $\varphi(R)$ be a first-order formula. If $\varphi(R) \land \varphi(R') \Rightarrow R \equiv R'$, then there is a FO $\psi(\overline{x})$ such that $\varphi(\psi)$. i.e., R first-order definable

- Model-theoretic proof using amalgamation
- Proof-theoretic effective proof using interpolation
The result was already known for the flat case.

Beth definability

Let $\varphi(R)$ be a first-order formula.
If $\varphi(R) \land \varphi(R') \Rightarrow R \equiv R'$, then there is a FO $\psi(\vec{x})$ such that $\varphi(\psi)$.

i.e., R first-order definable

- Model-theoretic proof using amalgamation
- Proof-theoretic effective proof using interpolation

Craig interpolation

If $\varphi \Rightarrow \psi$, there exists θ such that

$\varphi \Rightarrow \theta$ and $\theta \Rightarrow \psi$

and $\text{Vocabulary}(\theta) \subseteq \text{Vocabulary}(\varphi) \cap \text{Vocabulary}(\psi)$
Interpolation

The result was already known for the flat case.

Beth definability

Let $\varphi(R)$ be a first-order formula. If $\varphi(R) \land \varphi(R') \Rightarrow R \equiv R'$, then there is a FO $\psi(\vec{x})$ such that $\varphi(\psi)$. i.e., R first-order definable

- Model-theoretic proof using amalgamation
- Proof-theoretic effective proof using interpolation

Craig interpolation

If $\varphi \Rightarrow \psi$, there exists θ such that

$\varphi \Rightarrow \theta$ and $\theta \Rightarrow \psi$

and $\text{Vocabulary}(\theta) \subseteq \text{Vocabulary}(\varphi) \cap \text{Vocabulary}(\psi)$

- θ linear-time computable from a cut-free derivation
- Rather robust result

Δ_0-interpolation, intuitionistic/linear logic...
Fix an implicit definition $\varphi(I, O)$ with $I : \text{Set}(\mathcal{U}^k)$ and $O : \text{Set}(\mathcal{U}^m)$.

Effective proof sketch

Difficulty with the nested case: there is no M!
Fix an implicit definition $\varphi(I, O)$ with $I : \text{Set}(\mathcal{U}^k)$ and $O : \text{Set}(\mathcal{U}^m)$.

Effective proof sketch

1. Apply interpolation to
 $$\varphi(I, O) \land O(\vec{x}) \vdash \varphi(I, O') \Rightarrow O'(\vec{x})$$
 to obtain an explicit Δ_0 definition $\theta(I, \vec{x})$.
Proof idea for the flat case

Fix an implicit definition \(\varphi(I, O) \) with \(I : \text{Set}(\mathcal{U}^k) \) and \(O : \text{Set}(\mathcal{U}^m) \).

Effective proof sketch

1. Apply interpolation to

\[
\varphi(I, O) \land O(\vec{x}) \vdash \varphi(I, O') \Rightarrow O'(\vec{x})
\]

to obtain an explicit \(\Delta_0 \) definition \(\theta(I, \vec{x}) \).

2. There is a NRC term \(M : \text{Set}(\mathcal{U}^k) \to \text{Set}(\mathcal{U}^m) \) maximal for \(\subseteq \).
Proof idea for the flat case

Fix an implicit definition $\varphi(I, O)$ with $I : \text{Set}(\mathcal{U}^k)$ and $O : \text{Set}(\mathcal{U}^m)$.

Effective proof sketch

1. Apply interpolation to

 $$\varphi(I, O) \land O(\bar{x}) \vdash \varphi(I, O') \Rightarrow O'(\bar{x})$$

 to obtain an explicit Δ_0 definition $\theta(I, \bar{x})$.

2. There is a NRC term $M : \text{Set}(\mathcal{U}^k) \rightarrow \text{Set}(\mathcal{U}^m)$ maximal for \subseteq

 Additionally, $\theta(I, \bar{x}) \iff \theta^M(I, \bar{x})$ for any $\theta \in \Delta_0$.

Difficulty with the nested case: there is no M!
Proof idea for the flat case

Fix an implicit definition $\varphi(I, O)$ with $I : \text{Set}(\mathcal{U}^k)$ and $O : \text{Set}(\mathcal{U}^m)$.

Effective proof sketch

1. Apply interpolation to $\varphi(I, O) \land O(\vec{x}) \vdash \varphi(I, O') \Rightarrow O'(\vec{x})$
 to obtain an explicit Δ_0 definition $\theta(I, \vec{x})$.

2. There is a NRC term $M : \text{Set}(\mathcal{U}^k) \rightarrow \text{Set}(\mathcal{U}^m)$ maximal for \subseteq
 Additionally, $\theta(I, \vec{x}) \iff \theta^M(I, \vec{x})$ for any $\theta \in \Delta_0$.

3. Conclude using Δ_0-comprehension in NRC
 \[\{ \vec{x} \in M \mid \theta(I, x) \} \]
Fix an implicit definition $\varphi(I, O)$ with $I : \text{Set}(\mathcal{U}^k)$ and $O : \text{Set}(\mathcal{U}^m)$.

Effective proof sketch

1. Apply interpolation to
 \[\varphi(I, O) \land O(\vec{x}) \vdash \varphi(I, O') \Rightarrow O'(\vec{x}) \]
 to obtain an explicit Δ_0 definition $\theta(I, \vec{x})$.

2. There is a NRC term $M : \text{Set}(\mathcal{U}^k) \rightarrow \text{Set}(\mathcal{U}^m)$ maximal for \subseteq.
 Additionally, $\theta(I, \vec{x}) \iff \theta^M(I, \vec{x})$ for any $\theta \in \Delta_0$.

3. Conclude using Δ_0-comprehension in NRC
 \[\{ \vec{x} \in M \mid \theta(I, x) \} \]

Difficulty with the nested case: there is no M!
The nested relational calculus (NRC)

Implicit definition

Implicit to explicit: the nested case

Perspectives
Main theorem

| Expressible in NRC | \iff | Has a Δ_0 implicit definition |

\impliedby automatic translation of implicit definitions to NRC?
Main ineffective result

Main theorem

| Expressible in NRC | ⇔ | Has a Δ_0 implicit definition |

Does automatic translation of implicit definitions to NRC?

Problem: a non-constructive proof
- Model-theoretic argument
- A generalization of Beth for multi-sorted structures
Main ineffective result

Main theorem

Expressible in NRC \iff Has a Δ_0 implicit definition

\rightsquigarrow automatic translation of implicit definitions to NRC?

Problem: a non-constructive proof

- Model-theoretic argument
 - omitting types, . . .
- a generalization of Beth for multi-sorted structures

Partial effective result

Expressible in NRC \iff Has an intuitionistic Δ_0 implicit definition
Main effective result

Partial effective result

Expressible in NRC \iff Has an \textit{intuitionistic} Δ_0 implicit definition

Algorithmic content

\textbf{Input:}
- An implicit definition $\phi(i, o)$
- An intuitionistic (cut-free) proof π of functionality of ϕ

\textbf{Output:}
- A NRC query $Q(i)$ such that $\phi(i, o) \Rightarrow Q(i) = o$

\textbf{Caveat: cut-elimination}
Main effective result

Partial effective result

Expressible in NRC \iff Has an intuitionistic Δ_0 implicit definition

Algorithmic content

Input:
- An implicit definition $\varphi(i, o)$
- An intuitionistic (cut-free) proof π of functionality of φ

Output:
- A NRC query $Q(i)$ such that $\varphi(i, o) \Rightarrow Q(i) = o$
- Linear-time

Caveat: cut-elimination
Main effective result

Partial effective result

Expressible in NRC \iff Has an intuitionistic Δ_0 implicit definition

Algorithmic content

Input:
- An implicit definition $\varphi(i, o)$
- An intuitionistic (cut-free) proof π of functionality of φ

Output:
- A NRC query $Q(i)$ such that $\varphi(i, o) \Rightarrow Q(i) = o$

- Linear-time
- Let’s look at the details…

Caveat: cut-elimination
Δ₀ formulas and intuitionistic sequents

Let’s make several quality-of-life adjustments

\[t, u ::= x \mid (t, u) \mid \pi_1(t) \mid \pi_2(t) \mid () \]

\[\varphi, \psi ::= t =_\Sigma u \mid t \neq_\Sigma u \mid \exists x \in t \varphi \mid \forall x \in t \varphi \mid \varphi \land \psi \mid \varphi \lor \psi \]
Let’s make several quality-of-life adjustments

\[
\begin{align*}
 t, u & ::= \ x \ | \ (t, u) \ | \ \pi_1(t) \ | \ \pi_2(t) \ | \ () \\
 \varphi, \psi & ::= \ t =_U u \ | \ t \neq_U u \ | \ \exists x \in t \ \varphi \ | \ \forall x \in t \ \varphi \ | \ \varphi \land \psi \ | \ \varphi \lor \psi
\end{align*}
\]

We use a cut-free version of LJ as our proof system. Cut is admissible
Δ₀ formulas and intuitionistic sequents

Let’s make several quality-of-life adjustments

\[
\begin{align*}
t, u & ::= x \mid (t, u) \mid \pi_1(t) \mid \pi_2(t) \mid () \\
\phi, \psi & ::= t =_\text{Set}(T) u \mid t \neq_\text{Set}(T) u \mid \exists x \in t \phi \mid \forall x \in t \phi \mid \phi \land \psi \mid \phi \lor \psi
\end{align*}
\]

We use a cut-free version of LJ as our proof system. Cut is admissible

Derived formulas

\[
\begin{align*}
t =_{\text{Set}(T)} u & ::= t \subseteq_T u \land u \subseteq_T t \\
t \subseteq_T u & ::= \forall x \in t. x \in_T u \\
t \in_T u & ::= \exists x \in u. t =_T u
\end{align*}
\]
Δ₀ formulas and intuitionistic sequents

Let’s make several quality-of-life adjustments

\[t, u ::= x \mid (t, u) \mid \pi_1(t) \mid \pi_2(t) \mid () \]

\[\phi, \psi ::= t =_u u \mid t \not= u \mid \exists x \in t \phi \mid \forall x \in t \phi \mid \phi \land \psi \mid \phi \lor \psi \]

We use a cut-free version of LJ as our proof system. Cut is admissible

Derived formulas

\[
\begin{align*}
t =_{\text{Set}(T)} u & ::= t \subseteq_T u \land u \subseteq_T t \\
t \subseteq_T u & ::= \forall x \in t. x \in_T u \\
t \in_T u & ::= \exists x \in u. t =_T u
\end{align*}
\]

- Allows to suppress the axiom of extensionality
- No further set-theoretic axioms!
\(\Delta_0 \) formulas and intuitionistic sequents

Let’s make several quality-of-life adjustments

\[
\begin{align*}
t, u & ::= \ x \mid (t, u) \mid \pi_1(t) \mid \pi_2(t) \mid () \\
\varphi, \psi & ::= \ t =_U u \mid t \neq_U u \mid \exists x \in t \ \varphi \mid \forall x \in t \ \varphi \mid \varphi \land \psi \mid \varphi \lor \psi
\end{align*}
\]

We use a cut-free version of LJ as our proof system. \hspace{1cm} \text{Cut is admissible}

Derived formulas

<table>
<thead>
<tr>
<th>Formula</th>
<th>Definition</th>
</tr>
</thead>
<tbody>
<tr>
<td>(t =_{\text{Set}(T)} u)</td>
<td>(t \subseteq_T u \land u \subseteq_T t)</td>
</tr>
<tr>
<td>(t \subseteq_T u)</td>
<td>(\forall x \in t. \ x \in_T u)</td>
</tr>
<tr>
<td>(t \in_T u)</td>
<td>(\exists x \in u. \ t =_T u)</td>
</tr>
</tbody>
</table>

- Allows to suppress the axiom of extensionality
- No further set-theoretic axioms!
- Subformula property, for functionality proofs in LJ, sequents have shape

\[
\Gamma \vdash t \in_T u \quad \text{or} \quad \Gamma \vdash t \subseteq_T u \quad \text{or} \quad \Gamma \vdash t =_T u
\]
Inspired by **interpolation**

Suppose \(\Gamma(c, \vec{l}), \Delta(c, \vec{r}) \vdash l \square r \).
Inspired by **interpolation**

Suppose $\Gamma(c, \vec{l}), \Delta(c, \vec{r}) \vdash l \square r$.

Then we can compute $E(c)$ in NRC such that
Inspired by **interpolation**
Suppose $\Gamma(c, \bar{l}), \Delta(c, \bar{r}) \vdash l \square r$.
Then we can compute $E(c)$ in NRC such that

Inductive invariant

- if \square is \equiv_T, then $\Gamma, \Delta \models l = E \land r = E$
Extraction of terms from proofs

Inspired by **interpolation**

Suppose $\Gamma(c, \vec{l}), \Delta(c, \vec{r}) \vdash l \sqcap r$.

Then we can compute $E(c)$ in NRC such that

Inductive invariant

- if \sqcap is \sqcap_T, then $\Gamma, \Delta \models l = E \land r = E$
- if \sqcap is \subseteq_T, then $\Gamma, \Delta \models l \subseteq E \land E \subseteq r$
Inspired by **interpolation**

Suppose $\Gamma(c, \vec{l}), \Delta(c, \vec{r}) \vdash l \sqcap r$.

Then we can compute $E(c)$ in NRC such that

Inductive invariant

- if \square is $=_{T}$, then $\Gamma, \Delta \models l = E \land r = E$
- if \square is \subseteq_{T}, then $\Gamma, \Delta \models l \subseteq E \land E \subseteq r$
- if \square is \in_{T}, then $\Gamma, \Delta \models l \in E$
Extraction of terms from proofs

Inspired by **interpolation**
Suppose $\Gamma(c, \vec{l}), \Delta(c, \vec{r}) \vdash l \square r$.
Then we can compute $E(c)$ in NRC such that

Inductive invariant

- if \square is $=_T$, then $\Gamma, \Delta \models l = E \land r = E$
- if \square is \subseteq_T, then $\Gamma, \Delta \models l \subseteq E \land E \subseteq r$
- if \square is \in_T, then $\Gamma, \Delta \models l \in E$

Not quite interpolation

RHS depends on l
Extraction of terms from proofs

Inspired by **interpolation**

Suppose $\Gamma(c, \vec{l}), \Delta(c, \vec{r}) \vdash l \sqcap r$.

Then we can compute $E(c)$ in NRC such that

Inductive invariant

- if \square is $=_{T}$, then $\Gamma, \Delta \models l = E \land r = E$
- if \square is \subseteq_{T}, then $\Gamma, \Delta \models l \subseteq E \land E \subseteq r$
- if \square is \in_{T}, then $\Gamma, \Delta \models l \in E$

Not quite interpolation

RHS depends on l

Going from 3. to 2.

If \square is \in_{T}, then we can compute $E'(c)$ such that

$$\Gamma, \Delta \models l \in E' \land E' \subseteq r$$
Inspired by **interpolation**

Suppose \(\Gamma(c, \vec{l}), \Delta(c, \vec{r}) \vdash l \Box r \).

Then we can compute \(E(c) \) in NRC such that

Inductive invariant

- if \(\Box \) is \(=_T \), then \(\Gamma, \Delta \models l = E \land r = E \)
- if \(\Box \) is \(\subseteq_T \), then \(\Gamma, \Delta \models l \subseteq E \land E \subseteq r \)
- if \(\Box \) is \(\in_T \), then \(\Gamma, \Delta \models l \in E \)

Not quite interpolation
RHS depends on \(l \)

Going from 3. to 2.

If \(\Box \) is \(\in_T \), then we can compute \(E'(c) \) such that

\[
\Gamma, \Delta \models l \in E' \land E' \subseteq r
\]

- apply \(\Delta_0 \) interpolation to \(\Gamma \vdash \Delta \Rightarrow l \in_T r \) to obtain \(\theta(c, l) \)

\[
\leadsto \Gamma, \Delta \text{ jointly imply } l \in \{ x \in E \mid \theta(c, l) \} \subseteq r
\]
The nested relational calculus (NRC)

Implicit definition

Implicit to explicit: the nested case

Perspectives
Towards classical proofs

LJ is not complete for functionality proofs wrt classical Tarskian semantics.

\[w \in r; \forall x \in l. l \in r, \forall y \in w. l \in r \vdash l \in r \]
LJ is not complete for functionality proofs w.r.t. classical Tarskian semantics.

\[w \in r; \forall x \in l. \ l \in r, \ \forall y \in w. \ l \in r \vdash l \in r \]

\[\vdash \text{generalize the argument for LK?} \]

While keeping a reasonable algorithmic complexity?

\[\Gamma \vdash t_1 \in T_1 \ u_1 \ \lor \ldots \ \lor \ t_k \in T_k \ u_k \]
Towards classical proofs

LJ is not complete for functionality proofs wrt classical Tarskian semantics.

\[w \in r; \ \forall x \in l. \ l \in r, \ \forall y \in w. \ l \in r \vdash l \in r \]

\[\leadsto \text{generalize the argument for LK?} \]

While keeping a reasonable algorithmic complexity?

\[\Gamma \vdash t_1 \in T_1 \ u_1 \ \lor \ldots \ \lor t_k \in T_k \ u_k \]

Issues

▶ What inductive invariant?

▶ Naive attempts fail because we cannot adapt the above

\[l \in E \quad \leadsto \quad l \in E' \ \land \ E' \subseteq r \]
Towards classical proofs

LJ is not complete for functionality proofs wrt classical Tarskian semantics.

\[w \in r; \ \forall x \in l. \ l \in r, \ \forall y \in w. \ l \in r \vdash l \in r \]

\[\leadsto \text{generalize the argument for LK?} \]

While keeping a reasonable algorithmic complexity?

\[\Gamma \vdash t_1 \in T_1 \ u_1 \lor \ldots \lor t_k \in T_k \ u_k \]

Issues

- What inductive invariant?
- Naive attempts fail because we cannot adapt the above

\[l \in E \quad \iff \quad l \in E' \land E' \subseteq r \]

- Unclear how to constructivize the model-theoretic arguments
The model-theoretic argument

First, an effective correspondence between NRC and interpretations, regarding nested collections as models for ∈ interpretations: maps between models defined by FO formulas

Then, reduction to a model-theoretic result:

Multi-sorted implicit definability
Let Σ be a theory with a multisorted signature \{τ, σ\}. Say that σ is implicitly definable from τ when, for every \(M, M' \models Σ\) and bijective homomorphism \(M|_τ \cong M'|_τ\), there is a unique extension \(M \cong M'\).

Theorem
If σ is implicitly definable from τ, then there is an interpretation of Σ into \(Σ|_τ\).

Is there an effective version?
The inductive invariant, classically

Last slide: deals only with functionality.
What about $\Gamma(c, l), \Delta(c, r) \models l \in r \implies \exists E' \ l \in E' \subseteq r$?
The inductive invariant, classically

Last slide: deals only with functionality.
What about $\Gamma(c, l), \Delta(c, r) \models l \in r \implies \exists E' l \in E' \subseteq r$?

Model-theoretic proof sketch based on a generalization of Beth definability

Generalized Beth definability (Makkai, Chang)

Consider a theory Σ over a single-sorted relational signature $S \sqcup \{ R \}$. If for every model $\mathcal{M} = (M, \ldots)$ of Σ, there are $< 2^{|M|}$ bijections $f : M \to M$ such that

- f is an homomorphism over S
- $f(\mathcal{M}) \models \Sigma$

then there is a parameterized definition φ of R over S:

$$\exists \bar{y}. \forall \bar{x}. R(\bar{x}) \iff \varphi(\bar{x}, \bar{y}) \quad R \notin \text{FV}(\varphi)$$
The inductive invariant, classically

Last slide: deals only with functionality. What about \(\Gamma(c, l), \Delta(c, r) \models l \in r \implies \exists E' \ l \in E' \subseteq r \)?

Model-theoretic proof sketch based on a generalization of Beth definability

Generalized Beth definability (Makkai, Chang)

Consider a theory \(\Sigma \) over a single-sorted relational signature \(S \sqcup \{R\} \). If for every model \(\mathfrak{M} = (M, \ldots) \) of \(\Sigma \), there are \(<2^{|M|} \) bijections \(f : M \rightarrow M \) such that

- \(f \) is an homomorphism over \(S \)
- \(f(\mathfrak{M}) \models \Sigma \)

then there is a parameterized definition \(\varphi \) of \(R \) over \(S \):

\[
\exists \vec{y}. \forall \vec{x}. R(\vec{x}) \iff \varphi(\vec{x}, \vec{y}) \quad R \notin FV(\varphi)
\]

- Non-constructive proof, using saturated models.
- Analogy with Beth: replace “unique” by “few”.
- To the best of my knowledge, no proof-theoretic counterpart.
Further work

Besides the aforementioned problems:

- Coq formalization with extraction

 j.w.w. Armaël Guéneau

- Curry-Howard approach to the extraction of NRC terms

 untyped case already implicit in the literature (Sazonov)

- Asymmetric version of the multi-sorted result?
Besides the aforementioned problems:

- Coq formalization with extraction

- Curry-Howard approach to the extraction of NRC terms
 untyped case already implicit in the literature (Sazonov)

- Asymmetric version of the multi-sorted result?

Thanks for listening! Further questions?
Challenges toward an implementation

Effective (polytime) algorithm

Input:
- An implicit definition $\varphi(i, o)$
- An intuitionistic (cut-free) proof π of functionality of φ

Output:
- A NRC query $Q(i)$ such that $\varphi(i, o) \Rightarrow Q(i) = o$

1. Code the algorithm?
 - Informal description, no pseudocode

2. Proof object π?
 - Produced by an automated tool
 Issue: intuitionistic logic?
 - Produced by the user
 Issue: convenient encoding?
Formalize the main statement in an interactive theorem prover

\[\exists \pi \text{ proof of functionality of } \varphi \Rightarrow \exists Q \text{ NRC expression implementing } \varphi \]
Formalization in Coq

Formalize the main statement in an interactive theorem prover

\[\exists \pi \text{ proof of functionality of } \varphi \implies \exists Q \text{ NRC expression implementing } \varphi \]

Requires

- Formal definition of \(\Delta_0 \) formulas, proof derivation, NRC, their semantics
 - Inductive families and dependent types
 - Bureaucratic paint point: binding construct
 - \(\alpha \)-conversion, de Bruijn
- Proving both interpolation and its higher-order variants
 - Literature: only one formalization in Isabelle of interpolation
 - Induction with many (bureaucratic) subcases
Formalization in Coq

Formalize the main statement in an interactive theorem prover

\[\exists \pi \text{ proof of functionality of } \varphi \implies \exists Q \text{ NRC expression implementing } \varphi \]

Requires

Formal definition of Δ_0 formulas, proof derivation, NRC, their semantics

- Inductive families and dependent types
- Bureaucratic paint point: binding construct
 \[\alpha \text{-conversion, de Bruijn} \]

Proving both interpolation and its higher-order variants

- Literature: only one formalization in Isabelle of interpolation
- Induction with many (bureaucratic) subcases

Benefits of formalizing in Coq

Implementation: proving \equiv implementing the algorithm

Safety: guarantee that the resulting implementation is bug-free
Encoding of proof objects

Recall that an input is a formula $\varphi(i, o)$ and a proof

Inductive type of proofs
(deep embedding)

- Strongly typed
- Not human-readable

Inputing proof objects directly \leadsto inconvenient for users
Building complicated objects/functions/proofs in Coq in an interactive mode

Easier for complex goals
Building complicated objects/functions/proofs in Coq in an interactive mode

Easier for complex goals

Still inconvenient here
 ▶ Formalized formal proof ≠ formal proof
 ▶ Exposes de Brujin notation to users
Tactics

Building complicated objects/functions/proofs in Coq in an interactive mode

- Easier for complex goals
- Still inconvenient here
 - Formalized formal proof \(\neq \) formal proof
 - Exposes de Bruijn notation to users

Second part of our implementation: special purpose tactics/notations
- Manipulate formulas with actual variables
- small Domain Specific Language inspired by the Iris proof-mode