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VERIFICATION METHODS USED IN THE INDUSTRY

Dynamic analysis
test, simulation (test on simulated environement)

Static

model-checking: logical reasoning about abstraction (models) of
the system

∗ SAT/SMT based model-checking: encode model-checking problem
as SMT satisfiability check. Eg. (k-)inductiveness of a property on the
model semantics.

static analysis of the code/model: compute an abstract
representation of reachable state, mainly focuses on numerical
accuracy, or data structure topology and manipulation (null
pointers access, arrays, . . . )
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System to be controlled:

m1
1kg

m2
100g

0.091N/m

0.0036N.s/m0.0036N.s/m

u

in0 in1



RUNNING EXAMPLE
SIMPLE YET HARD TO ANALYZE CONTROLLER FOR A MASS-SPRING DAMPER

Controller itself:

in0_v

in1_v

in0_d

in1_d

Xk+1 = AXk + B
(

in0
in1

)
uk = CXk + D

(
in0
in1

) u

+

in0

+

+ in1

+

Controller
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Fault tolerance architecture:

u
Controller

in0_d in1_d
Triplex
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Triplex
in1

System
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NON LINEAR ANALYSES BASED ON ABSTRACT
INTERPRETATION

Choose an appropriate abstraction depending on the property to
be proved (boundedness, relationship between variables, memory
issues, etc)

Express the model semantics in the abstract domain
Compute an over approximation of reachable states in the abstract
domain.

Stable linear controllers with or without saturations are analyzed
using a specific abstract domain:

1. The control flow graph of the controller is identified
2. The stability of each linear subsystem is analyzed and provides a

quadratic Lyapunov function (ellipsoid)
3. The set of reachable states is bounded using the generated

ellipsoids.
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MODEL-CHECKING BASED ON SMT SOLVERS

Encode the model semantics as a predicate in SMT logics: M(x,y)

Perform inductive reasoning for a given property:

∗ eg: true |= P(init) and P(x) ∧M(x, y) |= P(y)

Compute backward analysis using quantifier elimination: identify
over-approximation of states violating the property

∗ characterize a disjunction of polyhedra over-approximating bad
states

∗ proving the non reachability of this set from the initial state proves
the property

Both techniques perform well in practive - and are used industrially -
but

are restricted to linear inductive or k-inductive properties;
do not give good results in presence of complex numerical
computations
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COMBINING ANALYSES
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BASIC SATURATIONS

uController
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Abstract Interpretation computes a sound bound (1.2) on each ouptut
whatever the value of inxy is.



ANALYSIS OF THE TRIPLEX VOTER
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Backward analysis applied on each triplex proves the specification
BIBO.

∀k ∈ N, |InAk| ≤ a ∧ |InBk| ≤ a ∧ |InCk| ≤ a =⇒ |Outputk| ≤ 3a ∧
|EqualizationAk| ≤ 2a ∧ |EqualizationBk| ≤ 2a ∧ |lyauEqualizationCk| ≤ 2a

Assuming input is bounded by 1.2, we have output bounded by 3.6.
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Providing a bound on the inputs (3.6) an over-approximation of the
output is computed:

|u| ≤ 194.499.

0.098 x2
3 − 0.224 x3 x2 + 0.040 x3 x1 − 0.026 x3 x0 + 0.141 x2

2 − 0.053 x2 x1
+0.030 x2 x0 + 0.024 x2

1 − 0.017 x1 x0 + 0.019 x2
0 ≤ 14.259
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CONCLUSION

Successful approach to analyze representative example
un-analyzable with a single method.

We are advocating for
formal specification
traceability of component origin to help select the best method to
analyze them
combination of formal methods to achieve the complete
verification of the software

Good results on simple usecase. Currently addressing the analysis of
industry-level FADEC (collab. with industrial partners) and
academic yet representative examples of aircraft controllers (collab.
with Polytech Montréal, Georgia Tech and NASA).
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