
Analysis of critical control systems:
combining formal analyses

Michael Dierkes joint work with Rémi Delmas, Pierre Roux, Romain Jobredeaux, Adrien

Champion, and Pierre-Loïc Garoche

September 23rd 2013 – FMICS

TYPICAL DEVELOPMENT CYCLE OF A CONTROLLER

Differential Equations (plant)

Continuous controller
Discrete version

Safety architecture
redundancy, validators,
COM/MON...

Test
Simulation

Code

Binary

Unit Test

Integration Test

Validation Test
Control theorists

Computer scientists

TYPICAL DEVELOPMENT CYCLE OF A CONTROLLER

Differential Equations (plant)

Continuous controller
Discrete version

Safety architecture
redundancy, validators,
COM/MON...

Test
Simulation

Code

Binary

Unit Test

Integration Test

Validation Test
Control theorists

Computer scientists

TYPICAL DEVELOPMENT CYCLE OF A CONTROLLER

Differential Equations (plant)

Continuous controller
Discrete version

Safety architecture
redundancy, validators,
COM/MON...

Test
Simulation

Code

Binary

Unit Test

Integration Test

Validation Test
Control theorists

Computer scientists

TYPICAL DEVELOPMENT CYCLE OF A CONTROLLER

Differential Equations (plant)

Continuous controller

Control laws design:
∗ usually simplification of the plant around specific points and

controlers proposed for these

∗ lots of arguments/evidences on those simple cases
∗ are these good controlers individualy? when composed?
∗ which property? stability, robustness, performances (need the

plant!)
∗ frequency domain proof argument vs state space domain (ie.

Lyapunov functions)

Discrete version

Safety architecture
redundancy, validators,
COM/MON...

Test
Simulation

Code

Binary

Unit Test

Integration Test

Validation Test
Control theorists

Computer scientists

TYPICAL DEVELOPMENT CYCLE OF A CONTROLLER

Differential Equations (plant)

Continuous controller

Control laws design:
∗ usually simplification of the plant around specific points and

controlers proposed for these
∗ lots of arguments/evidences on those simple cases

∗ are these good controlers individualy? when composed?
∗ which property? stability, robustness, performances (need the

plant!)
∗ frequency domain proof argument vs state space domain (ie.

Lyapunov functions)

Discrete version

Safety architecture
redundancy, validators,
COM/MON...

Test
Simulation

Code

Binary

Unit Test

Integration Test

Validation Test
Control theorists

Computer scientists

TYPICAL DEVELOPMENT CYCLE OF A CONTROLLER

Differential Equations (plant)

Continuous controller

Control laws design:
∗ usually simplification of the plant around specific points and

controlers proposed for these
∗ lots of arguments/evidences on those simple cases
∗ are these good controlers individualy? when composed?

∗ which property? stability, robustness, performances (need the
plant!)

∗ frequency domain proof argument vs state space domain (ie.
Lyapunov functions)

Discrete version

Safety architecture
redundancy, validators,
COM/MON...

Test
Simulation

Code

Binary

Unit Test

Integration Test

Validation Test
Control theorists

Computer scientists

TYPICAL DEVELOPMENT CYCLE OF A CONTROLLER

Differential Equations (plant)

Continuous controller

Control laws design:
∗ usually simplification of the plant around specific points and

controlers proposed for these
∗ lots of arguments/evidences on those simple cases
∗ are these good controlers individualy? when composed?
∗ which property? stability, robustness, performances (need the

plant!)

∗ frequency domain proof argument vs state space domain (ie.
Lyapunov functions)

Discrete version

Safety architecture
redundancy, validators,
COM/MON...

Test
Simulation

Code

Binary

Unit Test

Integration Test

Validation Test
Control theorists

Computer scientists

TYPICAL DEVELOPMENT CYCLE OF A CONTROLLER

Differential Equations (plant)

Continuous controller

Control laws design:
∗ usually simplification of the plant around specific points and

controlers proposed for these
∗ lots of arguments/evidences on those simple cases
∗ are these good controlers individualy? when composed?
∗ which property? stability, robustness, performances (need the

plant!)
∗ frequency domain proof argument vs state space domain (ie.

Lyapunov functions)

Discrete version

Safety architecture
redundancy, validators,
COM/MON...

Test
Simulation

Code

Binary

Unit Test

Integration Test

Validation Test
Control theorists

Computer scientists

TYPICAL DEVELOPMENT CYCLE OF A CONTROLLER

Differential Equations (plant)

Continuous controller
Discrete version

Safety architecture
redundancy, validators,
COM/MON...

Test
Simulation

Code

Binary

Unit Test

Integration Test

Validation Test
Control theorists
Computer scientists

TYPICAL DEVELOPMENT CYCLE OF A CONTROLLER

Differential Equations (plant)

Continuous controller

Fault tolerance: set of constructs to recover from
system/hardware failures
∗ is this architecture sound (ie. when there is less than n

simultaneaous error, the output is still valid or there will still be a
working controler)

Discrete version

Safety architecture
redundancy, validators,
COM/MON...

Test
Simulation

Code

Binary

Unit Test

Integration Test

Validation Test
Control theorists
Computer scientists

TYPICAL DEVELOPMENT CYCLE OF A CONTROLLER

Differential Equations (plant)

Continuous controller
Discrete version

Safety architecture
redundancy, validators,
COM/MON...

Test
Simulation

Code

Binary

Unit Test

Integration Test

Validation Test
Control theorists
Computer scientists

TYPICAL DEVELOPMENT CYCLE OF A CONTROLLER

Differential Equations (plant)

Continuous controller
Discrete version

Safety architecture
redundancy, validators,
COM/MON...

Test
Simulation

Code

Binary

Unit Test

Integration Test

Validation Test
Control theorists
Computer scientists

TYPICAL DEVELOPMENT CYCLE OF A CONTROLLER

Differential Equations (plant)

Continuous controller
Discrete version

Safety architecture
redundancy, validators,
COM/MON...

Test
Simulation

Code

Binary

Unit Test

Integration Test

Validation Test
Control theorists
Computer scientists

TYPICAL DEVELOPMENT CYCLE OF A CONTROLLER

Differential Equations (plant)

Continuous controller
Discrete version

Safety architecture
redundancy, validators,
COM/MON...

Test
Simulation

Code

Binary

Unit Test

Integration Test

Validation Test
Control theorists
Computer scientists

TYPICAL DEVELOPMENT CYCLE OF A CONTROLLER

Differential Equations (plant)

Continuous controller

Actual implementation:
∗ floats not reals
∗ pointers, arrays, memory access → potential failure
∗ real world: overflows

Discrete version

Safety architecture
redundancy, validators,
COM/MON...

Test
Simulation

Code

Binary

Unit Test

Integration Test

Validation Test
Control theorists
Computer scientists

TYPICAL DEVELOPMENT CYCLE OF A CONTROLLER

Differential Equations (plant)

Continuous controller
Discrete version

Safety architecture
redundancy, validators,
COM/MON...

Test
Simulation

Code

Binary

Unit Test

Integration Test

Validation Test
Control theorists
Computer scientists

VERIFICATION METHODS USED IN THE INDUSTRY

Dynamic analysis
test, simulation (test on simulated environement)

Static

model-checking: logical reasoning about abstraction (models) of
the system

∗ SAT/SMT based model-checking: encode model-checking problem
as SMT satisfiability check. Eg. (k-)inductiveness of a property on the
model semantics.

static analysis of the code/model: compute an abstract
representation of reachable state, mainly focuses on numerical
accuracy, or data structure topology and manipulation (null
pointers access, arrays, . . .)

VERIFICATION METHODS USED IN THE INDUSTRY

Dynamic analysis
test, simulation (test on simulated environement)

Static
model-checking: logical reasoning about abstraction (models) of
the system

∗ SAT/SMT based model-checking: encode model-checking problem
as SMT satisfiability check. Eg. (k-)inductiveness of a property on the
model semantics.

static analysis of the code/model: compute an abstract
representation of reachable state, mainly focuses on numerical
accuracy, or data structure topology and manipulation (null
pointers access, arrays, . . .)

VERIFICATION METHODS USED IN THE INDUSTRY

Dynamic analysis
test, simulation (test on simulated environement)

Static
model-checking: logical reasoning about abstraction (models) of
the system
∗ SAT/SMT based model-checking: encode model-checking problem

as SMT satisfiability check. Eg. (k-)inductiveness of a property on the
model semantics.

static analysis of the code/model: compute an abstract
representation of reachable state, mainly focuses on numerical
accuracy, or data structure topology and manipulation (null
pointers access, arrays, . . .)

VERIFICATION METHODS USED IN THE INDUSTRY

Dynamic analysis
test, simulation (test on simulated environement)

Static
model-checking: logical reasoning about abstraction (models) of
the system
∗ SAT/SMT based model-checking: encode model-checking problem

as SMT satisfiability check. Eg. (k-)inductiveness of a property on the
model semantics.

static analysis of the code/model: compute an abstract
representation of reachable state, mainly focuses on numerical
accuracy, or data structure topology and manipulation (null
pointers access, arrays, . . .)

RUNNING EXAMPLE
SIMPLE YET HARD TO ANALYZE CONTROLLER FOR A MASS-SPRING DAMPER

RUNNING EXAMPLE
SIMPLE YET HARD TO ANALYZE CONTROLLER FOR A MASS-SPRING DAMPER

System to be controlled:

m1
1kg

m2
100g

0.091N/m

0.0036N.s/m0.0036N.s/m

u

in0 in1

RUNNING EXAMPLE
SIMPLE YET HARD TO ANALYZE CONTROLLER FOR A MASS-SPRING DAMPER

Controller itself:

in0_v

in1_v

in0_d

in1_d

Xk+1 = AXk + B
(

in0
in1

)
uk = CXk + D

(
in0
in1

) u

+

in0

+

+ in1

+

Controller

RUNNING EXAMPLE
SIMPLE YET HARD TO ANALYZE CONTROLLER FOR A MASS-SPRING DAMPER

Fault tolerance architecture:

u
Controller

in0_d in1_d
Triplex

in0

Triplex
in1

System

in0

in1

Satin0a

Satin0b

Satin0c

Satin1a

Satin1b

Satin1c

NON LINEAR ANALYSES BASED ON ABSTRACT
INTERPRETATION

Choose an appropriate abstraction depending on the property to
be proved (boundedness, relationship between variables, memory
issues, etc)

Express the model semantics in the abstract domain
Compute an over approximation of reachable states in the abstract
domain.

Stable linear controllers with or without saturations are analyzed
using a specific abstract domain:

1. The control flow graph of the controller is identified
2. The stability of each linear subsystem is analyzed and provides a

quadratic Lyapunov function (ellipsoid)
3. The set of reachable states is bounded using the generated

ellipsoids.

NON LINEAR ANALYSES BASED ON ABSTRACT
INTERPRETATION

Choose an appropriate abstraction depending on the property to
be proved (boundedness, relationship between variables, memory
issues, etc)
Express the model semantics in the abstract domain

Compute an over approximation of reachable states in the abstract
domain.

Stable linear controllers with or without saturations are analyzed
using a specific abstract domain:

1. The control flow graph of the controller is identified
2. The stability of each linear subsystem is analyzed and provides a

quadratic Lyapunov function (ellipsoid)
3. The set of reachable states is bounded using the generated

ellipsoids.

NON LINEAR ANALYSES BASED ON ABSTRACT
INTERPRETATION

Choose an appropriate abstraction depending on the property to
be proved (boundedness, relationship between variables, memory
issues, etc)
Express the model semantics in the abstract domain
Compute an over approximation of reachable states in the abstract
domain.

Stable linear controllers with or without saturations are analyzed
using a specific abstract domain:

1. The control flow graph of the controller is identified
2. The stability of each linear subsystem is analyzed and provides a

quadratic Lyapunov function (ellipsoid)
3. The set of reachable states is bounded using the generated

ellipsoids.

NON LINEAR ANALYSES BASED ON ABSTRACT
INTERPRETATION

Choose an appropriate abstraction depending on the property to
be proved (boundedness, relationship between variables, memory
issues, etc)
Express the model semantics in the abstract domain
Compute an over approximation of reachable states in the abstract
domain.

Stable linear controllers with or without saturations are analyzed
using a specific abstract domain:

1. The control flow graph of the controller is identified
2. The stability of each linear subsystem is analyzed and provides a

quadratic Lyapunov function (ellipsoid)
3. The set of reachable states is bounded using the generated

ellipsoids.

NON LINEAR ANALYSES BASED ON ABSTRACT
INTERPRETATION

Choose an appropriate abstraction depending on the property to
be proved (boundedness, relationship between variables, memory
issues, etc)
Express the model semantics in the abstract domain
Compute an over approximation of reachable states in the abstract
domain.

Stable linear controllers with or without saturations are analyzed
using a specific abstract domain:
1. The control flow graph of the controller is identified

2. The stability of each linear subsystem is analyzed and provides a
quadratic Lyapunov function (ellipsoid)

3. The set of reachable states is bounded using the generated
ellipsoids.

NON LINEAR ANALYSES BASED ON ABSTRACT
INTERPRETATION

Choose an appropriate abstraction depending on the property to
be proved (boundedness, relationship between variables, memory
issues, etc)
Express the model semantics in the abstract domain
Compute an over approximation of reachable states in the abstract
domain.

Stable linear controllers with or without saturations are analyzed
using a specific abstract domain:
1. The control flow graph of the controller is identified
2. The stability of each linear subsystem is analyzed and provides a

quadratic Lyapunov function (ellipsoid)

3. The set of reachable states is bounded using the generated
ellipsoids.

NON LINEAR ANALYSES BASED ON ABSTRACT
INTERPRETATION

Choose an appropriate abstraction depending on the property to
be proved (boundedness, relationship between variables, memory
issues, etc)
Express the model semantics in the abstract domain
Compute an over approximation of reachable states in the abstract
domain.

Stable linear controllers with or without saturations are analyzed
using a specific abstract domain:
1. The control flow graph of the controller is identified
2. The stability of each linear subsystem is analyzed and provides a

quadratic Lyapunov function (ellipsoid)
3. The set of reachable states is bounded using the generated

ellipsoids.

MODEL-CHECKING BASED ON SMT SOLVERS

Encode the model semantics as a predicate in SMT logics: M(x,y)

Perform inductive reasoning for a given property:

∗ eg: true |= P(init) and P(x) ∧M(x, y) |= P(y)

Compute backward analysis using quantifier elimination: identify
over-approximation of states violating the property

∗ characterize a disjunction of polyhedra over-approximating bad
states

∗ proving the non reachability of this set from the initial state proves
the property

Both techniques perform well in practive - and are used industrially -
but

are restricted to linear inductive or k-inductive properties;
do not give good results in presence of complex numerical
computations

MODEL-CHECKING BASED ON SMT SOLVERS

Encode the model semantics as a predicate in SMT logics: M(x,y)
Perform inductive reasoning for a given property:

∗ eg: true |= P(init) and P(x) ∧M(x, y) |= P(y)
Compute backward analysis using quantifier elimination: identify
over-approximation of states violating the property

∗ characterize a disjunction of polyhedra over-approximating bad
states

∗ proving the non reachability of this set from the initial state proves
the property

Both techniques perform well in practive - and are used industrially -
but

are restricted to linear inductive or k-inductive properties;
do not give good results in presence of complex numerical
computations

MODEL-CHECKING BASED ON SMT SOLVERS

Encode the model semantics as a predicate in SMT logics: M(x,y)
Perform inductive reasoning for a given property:
∗ eg: true |= P(init) and P(x) ∧M(x, y) |= P(y)

Compute backward analysis using quantifier elimination: identify
over-approximation of states violating the property

∗ characterize a disjunction of polyhedra over-approximating bad
states

∗ proving the non reachability of this set from the initial state proves
the property

Both techniques perform well in practive - and are used industrially -
but

are restricted to linear inductive or k-inductive properties;
do not give good results in presence of complex numerical
computations

MODEL-CHECKING BASED ON SMT SOLVERS

Encode the model semantics as a predicate in SMT logics: M(x,y)
Perform inductive reasoning for a given property:
∗ eg: true |= P(init) and P(x) ∧M(x, y) |= P(y)

Compute backward analysis using quantifier elimination: identify
over-approximation of states violating the property

∗ characterize a disjunction of polyhedra over-approximating bad
states

∗ proving the non reachability of this set from the initial state proves
the property

Both techniques perform well in practive - and are used industrially -
but

are restricted to linear inductive or k-inductive properties;
do not give good results in presence of complex numerical
computations

MODEL-CHECKING BASED ON SMT SOLVERS

Encode the model semantics as a predicate in SMT logics: M(x,y)
Perform inductive reasoning for a given property:
∗ eg: true |= P(init) and P(x) ∧M(x, y) |= P(y)

Compute backward analysis using quantifier elimination: identify
over-approximation of states violating the property
∗ characterize a disjunction of polyhedra over-approximating bad

states

∗ proving the non reachability of this set from the initial state proves
the property

Both techniques perform well in practive - and are used industrially -
but

are restricted to linear inductive or k-inductive properties;
do not give good results in presence of complex numerical
computations

MODEL-CHECKING BASED ON SMT SOLVERS

Encode the model semantics as a predicate in SMT logics: M(x,y)
Perform inductive reasoning for a given property:
∗ eg: true |= P(init) and P(x) ∧M(x, y) |= P(y)

Compute backward analysis using quantifier elimination: identify
over-approximation of states violating the property
∗ characterize a disjunction of polyhedra over-approximating bad

states
∗ proving the non reachability of this set from the initial state proves

the property

Both techniques perform well in practive - and are used industrially -
but

are restricted to linear inductive or k-inductive properties;
do not give good results in presence of complex numerical
computations

MODEL-CHECKING BASED ON SMT SOLVERS

Encode the model semantics as a predicate in SMT logics: M(x,y)
Perform inductive reasoning for a given property:
∗ eg: true |= P(init) and P(x) ∧M(x, y) |= P(y)

Compute backward analysis using quantifier elimination: identify
over-approximation of states violating the property
∗ characterize a disjunction of polyhedra over-approximating bad

states
∗ proving the non reachability of this set from the initial state proves

the property

Both techniques perform well in practive - and are used industrially -
but

are restricted to linear inductive or k-inductive properties;
do not give good results in presence of complex numerical
computations

MODEL-CHECKING BASED ON SMT SOLVERS

Encode the model semantics as a predicate in SMT logics: M(x,y)
Perform inductive reasoning for a given property:
∗ eg: true |= P(init) and P(x) ∧M(x, y) |= P(y)

Compute backward analysis using quantifier elimination: identify
over-approximation of states violating the property
∗ characterize a disjunction of polyhedra over-approximating bad

states
∗ proving the non reachability of this set from the initial state proves

the property

Both techniques perform well in practive - and are used industrially -
but

are restricted to linear inductive or k-inductive properties;

do not give good results in presence of complex numerical
computations

MODEL-CHECKING BASED ON SMT SOLVERS

Encode the model semantics as a predicate in SMT logics: M(x,y)
Perform inductive reasoning for a given property:
∗ eg: true |= P(init) and P(x) ∧M(x, y) |= P(y)

Compute backward analysis using quantifier elimination: identify
over-approximation of states violating the property
∗ characterize a disjunction of polyhedra over-approximating bad

states
∗ proving the non reachability of this set from the initial state proves

the property

Both techniques perform well in practive - and are used industrially -
but

are restricted to linear inductive or k-inductive properties;
do not give good results in presence of complex numerical
computations

COMBINING ANALYSES

uController

in0_d in1_d
Triplex

in0

Triplex
in1

in0

in1

Satin0a

Satin0b

Satin0c

Satin1a

Satin1b

Satin1c

BASIC SATURATIONS

uController

in0_d in1_d
Triplex

in0

Triplex
in1

in0

in1

Satin0a

Satin0b

Satin0c

Satin1a

Satin1b

Satin1c

Abstract Interpretation computes a sound bound (1.2) on each ouptut
whatever the value of inxy is.

ANALYSIS OF THE TRIPLEX VOTER

uController

in0_d in1_d
Triplex

in0

Triplex
in1

in0

in1

Satin0a

Satin0b

Satin0c

Satin1a

Satin1b

Satin1c

Backward analysis applied on each triplex proves the specification
BIBO.

∀k ∈ N, |InAk| ≤ a ∧ |InBk| ≤ a ∧ |InCk| ≤ a =⇒ |Outputk| ≤ 3a ∧
|EqualizationAk| ≤ 2a ∧ |EqualizationBk| ≤ 2a ∧ |lyauEqualizationCk| ≤ 2a

Assuming input is bounded by 1.2, we have output bounded by 3.6.

ANALYSIS OF THE TRIPLEX VOTER

uController

in0_d in1_d
Triplex

in0

Triplex
in1

in0

in1

Satin0a

Satin0b

Satin0c

Satin1a

Satin1b

Satin1c

Backward analysis applied on each triplex proves the specification
BIBO.

∀k ∈ N, |InAk| ≤ a ∧ |InBk| ≤ a ∧ |InCk| ≤ a =⇒ |Outputk| ≤ 3a ∧
|EqualizationAk| ≤ 2a ∧ |EqualizationBk| ≤ 2a ∧ |lyauEqualizationCk| ≤ 2a

Assuming input is bounded by 1.2, we have output bounded by 3.6.

ANALYSIS OF THE TRIPLEX VOTER

uController

in0_d in1_d
Triplex

in0

Triplex
in1

in0

in1

Satin0a

Satin0b

Satin0c

Satin1a

Satin1b

Satin1c

Backward analysis applied on each triplex proves the specification
BIBO.

∀k ∈ N, |InAk| ≤ a ∧ |InBk| ≤ a ∧ |InCk| ≤ a =⇒ |Outputk| ≤ 3a ∧
|EqualizationAk| ≤ 2a ∧ |EqualizationBk| ≤ 2a ∧ |lyauEqualizationCk| ≤ 2a

Assuming input is bounded by 1.2, we have output bounded by 3.6.

ANALYSIS OF THE CONTROLLER

uController

in0_d in1_d
Triplex

in0

Triplex
in1

in0

in1

Satin0a

Satin0b

Satin0c

Satin1a

Satin1b

Satin1c

Providing a bound on the inputs (3.6) an over-approximation of the
output is computed:

|u| ≤ 194.499.

0.098 x2
3 − 0.224 x3 x2 + 0.040 x3 x1 − 0.026 x3 x0 + 0.141 x2

2 − 0.053 x2 x1
+0.030 x2 x0 + 0.024 x2

1 − 0.017 x1 x0 + 0.019 x2
0 ≤ 14.259

ANALYSIS OF THE CONTROLLER

uController

in0_d in1_d
Triplex

in0

Triplex
in1

in0

in1

Satin0a

Satin0b

Satin0c

Satin1a

Satin1b

Satin1c

x0

x1

Providing a bound on the inputs (3.6) an over-approximation of the
output is computed: |u| ≤ 194.499.

0.098 x2
3 − 0.224 x3 x2 + 0.040 x3 x1 − 0.026 x3 x0 + 0.141 x2

2 − 0.053 x2 x1
+0.030 x2 x0 + 0.024 x2

1 − 0.017 x1 x0 + 0.019 x2
0 ≤ 14.259

REBUILDING THE ANALYSIS

uController

in0_d in1_d
Triplex

in0

Triplex
in1

in0

in1

Satin0a

Satin0b

Satin0c

Satin1a

Satin1b

Satin1c

]−∞,+∞[

System is bounded!

REBUILDING THE ANALYSIS

uController

in0_d in1_d
Triplex

in0

Triplex
in1

in0

in1

Satin0a

Satin0b

Satin0c

Satin1a

Satin1b

Satin1c

]−∞,+∞[1.2

System is bounded!

REBUILDING THE ANALYSIS

uController

in0_d in1_d
Triplex

in0

Triplex
in1

in0

in1

Satin0a

Satin0b

Satin0c

Satin1a

Satin1b

Satin1c

]−∞,+∞[1.2 3.6

System is bounded!

REBUILDING THE ANALYSIS

uController

in0_d in1_d
Triplex

in0

Triplex
in1

in0

in1

Satin0a

Satin0b

Satin0c

Satin1a

Satin1b

Satin1c

]−∞,+∞[1.2 3.6 194.499

System is bounded!

REBUILDING THE ANALYSIS

uController

in0_d in1_d
Triplex

in0

Triplex
in1

in0

in1

Satin0a

Satin0b

Satin0c

Satin1a

Satin1b

Satin1c

]−∞,+∞[1.2 3.6 194.499

System is bounded!

CONCLUSION

Successful approach to analyze representative example
un-analyzable with a single method.

We are advocating for
formal specification
traceability of component origin to help select the best method to
analyze them
combination of formal methods to achieve the complete
verification of the software

Good results on simple usecase. Currently addressing the analysis of
industry-level FADEC (collab. with industrial partners) and
academic yet representative examples of aircraft controllers (collab.
with Polytech Montréal, Georgia Tech and NASA).

CONCLUSION

Successful approach to analyze representative example
un-analyzable with a single method.

We are advocating for
formal specification
traceability of component origin to help select the best method to
analyze them
combination of formal methods to achieve the complete
verification of the software

Good results on simple usecase. Currently addressing the analysis of
industry-level FADEC (collab. with industrial partners) and
academic yet representative examples of aircraft controllers (collab.
with Polytech Montréal, Georgia Tech and NASA).

CONCLUSION

Successful approach to analyze representative example
un-analyzable with a single method.

We are advocating for
formal specification
traceability of component origin to help select the best method to
analyze them
combination of formal methods to achieve the complete
verification of the software

Good results on simple usecase. Currently addressing the analysis of
industry-level FADEC (collab. with industrial partners) and
academic yet representative examples of aircraft controllers (collab.
with Polytech Montréal, Georgia Tech and NASA).

