
Integrating Policy Iterations
in Abstract Interpreters ?

Pierre Roux1,2 and Pierre-Löıc Garoche1

1 ONERA – The French Aerospace Lab, Toulouse, FRANCE
{pierre.roux,pierre-loic.garoche}@onera.fr

2 ISAE, University of Toulouse, Toulouse, FRANCE

Abstract. Among precise abstract interpretation methods developed
during the last decade, policy iterations is one of the most promising.
Despite its efficiency, it has not yet seen a broad usage in static analyzers.
We believe the main explanation to this restrictive use, beside the novelty
of the technique, lies in its lack of integration in the classic abstract
domain framework. This prevents an easy integration in existing static
analyzers and collaboration with other, already implemented, abstract
domains through reduced product. This paper aims at providing a classic
abstract domain interface to policy iterations.
Usage of semidefinite programming to infer quadratic invariants on linear
systems is one of the most appealing use of policy iteration. Combination
with a template generation heuristic, inspired from existing methods
from control theory, gives a fully automatic abstract domain to infer
quadratic invariants on linear systems with guards. Those systems often
constitute the core of embedded control systems and are hard, when not
impossible, to analyze with linear abstract domains. The method has
been implemented and applied to some benchmark systems, giving good
results.

Keywords: abstract interpretation, policy iteration, linear systems with
guards, quadratic invariants, ellipsoids, semidefinite programming

1 Introduction

Classic abstract interpretation based static analysis [8] heavily relies on the so
called widening. This operator discards some information in order to enforce ter-
mination of the analysis. A narrowing can then partly recover this lost informa-
tion. These heuristics often enable a good trade-off between cost and precision
of analyses. However, even if impressive improvements were made in the last
decade to widening [3,11,21,28, and references therein] and narrowing [22], they
do not always guarantee precise results.

Another approach, that appeared in the last decade in the software verifica-
tion community [7, for instance], is the use of dedicated mathematical solvers
like linear or semidefinite programming as a way to solve some kind of prob-
lems in a verification setting. This led to the definition of so-called policy itera-
tions [1,6,14,15,18,19], as another way to perform overapproximation but trying
to achieve better precision than widening-based analyses.

? This work has been partially supported by the FNRAE Project CAVALE and the
ANR INS Project CAFEIN.

2 Pierre Roux and Pierre-Löıc Garoche

However, even if promising, policy iterations have had very little impact
on existing tools yet: their use seems orthogonal to the classic use of abstract
domains in a Kleene setting, where reduced products allow domains to exchange
knowledge about the system during computation.

An explanation to the lack of integration of policy iterations with Kleene-
based analyses is that they need to work on a global view of the analyzed system,
typically a control flow graph representation of it, while Kleene-based analyzers
iterate through program points without providing a global view of the program
to the abstract domains. Our solution is mainly to compute this graph while
iterating through the program points with a Kleene-based analysis. Once the
graph is obtained it can easily be used by policy iterations to compute numerical
properties about the program. Those properties can then be exported to other
domains through a reduced product. Moreover this new abstract domain can
be applied on a strict subset of program variables abstracting other variables
by information obtained through reduced product from other domains3, thus
allowing a true interplay between policy iterations and existing abstract domains.

Our proposal has been instantiated on the analysis of linear systems with
guards admitting quadratic inductive invariants. These linear systems are widely
present in critical embedded systems like aerospace control-command software
but are hard to analyze with most abstract domains since they usually do not
admit simple linear inductive invariants. The use of our framework enables a fully
automatic analysis of such systems, relying on policy iterations with semidefinite
programming, while other approaches either impose stronger restrictions on the
class of analyzable programs or require more parameters to enable the analysis.
It has been implemented and gave significant results.

After a brief policy iteration primer, the paper is organized as follows:

– Section 3 offers an abstract domain rebuilding the control flow graph through
classic Kleene-based analysis;

– Section 4 enables the embedding of policy iteration in an abstract domain
based on this computed graph and on template domains;

– in Section 5, we automatically synthesize meaningful templates for a specific
class of programs: guarded linear systems admitting quadratic invariants.

The paper also provides, in Section 6, experimental results computed using our
implementation of the analysis.

2 State of the Art – a Policy Iteration Primer

2.1 A Toy Imperative Language

Throughout this paper, a very classic toy imperative language will be used to
illustrate our abstract domains. Figure 1 presents a program in this language.

Syntax A program of the language is a statement stm in the following grammar:

3 As done with expensive relational domains in the abstract interpreter Astrée [9].

Integrating Policy Iterations in Abstract Interpreters 3

stm ::= stm; stm | v := expr | v := ?(r, r) | while expr ≤ r do stm od
| if expr ≤ r then stm else stm fi

expr ::= v | r | expr + expr | expr − expr | expr × expr
with v ∈ V, a set of variables, and r ∈ R. ?(r1, r2) represents a random choice
of a real number between r1 and r2 (useful to simulate inputs).

x0 := 0; x1 := 0; x2 := 0;
while −1 ≤ 0 do

in := ?(−1, 1);
x0’ := x0; x1’ := x1; x2’ := x2;
x0 := 0.9379 x0’−0.0381 x1’−0.0414 x2’+0.0237 in;
x1 := −0.0404 x0’+0.968 x1’−0.0179 x2’+0.0143 in;
x2 := 0.0142 x0’−0.0197 x1’+0.9823 x2’+0.0077 in;

od

Fig. 1. Example of program.

Collecting Semantics In
the later, we denote by
JeK(ρ) ∈ R, the usual col-
lecting semantics of an ex-
pression e in an environ-
ment ρ : V → R; and by
JsK(R) ⊆ (V→ R) the col-
lecting semantics of a state-
ment s for a set of environ-
ments R ⊆ (V→ R).

It is worth noting that this semantics is given with operations over real num-
bers R whereas an actual program would compute using floating point values.
This issue will not be addressed in this paper and is left as future work.

2.2 Kleene Iterations with Widening and Narrowing

The previous concrete semantics being non computable, the basic idea of ab-
stract interpretation is to compute a so called abstract semantics. This abstract
semantics is designed as a computable overapproximation of the concrete one.

Abstract domains constitute the basic bricks of abstract interpreters. They
are given by a complete lattice D, a concretization function γD : D → 2V→R and
computable abstract operators Jv := eK], Jv := ?(r1, r2)K] and Je ≤ rK] : D → D.
The concretization function gives a concrete meaning to each abstract value in
D by mapping it to the set of environments it abstracts. The abstract semantics
J.K] is then defined by replacing semantics of assignments and guards with the
corresponding abstract operator in the equations of the previous section. This
abstract semantics can thus be computed, provided fixpoints are reachable after
finitely many iterations of loop bodies’ semantics. Assuming some soundness
hypotheses on the abstract operators, the abstract semantics of a program p can
be proved to be an overapproximation of the concrete one, that is JpK⊆ γD(JpK]).

An operator called widening is used to ensure convergence in finitely many
iterations by giving up some precision. Some of this lost precision can then be
retrieved by descending iterations with a so called narrowing. However, this does
not always regain all of it.

Example 1. Analyzing the program of Figure 1 with the intervals domain, we get
after a first iteration of the loop x0 ∈ [−0.0237, 0.0237]∧x1 ∈ [−0.0143, 0.0143]∧
x2 ∈ [−0.0077, 0.0077]. After a second iteration x0 ∈ [−0.0467, 0.0467] ∧ x1 ∈
[−0.0292, 0.0292]∧ x2 ∈ [−0.0158, 0.0158],. . . This does not converge, simply be-
cause the program does not admit any invariant in the intervals domain. Unlike
the intervals domain, invariants exist in the polyhedra domain. However, classic
Kleene iterations with this domain are in practice unable to compute any.

4 Pierre Roux and Pierre-Löıc Garoche

2.3 Policy Iterations

The basic idea of policy4 iteration is to use numerical optimization tools to
compute those bounds that are hard to guess for the widening or to retrieve via
narrowing.

Another advantage of the method is to abstract sequences of program in-
structions like loop bodies “en bloc”, avoiding intermediate abstractions which
can cause irreversible losses of precision5.

Template Domains Policy iteration is performed on so called template do-
mains. Given a finite set { t1, . . . , tn } of expressions on variables V, the tem-

plate domain T is defined as Rn
= (R ∪ {−∞,+∞})n and the meaning of

an abstract value (b1, . . . , bn) ∈ T is the set of environments γT (b1, . . . , bn) =
{ρ ∈ (V→ R) | Jt1K(ρ) ≤ b1, . . . , JtnK(ρ) ≤ bn}. In other words, the abstract value
(b1, . . . , bn) represents all the environments satisfying all the constraints ti ≤ bi.

Indeed, many common abstract domains are template domains. For instance
the intervals domain is obtained with templates xi and −xi for all variables
xi ∈ V and the octagon domain [24] by adding all the ±xi ± xj . The shape of
the templates to be considered for policy iteration depends on the optimization
tools used. For instance, linear programming [14,16] allows any linear templates
whereas quadratic templates can be handled thanks to semidefinite programming
and an appropriate relaxation [1,18,19].

Example 2. To bound the variables of the program of Figure 1, we use the
quadratic template6: t1 := 6.2547x20 + 12.1868x21 + 3.8775x22 − 10.61x0x1 −
2.4306x1x2 + 2.4182x1x2. Templates t2 := x20, t3 := x21 and t4 := x22 are added
in order to get bounds on each variable.

System of Equations While Kleene iterations iterate locally through each
construct of the program, policy iterations require a global view on the analyzed
program. For that purpose, the whole program is first translated into a system
of equations which is later solved.

A first step in deriving those equations from the program is to build its
control flow graph.

st 2

true ,
x0 := 0
x1 := 0
x2 := 0 −1 ≤ in ≤ 1 ,

x′
0 := x0 x′

1 := x1 x′
2 := x2

x0 := 0.9379 x0 − 0.0381 x1 − 0.0414 x2 + 0.0237 in
x1 := −0.0404 x0 + 0.968 x1 − 0.0179 x2 + 0.0143 in
x2 := 0.0142 x0 − 0.0197 x1 + 0.9823 x2 + 0.0077 in

Fig. 2. Control flow graph for our running example.

Example 3. Figure 2 represents the control flow graph for our running example.
Vertex “st” corresponds to the starting point of the program and vertex “2” to
the head of the loop. The edge between “st” and “2” reflects the three assign-
ments before the loop and the looping edge on vertex “2” represents the loop
body.

4 The word strategy is also used in the literature, with equivalent meaning.
5 This is not illustrated here, one can refer for instance to [17] for more details.
6 How this template was chosen will be explained later in Section 5.

Integrating Policy Iterations in Abstract Interpreters 5

It is worth noting that, unlike the usual notion of control flow graph with
vertices between each single instruction of the program, sequences of instructions
are here considered “en bloc” with graph vertices only for starting point and loop
heads of the program. This will both improve the precision of the analysis and
decrease its cost by avoiding useless intermediate abstractions.

A system of equations is then defined with a variable bi,j for each vertex i of
the graph and each template tj .

Example 4. Here is the system of equations for our running example:

b1,1 = +∞ b1,2 = +∞ b1,3 = +∞ b1,4 = +∞
b2,1 = max{0 | be(1)} ∨ max{a(t1) | −1 ≤ in ≤ 1 ∧ be(2)}
b2,2 = max{0 | be(1)} ∨ max{a(t2) | −1 ≤ in ≤ 1 ∧ be(2)}
b2,3 = max{0 | be(1)} ∨ max{a(t3) | −1 ≤ in ≤ 1 ∧ be(2)}
b2,4 = max{0 | be(1)} ∨ max{a(t4) | −1 ≤ in ≤ 1 ∧ be(2)}

where be(i) is a shortcut for t1 ≤ bi,1 ∧ t2 ≤ bi,2 ∧ t3 ≤ bi,3 ∧ t4 ≤ bi,4 and a(t) is the
template t in which variable x0 is replaced by 0.9379x0 − 0.0381x1 − 0.0414x2 +

0.0237 in, variable x1 is replaced by −0.0404x0 +0.968x1−0.0179x2 +0.0143 in and
variable x2 is replaced by 0.0142x0 − 0.0197x1 + 0.9823x2 + 0.0077 in. The usual
maximum on R is denoted ∨.

Fig. 3. Invariant for running example.

Each bi,j bounds the template tj
at program point i and is defined in
one equation as a maximum over as
many terms as incoming edges in i.
More precisely, each edge between two
vertices v and v′ translates to a term
in each equation bv′,j on the pattern:

max
{
a(tj)

∣∣∣ c ∧
∧

j tj ≤ bv,j
}

where c

and a are respectively the constraints and
the assignments associated to this edge.
This expresses the maximum value the template tj can reach in destination ver-
tex v′ when applying the assignments a on values satisfying both the constraints
c of the edge and the constraints tj ≤ bv,j of the initial vertex v. Finally, the
program starting point is initialized to (+∞, . . . ,+∞), meaning all equations for
bi0,j , where i0 is the starting point, become bi0,j = +∞. Thus, for any solution
(b1,1, . . . , b1,n, . . .) of the equations, γT (bi,1, . . . , bi,n) is an overapproximation of
reachable states of the program at point i.

Iterating on Policies Two different techniques can be found in the literature
to compute an overapproximation of the least solution of the previous system of
equations (which existence is proved thanks to Knaster-Tarski theorem):

Min-Policy Iteration [1,19] performs descending iterations towards some fix-
point, working in a way similar to the Newton-Raphson method. Iterations
are not guaranteed to reach a fixpoint but can be stopped at any time leaving
an overapproximation thereof. Moreover, convergence is usually fast.

6 Pierre Roux and Pierre-Löıc Garoche

Max-Policy Iteration [18,19] works in the opposite direction, starting from
bottom and iterating computations of greatest fixpoints on so called max-
policies until a global fixpoint is reached. The algorithm terminates with a
— at least theoretically — precise fixpoint but the user has to wait until the
end since intermediate results are not overapproximations of a fixpoint.

In practice, both algorithms compute the same invariant. Min-policies are
nonetheless expected to be able to cope with larger systems [19, conclusion].

Example 5. On our running example, policy iterations compute the loop in-
variant (1.0029, 0.1795, 0.1136, 0.2757) ∈ T , meaning: t1 ≤ 1.0029 ∧ t2 ≤
0.1795 ∧ t3 ≤ 0.1136 ∧ t4 ≤ 0.2757 or equivalently: t1 ≤ 1.0029 ∧ |x0| ≤
0.4236 ∧ |x1| ≤ 0.3371 ∧ |x2| ≤ 0.5251 (all figures are rounded to the fourth
digit). This is a cropped ellipsoid as displayed on Figure 3.

3 An Abstract Control Flow Graph Domain

The previous section stated that policy iterations are able to compute precise
fixpoints but require to extract a system of equations from the analyzed program.
This fundamentally differs from the classic abstract domain paradigm. Although
simply running both kind of analyses in parallel is easy, that would hinder the
chances of a tight cooperation between them. The contribution of our work is to
define an abstract domain which will gracefully interface both worlds.

This section describes a symbolic abstract domain reconstructing control flow
graphs similar to Figure 2. This domain will basically “record” assignments and
guards (of if-then-elses conditionals and while loops) in graph edges thanks to
the corresponding abstract operators and close loops during widenings.

This will finally be used in the next section to provide an embedding of policy
iterations in a classic abstract domain for Kleene iterations.

3.1 Lattice Structure

Definition 1. Given a set Vex of additional variables (Vex∩V = ∅), we define:
– A := V→ expr, functions from variables to expressions on V ∪ Vex;
– C := expr → R.

Variables Vex will be used for modeling random inputs, A for assignments
and C for constraints (mostly coming from guards). We will later write x :=
2y, y := y + 1 for instance, to denote the function in A mapping x to the ex-
pression 2 × y, y to y + 1 and every other variable z ∈ V to the expression z.
Furthermore id will denote the identity function, mapping every variable x ∈ V
to the expression x. Regarding constraints, 1 ≤ x ≤ 2 ∧ y ≤ 42 will represent
the function in C mapping expression x to 2, −x to −1, y to 42 and anything
else to +∞. Finally ⊥C is the function in C mapping every expression to −∞.

Definition 2. Given a set V , st ∈ V and fi ∈ V (fi 6= st) and denoting E the
functions V ×A× V → C, we define the set of graphs G as:

G := {>G } ∪
{

(e, t) ∈ E × V
∣∣∣∣
t 6= st ∧ ∀v ∈ V,∀a ∈ A, e(fi, a, v) = ⊥C
∧∀v ∈ V,∀a ∈ A, t 6= fi⇒ e(v, a, fi) = ⊥C

}
.

Integrating Policy Iterations in Abstract Interpreters 7

An element of G (other than >G) is a pair (e, t) with e edges of a graph and t a
vertex of this graph. t indicates the point of program currently considered by the
Kleene iterations, acting like a kind of code pointer on e. The graph e associates
to each pair of points v and v′ and assignment a the constraint e(v, a, v′) to
satisfy in order to take this transition and apply assignment a. Among the graph
vertices V we distinguish two special vertices: st is the starting point of the
program whereas fi will be used as temporary final point. We require two things
about fi: that it has no outcoming edge (∀v ∈ V,∀a ∈ A, e(fi, a, v) = ⊥C) and
that it is used only as current point (if t 6= fi then fi does not appear in the
graph: ∀v ∈ V,∀a ∈ A, t 6= fi⇒ e(v, a, fi) = ⊥C).

st 2

true ,
x0 := 0
x1 := 0
x2 := 0 −1 ≤ in ≤ 1 ,

x′
0 := x0 x′

1 := x1 x′
2 := x2

x0 := 0.9379 x0 − 0.0381 x1 − 0.0414 x2 + 0.0237 in
x1 := −0.0404 x0 + 0.968 x1 − 0.0179 x2 + 0.0143 in
x2 := 0.0142 x0 − 0.0197 x1 + 0.9823 x2 + 0.0077 in

Fig. 4. Example of value in G.

Example 6. For our running example, the result of Kleene iterations at loop head
can be represented as on Figure 4. We chose a graphical representation for edges
e, drawing only edges different from ⊥C , while current point t is represented by
a doubly circled vertex. More precisely, we draw an edge labeled (c, a) between
v1 and v2 when e(v1, a, v2) = c 6= ⊥C .

An order v]
G on G is basically7 defined as the pointwise extension on E of

v]
C (itself a pointwise extension of usual order on R) for values with the same

current point t. A least upper bound
⊔]

G is defined likewise, based on the usual

max on R. This makes G a complete lattice.

Definition 3 (concretization γG). Given a template domain T , the concretiza-
tion function γG : G → 2(V→R) is then defined as γG(>G) = RV and γG(e, t) =
γT (bt,1, . . . , bt,n) with (bv,i)v∈V,i∈J1,nK the least solution of the system of equations
previously defined in Section 2.3.

This concretization function gives a meaning to abstract values. It can be

shown to be monotone (∀g, g′∈G, g v]
G g′ ⇒ γG(g) ⊆ γG(g′)). It is also worth

noting that, like with any abstract domain, an abstract value (e, t) ∈ G overap-
proximates the reachable state space at some program point. The code pointer t
is then used to locate this program point in the graph e.

3.2 Abstract Operators

Guards To compute Jp ≤ rK](g) for an expression p, a real r ∈ R and an
abstract value g ∈ G, we have to distinguish three cases as illustrated on Figure 5:

(a) when g = >G , typically at starting point, we return a graph with the code
pointer at fi and a unique edge between st and fi labeled with (p ≤ r, id);

(b) when g = (e, fi), we add the constraint p ≤ r to all incoming edges of fi;
(c) finally, when g = (e, t) with t 6= fi. we add an edge labeled with (p ≤ r, id)

between t and fi.

7 Up to some details later required for the widening.

8 Pierre Roux and Pierre-Löıc Garoche

Definition 4. For any expression p, any real number r ∈ R and any abstract
value g ∈ G, Jp ≤ rK](g) is defined by case analysis on g:

Jp ≤ rK](>G) = (e, fi) where e is the following function:

v, a, v′ 7→ p′ 7→

r if (v, a, v′) = (st, id, fi), p′ = p
+∞ if (v, a, v′) = (st, id, fi), p′ 6= p
−∞ otherwise

;

Jp ≤ rK](e, fi) = (e′, fi) where e′ is the following function:

v, a, v′ 7→ p′ 7→
{

min (r, e(v, a, v′)(p′)) if v′ = fi, p′ = a(p)
e(v, a, v′)(p′) otherwise

;

Jp ≤ rK](e, t) = (e′, fi) where e′ is the following function:

v, a, v′ 7→ p′ 7→

r if (v, a, v′) = (t, id, fi), p′ = p
+∞ if (v, a, v′) = (t, id, fi), p′ 6= p
e(v, a, v′)(p′) otherwise

.

Property 1 (soundness). This abstract operator is sound with respect to the
concrete semantics of guards: for all expression p, all real r ∈ R and all g ∈ G,
Jp ≤ rK(γG(g)) ⊆ γG

(
Jp ≤ rK](g)

)
.

Jx ≤ 0K](>G) = st fi
x ≤ 0, id

(a) case g = >G

Jx ≤ 0K]
(

st fi
y ≤ 0, r

)
= st fi

r(x) ≤ 0
y ≤ 0

, r

(b) case g = (e, fi)

Jx ≤ 0K]
(

st t
y ≤ 0, r

)
= st t

fi

y ≤ 0, r

x ≤ 0, id

(c) case g = (e, t), t 6= fi

Fig. 5. Examples of abstract guards.

Assignments This is very similar
to guards, modifying assignments
instead of constraints on edges.
Soundness property is similar.

Random assignments This is a
kind of merge between the two pre-
vious ones. The variable randomly
assigned in range [r1, r2] is first as-
signed to a fresh new variable8 x ∈
Vex which is then constrained by
−x ≤ −r1 and x ≤ r2. A similar
soundness property holds.

3.3 Widening

On numerical domains, widening discards information in order to enforce ter-
mination of the analysis. This is a source of imprecision. On the contrary, the
graphs we are computing are finite objects which can be obtained without intro-
ducing imprecision. Thus, the following widening operator only aims at closing
loops in graphs.

8 Any variable not appearing in any incoming edge of fi.

Integrating Policy Iterations in Abstract Interpreters 9

⊥G ∇G st fi st 2=
c, r c, r

(a) both code pointers equal to fi (⊥G = (⊥̇C , fi)),
typical case before entering a loop

st 2 st 2 fi st

2

∇G =
c, r c, r c′, r′

c, r

c′, r′
(b) one code pointer not equal to fi,
typical case after a first loop iteration

Fig. 6. Widening: introducing new nodes and
loops in the control flow graph.

None of the abstract operators
we have seen up to now introduces
new nodes in the graph (other
than st and fi). This is done by the
widening which plays a key role by
introducing new nodes and clos-
ing loops on those nodes. Widen-
ing is actually the best place to
create loops in our abstract con-
trol flow graphs since it is usually
called at loop heads of programs
during analyses9. Moreover, in
most abstract interpreters, widen-
ing is the only indication an abstract domain gets from the presence of loops in
the analyzed program.

To compute the widening (e, t)∇(e′, t′) of two graphs, there are basically
three cases to consider:

– both t and t′ are equal to fi: in this case, we create a new point t′′ and
redirect all incoming edges of fi to t′′ in both e and e′ before computing their
join, this is illustrated on Figure 6 (a);

– either t or t′ is not fi (or t = t′ 6= fi), say t 6= fi: in this case all incoming
edges of fi are redirected to t in e′ and a pointwise widening is done on each
edge, Figure 6 (b);

– both t and t′ are not fi and are different: in this case we return >G .

4 Embedding Policy Iterations into an Abstract Domain

This section finally describes how to use the control flow graph domain of the
previous section to embed policy iterations into a classic abstract domain.

The basic idea is to build a product of the control flow graph domain with
a template domain. Policy iterations are then performed during widenings to
reduce the template part according to the graph part.

4.1 Reduced product between Graph and Template Domains

First, the template domain T introduced in Section 2.3 is equipped with dummy
abstract operators J.K]T for guards, assignments and random assignments that
always return >T = (+∞, . . . ,+∞). While perfectly useless, those operators
are trivially sound.

Definition 5 (policy iterations domain). We define the domain Pi as the
product G×T of the domain of previous section with the above template domain.

This means all operations on Pi are performed component by component.

For instance, for (g, β) and (g′, β′) ∈ Pi, the join (g, β)t]Pi
(g′, β′) is defined as10

9 It even must be called at least once per loop to ensure convergence of the analyses [4].
10 The join t]

T on T = Rn
is simply the pointwise extension of the usual max on R.

10 Pierre Roux and Pierre-Löıc Garoche

(gt]G g′, βt]T β′). The concretization function γPi : Pi → 2V→R is the intersection
of the concretizations of each component: γPi(g, β) = γG(g) ∩ γT (β).

At this point, this domain still looks completely useless. But all the policy
iteration work will take place during its widening.

Definition 6 (widening of Pi). We define ∇Pi
: Pi × Pi → Pi as:

(g, β)∇Pi
(g′, β′) =

{
(g∇G g′,PI (g∇G g′)) if g′v]

G g
(g∇G g′,>T) otherwise

where PI(g) is the result of policy iterations applied on graph11 g.

The test g′v]
G g is used to perform policy iterations only when the graph

domain has stabilized, thus avoiding potentially costly, and rather useless, com-
putations on yet incomplete graphs.

As usual with reduced products [10], ∇Pi
is not a widening in the strict

acceptation of the term, since it is not greater than the join of Pi. However, it
still satisfies the two fundamental following properties:

– it does not break the soundness of the analysis since for all p, p′ ∈ Pi:

γPi(p t]Pi
p′) ⊆ γPi

(p∇Pi
p′);

– it ensures termination of the analysis: for all sequences x ∈ Pi
N, the sequence

yi = xi, yi+1 = yi∇Pixi is ultimately stationary.

Equipped with ∇Pi
as widening operator, Pi finally offers a classic abstract

domain interface to policy iterations.

4.2 Remarks on this Embedding

One may find the previous construction quite complicated and ask why not
simply perform policy iterations aside classic Kleene iterations at each loop head.
This seemingly simpler approach would however suffer from following drawbacks:

– it is not confined to an abstract domain, breaking the usual abstract inter-
preter framework [23];

– this would prevent the use of reduced products to exchange information with
other domains, since a more static approach would be unable to record those
informations on the fly as our graph domain can.

Finally, due to first point, implementation could rapidly become more intricate.

5 Application to Quadratic Invariants
on Guarded Linear Systems

Semi-definite programming is a numerical optimization technique allowing by
policy iterations to efficiently compute quadratic invariants on linear guarded
systems. This short section discusses the interest of such invariants and how to
generate adequate templates.

A wide range of today’s real-time embedded systems, especially their most
critical parts, rely on a control-command computation core. Much, if not most,

11 More precisely on the system of equations introduced in Section 2.3.

Integrating Policy Iterations in Abstract Interpreters 11

of those systems are based on a linear law (lead-lag, LQR or PID controllers, low-
pass filters,. . .). They periodically update their internal state following a matrix
expression of the form xk+1 = Axk + Buk in which xk represents the state of
the system at a given time k, matrix A models the system update according to
its previous state while matrix B expresses the effect of the bounded input uk.

On the one hand, analyzing such systems with linear abstract domains often
leads at best to a rather costly analysis or at worst to no result at all. For
instance, they often do not admit any invariant in the interval domain. On
the other hand, control theorists have known for long that such systems are
stable if and only if they admit a quadratic invariant (they call them Lyapunov
functions [5]). Those invariants take the shape of an ellipsoid as seen on the
running example of Section 2. We demonstrated in previous work [26] how good
quadratic templates can be computed by adding appropriate constraints to the
previous equation.

Actual programs often contain a number of saturations or resets around the
linear core. Those guards are well handled by policy iterations.

6 Experimental Results

All the elements presented in this paper have been implemented as a new abstract
domain in our static analyzer for Lustre synchronous programs12.

For the sake of efficiency, policy iterations are performed with floating point
computations using the semidefinite programming library CSDP [2]. This usually
yields good results but without any formal guarantee about their correctness13.
Checking that a result is an actual postfixpoint basically amounts, for each
term of the equation system, to prove that a given matrix is actually positive
definite. This is done by carefully bounding the rounding error on a floating point
Cholesky decomposition [27]. Proof of positive definiteness of an n × n matrix
can then be achieved with O

(
n3
)

floating point operations, which in practice
induces only a very small overhead to the whole analysis.

Experiments were conducted on a set of stable linear systems. These systems
were extracted from [1,13,26]. We have to recall to the reader that those sys-
tems, despite their apparent simplicity, do not admit simple linear invariants.
Table 1 sums up analysis times for various versions of them, with or without
saturations or resets. All computations were performed on an Intel Core2 @
2.66GHz. It is interesting to notice that we nearly always get better results
than [1,26] either thanks to the better templates obtained by solving Lyapunov
equations (compared to [1]) or thanks to the extra templates bounding each
variable (compared to [26]). Moreover, those quadratic invariants are fully au-
tomatically inferred from the analyzed program, while [1] requires the user to
supply them. Although [12] may infer better bounds for the first two examples
thanks to a kind of unrolling mechanism, Fluctuat [20] and its zonotopes is, to
the best of authors’ knowledge, the only abstract interpreter that may be able
to automatically bound the other examples. This would however be a lot more
expensive.

12 Because we had it at hand. This only advocates the versatility of the approach.
13 Again, we speak here about the soundness of the result (the fixpoint computed)

w.r.t. the real semantics of the program and not its floating point one.

12 Pierre Roux and Pierre-Löıc Garoche

Table 1. Result of the experiments: quadratic invariants inference. Column n gives the
number of program variables considered for policy iteration. The remaining columns
detail the computation time: templates corresponds to the quadratic template compu-
tation, iterations to the actual policy iterations and check to the soundness checking.
For each example, except the last one, the first line is for the bare linear system, the
second for the same system with an added saturation and the third with a reset. ⊥
indicates failure of the soundness checking.

n total (s) templates (s) iterations (s) check (s)

Ex. 1
From [13, slides]

3 0.47 0.38 0.05 0.01
4 1.26 0.70 0.37 ⊥ (0.00)
3 0.56 0.41 0.09 0.02

Ex. 2
From [13, slides]

5 0.70 0.56 0.05 0.02
6 1.18 0.57 0.37 0.12
5 0.82 0.59 0.10 0.04

Ex. 3
Discretized lead-lag
controller

3 0.53 0.35 0.13 0.02
4 1.06 0.36 0.54 0.08
3 0.64 0.35 0.23 0.03

Ex. 4
Linear quadratic gaussian
regulator

4 0.66 0.38 0.19 0.03
5 1.33 0.39 0.63 0.14
4 0.90 0.38 0.38 0.06

Ex. 5
Observer based controller
for a coupled mass system

6 1.12 0.66 0.24 0.06
7 2.59 0.65 1.34 0.26
6 1.39 0.67 0.42 0.11

Ex. 6
Butterworth
low-pass filter

6 1.39 0.99 0.17 0.07
7 2.64 1.01 1.05 0.22
6 1.63 1.00 0.31 0.12

Ex. 7
Dampened oscillator
from [1]

2 0.35 0.21 0.07 0.01
3 1.25 0.24 0.28 0.09
2 0.44 0.23 0.14 0.03

Ex. 8
Harmonic oscillator
from [1]

2 0.36 0.22 0.07 0.01
3 0.82 0.20 0.44 0.10
2 0.44 0.22 0.13 0.03

Ex. 5 and 6 chained
6 + 6 2.53 0.67 + 1.00 0.24 + 0.17 0.06 + 0.06

12 7.92 4.06 2.00 0.52

The analyzer is released under a GPL license and available along with all
examples and results at http://cavale.enseeiht.fr/policy2013/.

Example 7. The last line of Table 1 considers two linear systems chained, the
output of the first one being used as input by the second one. This program
is first analyzed with two policy iteration domains communicating together via
reduced product to and from the intervals domain (the two domains do not share
any variable). It is worth noting that total analyses time is just the sum of the
times needed for the two separate analyses. In comparison, the second analysis
with one single domain for the whole program is much more expensive.

7 Related Work

Multiple approaches try to tackle the loss of precision of Kleene iterations. A
first line of work concerns recent developments to improve widening [21] and

http://cavale.enseeiht.fr/policy2013/

Integrating Policy Iterations in Abstract Interpreters 13

narrowing [22]. However those approaches cannot guarantee to reach the least
fixpoint. Furthermore the authors are not aware of any numerical domain able
to compute quadratic invariants based on such advanced widening. We recall
that the examples presented in the Section 6 do not admit any simple inductive
linear invariant.

Policy iteration techniques are another approach. We address the interested
reader – beyond our policy iteration primer of Section 2 – to the seminal papers
using semidefinite programming: [1,19] for the Min-Policy and [18,19] for the
Max-Policy. All those works require appropriate templates for the use of policy
iteration, while our instantiation of the framework is fully automatic. Further-
more, they make use of floating point semidefinite programming, but without
addressing the soundness issue as we do. They do however acknowledge this fact.

About the integration of policy iterations and classic abstract interpretation,
the opposite approach of the current paper has been proposed in [30]. The au-
thors introduced additional transformers in order to extend a numerical abstract
domain to its use with policy iterations. Due to this modification of the abstract
domain interface, it does not give an embedding of policy iterations in a classic
abstract domain as offered in the current paper.

We should also mention alternatives to classic widening, other than policy
iterations. These are called acceleration techniques [3,11,28]. They compete with
policy iterations but hardly extend to non linear properties.

About the analysis of guarded linear systems, the work [12,13,25] addresses
a strict subclass of the programs handled by our tool. However since they rely
on some kind of unrolling, they could be more precise for such specific problems.
Maximum reachable values (our bounds are usually a few percents larger) can be
computed via support functions [29]. However, due to heavy unrolling, only pure
linear systems, without guards, are handled and the result is not an inductive
invariant.

The generation of quadratic ellipsoid templates was already presented in [26]
but this paper did not make use of policy iterations and the approach was only
applicable to models of linear systems without if-then-else statements, not on
actual program sources.

Last, as already mentioned at the end of Section 3, the work [17] relies on an
SMT solver to optimize the policy choice when computing Max-policy iterations.
In fact an important system with multiple if-then-else construct will lead to an
exponential number of policies. Having an implicit representation and a means
to make an efficient choice is then essential. Although this work has only been
applied for linear templates, its extension to our framework should be of interest.

8 Conclusion and Future Work

To the author’s knowledge this paper presents the first integration of policy
iteration as a fully usable relational abstract domain. This integration in a Kleene
fixpoint is enabled thanks to (i) an abstract domain that rebuilds the control flow
graph and allows the policy iteration algorithm to access a global view of the
program as a system of equations; (ii) a method, based on [26], to synthetize
meaningful ellipsoid templates for a specific class of programs: stable guarded
linear systems. This provides a powerful abstract domain able to compute non

14 Pierre Roux and Pierre-Löıc Garoche

linear invariants in a fully automatic way, in a manner similar to relational
abstractions such as polyhedra.

Reduction between classic domains and our allows both to precisely represent
this control flow graph and to inject the result of policy iterations within classic
domains. It also enables the use of multiple policy iteration domains; for example
when considering sequences of such guarded linear filters as in Example 7.

The experimental results showed that this approach really extends the appli-
cability of Kleene-based abstract interperter to a wider class of systems admitting
non linear invariants. When computing our analyzes we only provided the set
of variables that have to be analyzed with policy iterations, without any other
information like templates.

Finally the issue of floating point semantics should not be forgotten. The
introduction of error terms has to be addressed.

Acknowledgments. We deeply thank Éric Goubault, Peter Schrammel and
the anonymous reviewers for useful comments regarding this paper.

References

1. Assalé Adjé, Stéphane Gaubert, and Éric Goubault. Coupling policy iteration
with semi-definite relaxation to compute accurate numerical invariants in static
analysis. In ESOP, 2010.

2. Brian Borchers. Csdp, a c library for semidefinite programming. Optimization
Methods and Software, 11(1-4), 1999.

3. Olivier Bouissou, Yassamine Seladji, and Alexandre Chapoutot. Acceleration of the
abstract fixpoint computation in numerical program analysis. J. Symb. Comput.,
47(12), 2012.

4. François Bourdoncle. Efficient chaotic iteration strategies with widenings. In For-
mal Methods in Programming and Their Applications. 1993.

5. Stephen Boyd, Laurent El Ghaoui, Éric Féron, and Venkataramanan Balakrishnan.
Linear Matrix Inequalities in System and Control Theory, volume 15 of SIAM.
Philadelphia, PA, June 1994.

6. Alexandru Costan, Stephane Gaubert, Eric Goubault, Matthieu Martel, and Sylvie
Putot. A policy iteration algorithm for computing fixed points in static analysis
of programs. In CAV, 2005.

7. Patrick Cousot. Proving program invariance and termination by parametric ab-
straction, lagrangian relaxation and semidefinite programming. In VMCAI, 2005.

8. Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice
model for static analysis of programs by construction or approximation of fixpoints.
In POPL, 1977.

9. Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné,
and Xavier Rival. Why does astrée scale up? Formal Methods in System Design,
35(3):229–264, 2009.

10. Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné,
David Monniaux, and Xavier Rival. Combination of abstractions in the Astrée
static analyzer. In ASIAN, 2006.

11. Paul Feautrier and Laure Gonnord. Accelerated invariant generation for c programs
with aspic and c2fsm. Electr. Notes Theor. Comput. Sci., 267(2), 2010.

12. Jérôme Feret. Static analysis of digital filters. In ESOP, number 2986, 2004.

Integrating Policy Iterations in Abstract Interpreters 15

13. Jérôme Feret. Numerical abstract domains for digital filters. In International
workshop on Numerical and Symbolic Abstract Domains (NSAD), 2005.

14. Stephane Gaubert, Eric Goubault, Ankur Taly, and Sarah Zennou. Static analysis
by policy iteration on relational domains. In ESOP, 2007.

15. Thomas Gawlitza and Helmut Seidl. Precise fixpoint computation through strategy
iteration. In ESOP, 2007.

16. Thomas Gawlitza and Helmut Seidl. Precise relational invariants through strategy
iteration. In CSL, 2007.

17. Thomas Martin Gawlitza and David Monniaux. Improving strategies via smt
solving. In ESOP, 2011.

18. Thomas Martin Gawlitza and Helmut Seidl. Computing relaxed abstract semantics
w.r.t. quadratic zones precisely. In SAS, 2010.

19. Thomas Martin Gawlitza, Helmut Seidl, Assalé Adjé, Stéphane Gaubert, and Eric
Goubault. Abstract interpretation meets convex optimization. J. Symb. Comput.,
47(12), 2012.

20. Khalil Ghorbal, Eric Goubault, and Sylvie Putot. The zonotope abstract domain
taylor1+. In CAV, 2009.

21. Denis Gopan and Thomas W. Reps. Lookahead widening. In CAV, volume 4144
of Lecture Notes in Computer Science. Springer, 2006.

22. Nicolas Halbwachs and Julien Henry. When the decreasing sequence fails. In SAS,
volume 7460 of Lecture Notes in Computer Science. Springer, 2012.

23. Bertrand Jeannet. Some experience on the software engineering of abstract inter-
pretation tools. Electr. Notes Theor. Comput. Sci., (2), 2010.

24. Antoine Miné. The octagon abstract domain. In AST 2001 in WCRE 2001, IEEE,
October 2001.

25. David Monniaux. Compositional analysis of floating-point linear numerical filters.
In CAV, 2005.

26. Pierre Roux, Romain Jobredeaux, Pierre-Löıc Garoche, and Éric Féron. A generic
ellipsoid abstract domain for linear time invariant systems. In HSCC. ACM, 2012.

27. Siegfried M. Rump. Verification of positive definiteness. BIT Numerical Mathe-
matics, 46, 2006.

28. Peter Schrammel and Bertrand Jeannet. Logico-numerical abstract acceleration
and application to the verification of data-flow programs. In SAS, 2011.

29. Yassamine Seladji and Olivier Bouissou. Numerical abstract domain using support
functions. In NFM, 2013.

30. Pascal Sotin, Bertrand Jeannet, Franck Védrine, and Eric Goubault. Policy itera-
tion within logico-numerical abstract domains. In ATVA, 2011.

	Integrating Policy Iterations in Abstract Interpreters

