
Computing Quadratic Invariants
with Min- and Max-Policy Iterations:

a Practical Comparison

Pierre Roux1,2 and Pierre-Löıc Garoche1

1 ONERA – The French Aerospace Lab, Toulouse, FRANCE
2 ISAE, Toulouse, FRANCE

Abstract. Policy iterations have been known in static analysis since a
small decade. Despite the impressive results they provide – achieving a
precise fixpoint without the need of widening/narrowing mechanisms of
abstract interpretation – their use is not yet widespread. Furthermore,
there are basically two dual approaches: min-policies and max-policies,
but they have not yet been practically compared.
Multiple issues could explain their relative low adoption in the research
communities: implementation of the theory is not obvious; initialization
is rarely addressed; integration with other abstraction or fixpoint engine
not mentionned; etc. This paper tries to present a Policy Iteration Primer,
summarizing the approaches from the practical side, focusing on their
implementation and use.
We implemented both of them for a specific setting: the computation of
quadratic templates, which appear useful to analyze controllers such as
found in civil aircrafts or UAVs.

Keywords: abstract interpretation, policy iteration, linear systems with
guards, quadratic invariants, ellipsoids, semidefinite programming

1 Introduction

Abstract interpretation is now commonly used as a framework to describe static
analyses of programs. The collecting semantics, i.e., set of reachable states,
has first to be characterized as a fixpoint computation; then abstract domains
allow to perform in the abstract the fixpoint computation and obtain a sound
over-approximation of the concrete fixpoint.

The most famous approach of this fixpoint over-approximation is based on a
Kleene fixpoint computation using widening and narrowing mechanisms [5]. The
iteration process starts from an over-approximation, in the abstract domain, of
the initial states, then it performs a sequence of computations using the abstract
transfer function of the program. These iterations can be understood as local
computations: each statement of the program is considered one by one until the
global fixpoint is reached. Widening operators are then used while computing
the iterates to ensure convergence. Narrowing helps to recover precision lost by
widening steps: it is used once a postfixpoint is obtained to regain precision.

Another approach was more recently introduced in the static analysis commu-
nity: policy3 iterations [4,8,9]. The idea is to exactly solve the fixpoint equation
for a given abstract domain when specific conditions are satisfied using appropri-
ate mathematical solvers. For example when both the abstract domain and the
fixpoint equation use linear equations, then linear programming could be used to
compute the exact solution without the need of widening and narrowing [8,9].
Similarly when the function and the abstract domain are at most quadratic, semi-
definite programming (SDP) could be used [1,11,12]. In practice, the abstract
domains should be rephrased as template domains, i.e., a finite a-priori-known
set of functions that will be bounded thanks to the mathematical solvers.

This second approach is also very useful when abstract domains are not fitted
with a lattice structure. For example ellipsoids, are not fitted with such: usually,
there is no smallest (for inclusion order) ellipsoid containing two other given
ellipsoids. But given a (fixed) set of quadratic templates, policy iterations could
bound them. Policy iterations over quadratic templates is then a good approach
to compute such invariants, that are not well suited for Kleene iterations.

We are interested in analyzing control command software, more specifically
the ones found in UAVs or civil aircrafts. Most of them are based on well known
principles of control theory: linear controllers. In general these controllers do not
admit simple linear inductive invariants, but control theorists know for long [3,16]
that such systems are stable if and only if they admit a quadratic invariant.
Therefore we are interested in computing these invariants on such linear systems.

Few static analysis work rely on quadratic invariants to bound linear sys-
tems [1,2,6,7,11,18,19]. In particular, ellipsoids of dimension two are used in the
famous Astrée tool [6,7].

About policy iterations, two different “schools” exist in the static analysis
community. The “French school” [1,4,8,12] offers to iterate on min-policies,
starting from an over-approximation of a fixpoint and decreasing the bounds
until the fixpoint is reached. The “German school” [9,10,12] in contrary operates
on max-policies, starting from bottom and increasing the bounds until a fixpoint
is reached. While the first can be interrupted at any point leaving a sound
over-approximation, the second approach requires to wait until the fixpoint is
reached to provide its result.

Clearly those two approaches rely on comparable fundamentals, but no work
actually compares them in practice. Furthermore their description is highly
theoretical and not supported by actual implementation performing analyses
on code. A few issues, that particularly matter when targeting a practical
implementation, were also not actually addressed such as the initial state of the
iterations, the use of unsound tools to perform numerical computations or the
integration with other abstractions.

This paper tries to give a practical definition for both approaches and presents
our experiments to compare them when inferring quadratic invariants for linear
controllers. All the analyses have been implemented and all results are obtain
without any other information than the code.

Section 2 details the state of the art, i.e., the definition of template domains,
min- and max-policies. Section 3 provides some details on our implementation

3 The word strategy is also used in the literature for policy, with equivalent meaning.

since most of the policy iteration papers about quadratic templates do not provide
any implementation readily applicable to actual code and therefore do not deal
with template synthesis or soundness of the floating point computations. Finally,
Section 4 presents our experimental results while a last section concludes.

2 State of the Art

The basic idea of policy iteration is to decompose fixpoint computation problems
to enable the use of numerical optimization tools to compute bounds that are
hard to guess for the widening or to retrieve via narrowing.

2.1 Template Domains

Policy iteration is performed on so called template domains. Given a finite set
{ t1, . . . , tn } of expressions on program variables V, the template domain T
is defined as Rn

= (R ∪ {−∞,+∞})n and the meaning of an abstract value
(b1, . . . , bn) ∈ T is the set of environments

γT (b1, . . . , bn) = {ρ ∈ (V→ R) | Jt1K(ρ) ≤ b1, . . . , JtnK(ρ) ≤ bn}

where JtiK(ρ) is the result of the evaluation of expression ti in environment ρ.
In other words, the abstract value (b1, . . . , bn) represents all the environments
satisfying all the constraints ti ≤ bi.

Indeed, many common abstract domains can be rephrased as template domains.
For instance the intervals domain is obtained with templates −xi and xi for
all variables xi ∈ V and the octagon domain [17] by adding all the ±xi ± xj .
The shape of the templates to be considered for policy iteration depends on the
optimization tools used. For instance, linear programming [8,9] allows any linear
templates whereas quadratic templates can be handled thanks to semidefinite
programming and an appropriate relaxation [1,11,12]. This paper focuses on the
latter case.

1 2

x0 := 0
x1 := 0
x2 := 0

−1 ≤ in ≤ 1 ,
x0 := 0.9379 x0 − 0.0381 x1 − 0.0414 x2 + 0.0237 in
x1 := −0.0404 x0 + 0.968 x1 − 0.0179 x2 + 0.0143 in
x2 := 0.0142 x0 − 0.0197 x1 + 0.9823 x2 + 0.0077 in

Fig. 1. Control flow graph for our running example.

Example 1. To bound the variables of the program whose control flow graph is
depicted on Figure 1, we use the quadratic template4: t1 := 6.2547x20+12.1868x21+
3.8775x22−10.61x0x1−2.4306x0x2+2.4182x1x2. Templates t2 := x20, t3 := x21 and
t4 := x22 are added in order to get bounds on each variable. Using those templates,
policy iterations compute the invariant5 (1.0029, 0.1795, 0.1136, 0.2757) ∈ T ,
meaning: t1 ≤ 1.0029 ∧ x20 ≤ 0.1795 ∧ x21 ≤ 0.1136 ∧ x22 ≤ 0.2757 or equivalently:
t1 ≤ 1.0029 ∧ |x0| ≤ 0.4236 ∧ |x1| ≤ 0.3371 ∧ |x2| ≤ 0.5251. This is a cropped
ellipsoid as displayed on Figure 2.

4 How this template was chosen will be explained later in Section 3.2.
5 All figures are rounded to the fourth digit.

2.2 System of Equations

Fig. 2. Invariant for our running example.

While Kleene iterations iterate locally
through each construct of the program,
policy iterations require a global view
on the analyzed program. For that pur-
pose, the whole program is first trans-
lated into a system of equations which
is later solved.

Starting from the control flow graph
of the analyzed program, a system of
equations is defined with a variable bi,j
for each vertex i of the graph and each template tj .

Example 2. Here is the system of equations for our running example:
b1,1 = +∞ b1,2 = +∞ b1,3 = +∞ b1,4 = +∞
b2,1 = max{0 | be(1)} ∨ max{r(t1) | (−1 ≤ in ≤ 1) ∧ be(2)}
b2,2 = max{0 | be(1)} ∨ max{r(t2) | (−1 ≤ in ≤ 1) ∧ be(2)}
b2,3 = max{0 | be(1)} ∨ max{r(t3) | (−1 ≤ in ≤ 1) ∧ be(2)}
b2,4 = max{0 | be(1)} ∨ max{r(t4) | (−1 ≤ in ≤ 1) ∧ be(2)}

(1)

where be(i) denotes (t1 ≤ bi,1) ∧ (t2 ≤ bi,2) ∧ (t3 ≤ bi,3) ∧ (t4 ≤ bi,4) and r(t) is the
template t in which variable x0 is replaced by 0.9379x0 − 0.0381x1 − 0.0414x2 +

0.0237 in, variable x1 is replaced by −0.0404x0 + 0.968x1− 0.0179x2 + 0.0143 in and
variable x2 is replaced by 0.0142x0 − 0.0197x1 + 0.9823x2 + 0.0077 in. The usual
maximum on R is denoted ∨.

Each bi,j bounds the template tj at program point i and is defined in one
equation as a maximum over as many terms as incoming edges in i. More precisely,
each edge between two vertices v and v′ translates to a term in each equation bv′,j

on the pattern: max
{
r(tj)

∣∣∣ c ∧∧j(tj ≤ bv,j)
}

where c and r are respectively

the constraints and the assignments associated to this edge. This expresses the
maximum value the template tj can reach in destination vertex v′ when applying
the assignments r on values satisfying both the constraints c of the edge and the
constraints tj ≤ bv,j of the initial vertex v. Finally, the program starting point
is initialized to (+∞, . . . ,+∞), meaning all equations for bi0,j , where i0 is the
starting point, become bi0,j = +∞. Thus, for any solution (b1,1, . . . , b1,n, . . .) of
the equations, γT (bi,1, . . . , bi,n) is an overapproximation of reachable states of
the program at point i.

2.3 Policy Iterations

Two different techniques can be found in the literature to compute an overap-
proximation of the least solution of the previous system of equations (which
existence is proved thanks to Knaster-Tarski theorem).

Min-Policy Iterations To some extent, Min-Policy iterations [1] can be seen
as a very efficient narrowing, since they perform descending iterations from a
postfixpoint towards some fixpoint, working in a way similar to the Newton-
Raphson numerical method. Iterations are not guaranteed to reach a fixpoint
but can be stopped at any time leaving an overapproximation thereof. Moreover,
convergence is usually fast.

Writing a system of equations b = F (b) with b = (bi,j)i∈J1,nK,j∈J1,pK and

F : Rnp → Rnp
(n being the number of templates and p the number of vertices

in the control flow graph), a min-policy is defined as follows: F is a min-policy

for F if for every b ∈ Rnp
, F (b) ≤ F (b) and there exist some b0 ∈ Rnp

such that
F (b0) = F (b0).

Example 3. Considering the system of one equation b1,1 = 0 ∨
√
b1,1 where

√
x

is defined as −∞ for negative numbers x, F defined as F (b) := 0 ∨
(

b1,1
8 + 2

)
is

a min-policy. Indeed, for all b1,1 ∈ R, F (b) = 0 ∨
√
b1,1 ≤ 0 ∨ b1,1

8 + 2 = F (b),

and for b0 = 16, F (b0) =
√

16 = 16
8 + 2 = F (b0). This is illustrated on Figure 3

on which σ1 = F .

The following theorem can then be used to compute the least fixpoint of F .

Theorem 1. Given a (potentially infinite) set F of min-policies for F . If for all

b ∈ Rnp
there exist a policy F ∈ F interpolating F at point b (i.e. F (b) = F (b))

and if each F ∈ F has a least fixpoint lfpF , then the least fixpoint of F satisfies

lfpF =
∧
F∈F

lfpF .

Iterations are done with two main objects: a min-policy σ and a tuple b of
values for variables bi,j of the system of equations. The following policy iteration
algorithm starts from some postfixpoint b0 of F and aims at refining it to produce
a better overapproximation of a fixpoint of F . Policy iteration algorithms always
proceed by iterating two phases: first a policy σi is selected, then it is solved
giving some bi. More precisely in our case:

– find a linear min-policy σi+1 being tangent to F at point bi, this can be done
thanks to a semi definite programming solver and a lagrangian relaxation;

– compute the least fixpoint bi+1 of policy σi+1 thanks to linear programming.

Iterations can be stopped at any point (for instance after a fixed number of
iterations or when progress between bi and bi+1 is considered small enough)
leaving an overapproximation b of a fixpoint of F .

Example 4. We perform min-policy iterations on the system of equation of
Example 3.

– We start from the postfixpoint b0 = 16. This postfixpoint could be obtained
through Kleene iterations for instance.

b1,1

0 ∨
√
b1,1

σ1σ2

b1,1
b0b1b2

Fig. 3. Illustration of Example 4.

– For each term of the unique equation, we look for an hyperplane tangent to

the term at point b0. 0 is tangent to 0 at point b0 and
b1,1
8 + 2 is tangent to√

b1,1 at point b0 (c.f., Figure 3), this gives the following linear min-policy:
σ1 =

{
b1,1 = 0 ∨

(
b1,1
8

+ 2
)

– The least fixpoint of σ1 is then: b1 = 16
7 ' 2.2857.

– Looking for hyperplanes tangent at point b1 gives the min-policy:
σ2 =

{
b1,1 = 0 ∨

(√
7
8
b1,1 + 2√

7

)

– Hence b2 = 16
8
√
7−7 ' 1.1295.

These two first iterations are illustrated on Figure 3. The procedure then rapidly
converges to the fixpoint b1,1 = 1 (the next iterates being b3 ' 1.0035 and
b4 ' 1.0000) and can be stopped as soon as the accuracy is deemed satisfying.

Example 5. We perform min-policy iteration on the running example.

– We start from the postfixpoint β0 = (+∞, +∞, +∞, +∞, 1000000, +∞,
+∞, +∞), which could be obtained through Kleene iterations for instance.

– For each term of each equation, we look for an hyperplane tangent to the
term at point b0. This can be done thanks to a semi definite programming
solver and gives the following linear min-policy:
σ1 = {

b1,1 = +∞ b1,2 = +∞ b1,3 = +∞ b1,4 = +∞
b2,1 = 0 ∨ 0.9857 b2,1 + 0.0152 b2,2 = 0 ∨ 0.2195 b2,1 + 11.0979
b2,3 = 0 ∨ 0.1143 b2,1 + 4.8347 b2,4 = 0 ∨ 0.2669 b2,1 + 3.9796

– A linear programming solver allows to compute the least fixpoint of σ1:
b1 = (+∞,+∞,+∞,+∞, 1.0664, 11.3324, 4.9568, 4.2644).

– σ2 = {
b1,1 = +∞ b1,2 = +∞ b1,3 = +∞ b1,4 = +∞
b2,1 = 0 ∨ 0.9857 b2,1 + 0.0143 b2,2 = 0 ∨ 0.2302 b2,1 + 0.0120
b2,3 = 0 ∨ 0.1190 b2,1 + 0.0052 b2,4 = 0 ∨ 0.2708 b2,1 + 0.0042

– b2 = (+∞,+∞,+∞,+∞, 1.0029, 0.2429, 0.1245, 0.2757).
– σ3 =

b1,1 = +∞ b1,2 = +∞ b1,3 = +∞ b1,4 = +∞
b2,1 = 0 ∨ 0.9857 b2,1 + 0.0143
b2,2 = 0 ∨ 0.0390 b2,1 + 0.7426 b2,2 + 0.0114
b2,3 = 0 ∨ 0.0340 b2,1 + 0.6635 b2,3 + 0.0050
b2,4 = 0 ∨ 0.2709 b2,1 + 0.0040

– b3 = (+∞,+∞,+∞,+∞, 1.0029, 0.1962, 0.1160, 0.2757).
– σ4 =

b1,1 = +∞, b1,2 = +∞, b1,3 = +∞, b1,4 = +∞
b2,1 = 0 ∨ 0.9857 b2,1 + 0.0143
b2,2 = 0 ∨ 0.0194 b2,1 + 0.8340 b2,2 + 0.0104
b2,3 = 0 ∨ 0.0214 b2,1 + 0.7688 b2,3 + 0.0049
b2,4 = 0 ∨ 0.2709 b2,1 + 0.0040

– b4 = (+∞,+∞,+∞,+∞, 1.0029, 0.1803, 0.1137, 0.2757).

Two more iterations lead to b6 = (+∞,+∞,+∞,+∞, 1.0029, 0.1795, 0.1136,
0.2757) which is the invariant given in Example 1 and depicted on Figure 2.

Max-Policy Iterations Behaving somewhat as a super widening, Max-Policy
iterations [11] work in the opposite direction compared to Min-Policy iterations.
They start from bottom and iterate computations of greatest fixpoints on a set of
max-policies until a global fixpoint is reached. Unlike the previous approach, this
terminates with a theoretically precise fixpoint, but the user has to wait until the
end since intermediate results are not overapproximations of a fixpoint.

Max-policies are the dual of min-policies: F is a max-policy for F if for every
b ∈ Rnp

, F (b) ≤ F (b) and there exist some b0 ∈ Rnp
such that F (b0) = F (b0). In

particular, the choice of one term in each equation is a max-policy. From now on,
only this last kind of max-policies will be considered.

Example 6. A max-policy of the system of equations from Example 2:
b1,1 = +∞, b1,2 = +∞, b1,3 = +∞, b1,4 = +∞
b2,1 = max{r(t1) | (−1 ≤ in ≤ 1) ∧ be(2)}
b2,2 = max{0 | be(1)}
b2,3 = max{0 | be(1)}
b2,4 = max{r(t4) | (−1 ≤ in ≤ 1) ∧ be(2)}

Iterations are again done with two main objects: a max-policy σ and a tuple b
of values for variables bi,j of the system of equations. Considering that computing
a fixpoint on a given policy reduces to a mathematical optimization problem and
that a fixpoint of the whole equation system is also a fixpoint of some policy,
the following policy iteration algorithm aims at finding such a policy by solving
optimization problems. To initiate the algorithm, a term −∞ is added to each
equation, the initial policy σ0 is then −∞ for each equation and the initial value
b0 is the tuple (−∞, . . . ,−∞). Then policies are iterated:

– find a policy σi+1 improving policy σi at point bi, i.e. that reaches (strictly)
greater values evaluated at point bi; if none is found, exit;

– compute the greatest fixpoint bi+1 of policy σi+1.

The last tuple b is then a fixpoint of the whole system of equations.

Remark 1. Although min and max policies are dual concepts, we are in both cases
looking for overapproximations of the least fixpoint of the system of equations,
thus the algorithms are not dual.

Example 7. We perform max-policy iterations on the running example. For that,
we first add −∞ terms to each equation, leading to the following system of
equations:

b1,1 = −∞∨+∞ b1,2 = −∞∨+∞ b1,3 = −∞∨+∞ b1,4 = −∞∨+∞
b2,1 = −∞∨max{0 | be(1)} ∨ max{r(t1) | (−1 ≤ in ≤ 1) ∧ be(2)}
b2,2 = −∞∨max{0 | be(1)} ∨ max{r(t2) | (−1 ≤ in ≤ 1) ∧ be(2)}
b2,3 = −∞∨max{0 | be(1)} ∨ max{r(t3) | (−1 ≤ in ≤ 1) ∧ be(2)}
b2,4 = −∞∨max{0 | be(1)} ∨ max{r(t4) | (−1 ≤ in ≤ 1) ∧ be(2)}.

– We start with initial policy σ0 ={
b1,1 = −∞ b1,2 = −∞ b1,3 = −∞ b1,4 = −∞
b2,1 = −∞ b2,2 = −∞ b2,3 = −∞ b2,4 = −∞.

– Its greatest fixpoint is b0 = (−∞,−∞,−∞,−∞,−∞,−∞,−∞,−∞).
– We now look for a policy σ1 improving σ0 at point b0. For the first four

equations, the term +∞ is definitely greater than −∞. The strategy σ1 ={
b1,1 = +∞ b1,2 = +∞ b1,3 = +∞ b1,4 = +∞
b2,1 = −∞ b2,2 = −∞ b2,3 = −∞ b2,4 = −∞.

is then a suitable choice.
– Hence b1 = (+∞,+∞,+∞,+∞,−∞,−∞,−∞,−∞).
– We again look for a policy σ2 improving σ1 at point b0. There is nothing

strictly greater than +∞ in R and we keep the +∞ terms for the first four
equations. In the four remaining equations, replacing the bi,j with values
from b1 in be(1) and be(2) respectively gives formula equivalent to true and
false. This way, for these four equations, the first term reduces to 0 whereas
the second term evaluates to −∞. 0 being greater than the −∞ from b1, we
get an improving strategy σ2 ={

b1,1 = +∞ b1,2 = +∞ b1,3 = +∞ b1,4 = +∞
b2,1 = max{0 | be(1)} b2,2 = max{0 | be(1)}
b2,3 = max{0 | be(1)} b2,4 = max{0 | be(1)}.

– b2 = (+∞,+∞,+∞,+∞, 0, 0, 0, 0).
– Now that the b2,j in b2 are no longer −∞, be(2) is no longer false and it

becomes interesting to select the second terms in the four last equations,
hence σ3 =

b1,1 = +∞ b1,2 = +∞ b1,3 = +∞ b1,4 = +∞
b2,1 = max{r(t1) | −1 ≤ in ≤ 1 ∧ be(2)}
b2,2 = max{r(t2) | −1 ≤ in ≤ 1 ∧ be(2)}
b2,3 = max{r(t3) | −1 ≤ in ≤ 1 ∧ be(2)}
b2,4 = max{r(t4) | −1 ≤ in ≤ 1 ∧ be(2)}.

– The greatest fixpoint b3 = (+∞,+∞,+∞,+∞, 1.0077, 0.1801, 0.1141,
0.2771) of σ3 can be computed thanks to a semi-definite programming solver
and an appropriate relaxation.

– No more improving strategy.

After four iterations, the algorithm has found the same least fixpoint than min
policies in Example 5.

The Max-Policy iteration builds an ascending chain of abstract elements
similarly to Kleene iterations elements. However it is guaranteed to be finite,
bounded by the number of policies σ, while Kleene iterations require the use of
widening to ensure termination. Since there are exponentially many max-policies
in the number of templates and points of the control flow graph and since each
policy can be an improving one only once, we have an exponential bound on the
number of iterations. But in practice, only a small number of policies are usually
considered and the number of iterations remains reasonable.

3 Implementation Details

This Section highlights a few features of our implementation of min- and max-
policy iterations to compute quadratic invariants on linear systems. Some are just
simple hacks to improve analysis performances. Others were needed to achieve
full automaticity, ensure the soundness of the result or just to get any result at
all on our benchmarks.

3.1 Control Flow Graph

In this paper, we only dealt with control flow graphs from which system of equa-
tions are extracted for policy iterations. In a traditional, abstract interpretation
based, static analyzer, abstractions are computed by abstract domains [14] not
having access to the whole control flow graph of the analyzed program but only to
individual operations it performs. A symbolic abstract domain was then designed
to rebuild the control flow graph. This way, policy iterations are packed in an
abstract domain which can be used in a static analyzer through the same interface
than any other numerical relational domain such as polyhedra or octagons for
instance [15]. Full technical details on this point are unfortunately outside the
scope of this paper. We refer the interested reader to [20] for more details.

3.2 Templates

Template domains used by policy iteration require templates to be given prior
to the analyses. This greatly limits the automaticity of the method. However,
heuristics can be designed for linear systems of the form xk+1 = Axk +Buk, like
our running example. Those are ubiquitous in control applications where the
vector x represents the internal state of the controller and u a bounded input.

This section first focuses on generating templates for pure linear systems then
for guarded linear systems given as a control flow graph.

Pure Linear Systems Control theorists know for long [3,16] that such a system
is stable (i.e. that x is bounded) if and only if the Lyapunov equation

P −ATPA � 0 (2)

{
x
∣∣ xT rIx ≤ 1

}{
x
∣∣ xTPx ≤ 1

}

{
Ax

∣∣ xTPx ≤ 1
}

{Axk +Bu | ||u||∞ ≤ 1}

xk

Axk

Fig. 4. Looking for an invariant ellipsoid included
in the smallest possible sphere by maximizing r.

admits a symmetric positive defi-
nite matrix P as solution, where
M � 0 means that the matrix
M is positive definite (i.e. for all
x, xTMx ≥ 0). The template
t := xTPx is then a quadratic
template and policy iteration
can be used to compute a bound
b such that t ≤ b is an invariant
of the system. This invariant is
an ellipsoid [22].

Inequality (2) is a so called
Linear Matrix Inequality (LMI)
which can be solved thanks to a
semidefinite programming solver.
However, taking any random so-
lution may lead to very grossly
overapproximated invariants. It
would be interesting to constrain
more the set of solutions, for in-
stance by forcing them to lie in a sphere as small as possible. More precisely, we
will look for an ellipsoid P included in the smallest possible sphere and which is
stable, i.e., such that

∀x, ∀u,
(
||u||∞ ≤ 1 ∧ xTP x ≤ 1

)
⇒ (Ax+Bu)

T
P (Ax+Bu) ≤ 1.

This is illustrated in Figure 4. The previous condition can be rewritten

∀x, ∀u,

((
p−1∧
i=0

(
eTi u

)2 ≤ 1

)
∧ xTP x ≤ 1

)
⇒ (Ax+Bu)

T
P (Ax+Bu) ≤ 1.

where ei is the i-th vector of the canonical basis (i.e., with all coefficients equal
to 0 except the i-th one which is 1). This amounts to: ∀x, ∀u,
(

p−1∧

i=0

[
x
u

]T[
0 0
0 Ei,i

] [
x
u

]
≤ 1

)
∧
[
x
u

]T[
P 0
0 0

] [
x
u

]
≤ 1⇒

[
x
u

]T[
ATPA ATPB
BTPA BTPB

] [
x
u

]
≤ 1

where Ei,j is the matrix with 0 everywhere except the coefficient at line i, column
j which is 1. Using a lagrangian relaxation, this holds when there are τ and
λ0, . . . , λp−1 all positives such that

−ATPA −ATPB 0
−BTPA −BTPB 0

0 0 1

− τ

−P 0 0
0 0 0
0 0 1

−∑p−1

i=0 λi

0 0 0
0 −Ei,i 0
0 0 1

 � 0 (3)

This is not an LMI since τ and P are both variables which means it cannot be
directly solved ’as is’. However, there is a τmin ∈ (0, 1) such that this inequality
admits as solution a positive definite matrix P if and only if τ ∈ (τmin, 1). This
value τmin can then be efficiently approximated thanks to a dichotomy. It now

remains to choose the ’best’ τ in this interval. For this purpose, P is forced to
be contained in the smallest possible sphere by maximizing r in the additional
constraint

P � rI. (4)

We denote f the function mapping τ ∈ (τmin, 1) to the optimal value of the
following semi definite program:

maximize r

subject to (3), (4), PT = P,

p−1∧
i=0

(λi > 0)

Thus, this function can be evaluated for a given input τ simply by solving the
above semi definite program. f is then sampled for some equally spaced values
in the interval (τmin, 1) and the matrix P obtained for the value enabling the
maximum r is kept.

Example 8. With the following matrices A and B of the running example:

A :=

 0.9379 −0.0381 −0.0414
−0.0404 0.968 −0.0179
0.0142 −0.0197 0.9823

 B :=

0.0237
0.0143
0.0077

 ,
five steps of dichotomy give τmin = 0.9921875. Then computing the function f
for a dozen of values between τmin and 1, the following matrix P is selected,
corresponding to τ = 0.9921875:

P =

 6.2547 −5.3050 −1.2153
−5.3050 12.1868 1.2091
−1.2153 1.2091 3.8775

 .
This is the template used in Example 1.

Guarded Linear Systems From a control flow graph, matrices A and B are
extracted by looking at the strongly connected component of the relation “variable
x linearly depends on variable y”. Templates are then generated as above for
these matrices. This is a pure heuristic since existence of templates for such
subsystems does not mean that they will allow to bound the whole system, not
even that it is stable. However, this is a reasonable choice since actual systems
are usually designed around a pure linear core.

Finally, as seen in the running example, we add templates x2 for each variable
modified by the program. In the literature [1,11,12], templates x and −x are
used. Since results are usually symmetrical in our context (i.e. the same bound b
is obtained for both templates: x ≤ b and −x ≤ b), templates x2 yield the same
result (i.e. x2 ≤ b2) making use of two times less templates for policy iteration,
hence saving on computation costs.

3.3 Initial Value

In the policy iteration literature, system of equations require extra terms with
initial values for each template at loop head. Although

those values do not come totally out of the blue, computing them does not
appear absolutely obvious. As seen in the running example, we chose to replace
them by an initial vertex (vertex 1 in Figure 1) initialized with bound +∞ for
each template and linked to loop head (vertex 2 in Figure 1) by an edge with
initialization code. Thus, previous initial values for each template will actually
be computed by policy iteration.

Considering policy iteration themselves, max-policies start from (−∞, . . . ,−∞)
whereas min-policies need to start from a postfixpoint. Such a postfixpoint could
be computed through Kleene iterations using a simple widening with thresholds.
However, just starting from a big value (for instance 106) for the quadratic
templates computed in the previous Section and +∞ for all others often yields
in practice the same results at a lower cost.

3.4 Interval Constraints

To enable the use of semidefinite programming solvers, a relaxation must be used.
It basically amounts to the following theorem.

Theorem 2 (Lagrangian relaxation). Assume f and g1, . . . , gk functions
R→ R, if there exist λ1, . . . , λk ∈ R all non negative such that.

∀x, f(x)−
∑
i

λigi(x) ≥ 0 (5)

then

∀x,

(∧
i

gi(x) ≥ 0

)
⇒ f(x) ≥ 0. (6)

Semidefinte programming solvers being unable to directly handle Equation (6),
they are feeded with Equation (5). This usually works well, however the converse
of Theorem 2 does not generally holds. In particular with a quadratic objective
f and two linear constraints g1 and g2.

Example 9. We want to apply a relaxation on x ∈ [1, 3] ⇒ −x2 + 4x + 5, that
is Equation (6) with f := x 7→ −x2 + 4x+ 5, g1 := x 7→ x− 1 and g2 := 3− x.
Equation (5) then boils down to: ∀x,−x2 + (4− λ1 − λ2)x+ (5 + λ1 − 3λ2) ≥ 0.
Unfortunately, not any λ1, λ2 ∈ R satisfy this. This is depicted on left of Figure 5.

This case is commonly encountered in practice, for instance with initial
values of a program living in some range or with inputs bounded by an interval.
Replacing the two linear constraints by an equivalent quadratic one constitutes
an efficient workaround.

Example 10. When constraints x − 1 ≥ 0 and 3 − x ≥ 0 are replaced by the
equivalent 1− (x− 2)2 ≥ 0, relaxation works just fine (with relaxation coefficient
λ = 1 for instance). This is depicted on right of Figure 5.

−x2 + 4x+ 5

λ1(x− 1) + λ2(3− x)

−1 1 3 5 x

−x2 + 4x+ 5

λ
(
1− (x− 2)2

)

−1 1 3 5 x

Fig. 5. Relaxation of interval constraints.

3.5 Soundness of the Result

For the sake of efficiency, the semidefinite programming solvers we use perform
all their computations on floating point numbers and do not offer any strict
soundness guarantee on their results.

To address this issue, we adopt the following strategy:

– first perform policy iterations with unsound solvers, just padding the equations
to hopefully get a correct result;

– then check the soundness of previous result.

Padding the equations means for min-policies multiplying each temporary
result βi by (1+ε) for some small ε. For max-policies, all equations max {p | q ≤ c}
are basically replaced by max {(1 + ε)p | q ≤ (1 + ε)c}. In practice, while using
solvers trying to achieve an accuracy of 10−8 on their results, a value of 10−4

for ε appears to be a good choice. The induced loss of accuracy on the final
result is considered acceptable since bounds finally computed by our analysis are
usually found to be at least a few percent larger than the actual maximal values
reachable by the program. Finding a good way to padd equations to get correct
results, while still preserving the best accuracy, however remains some kind of
black magic.

Checking that a result is an actual postfixpoint amounts, for each term of
the equation system, and after some relaxation6, to prove that a given matrix is
actually positive definite. This is done by carefully bounding the rounding error
on a floating point Cholesky decomposition [23]. Proof of positive definiteness
of an n× n matrix can then be achieved with O

(
n3
)

floating point operations,
which in practice induces only a very small overhead to the whole analysis.

Finally, a quick and dirty hack to recover a correct result in the rare event
where the aforementioned soundness check fails consists in multiplying the —
probably false — result by a small constant (for instance 1.1) and checking again
its soundness. This sometimes enable to get a better result than >, despite the
first check failure, at the very low cost of an additional check.

Although all this gives satisfying results. It would remain interesting to
compare the cost/accuracy trade off when using the verified solver VSDP [13] as
already offered in the literature [1].

6 This relaxation being the same than the one used during policy iterations, it doesn’t
introduce further conservatism by itself.

4 Experimental Results

0.5

1

1.5

2

0
3 43 5 653 43 4 54 6 766 762 322 32 5 99 12127 8 10 119 v

t

Fig. 6. Time (t in seconds) spent performing min (− signs) and max (+ signs) policy
iterations depending on the number v of variables in the analyzed program. Less +
than − in a column indicate a failure of max-policies on a benchmark.

All the elements presented in this paper have been implemented as a new
abstract domain in our static analyzer. Experiments were conducted on a set of
stable linear systems. These systems were extracted from [1,7,22,24]. We have
to recall to the reader that those systems, despite their apparent simplicity, do
not admit simple linear invariants. Figure 6 compares analysis times with min
and max-policy iterations. All computations were performed on an Intel Core2 @
2.66GHz. The analyzer is released under a GPL license and available along with
all examples and results at http://cavale.enseeiht.fr/policy2014/.

Figure 6 only gives times for policy iterations. Total analysis times also
includes building the control flow graph and the equation system, computing
appropriate templates and eventually checking soundness of the result. Time
needed for control flow graph construction and soundness checking is very small
compared to the time spent in policy iterations, whereas computing templates
takes the same amount of magnitude in time than min-policies iteration.

For min-policies, the number of iterations performed lies between 3 and 7 when
the stopping criterion is a relative progress below 10−4 between two consecutives
βi. For max-policies, the number of iterations was between 4 and 7.

Results obtained with min- and max-policies were the same. However, para-
doxically enough, min-policies yield slightly more precise results. It is also worth
noting that max-policies were in a few cases unable to produce a sound re-
sult whereas min-policies did. Finally, regarding the quality of the result, in
cases where the maximum reachable values are known [24], bounds given by our
analyzer seem to be accurate and are in average a few percents larger.

Finally, as seen on Figure 6, computation time for min and max-policies are
comparable for small number of variables whereas min-policies scale way better

http://cavale.enseeiht.fr/policy2014/

for a larger number of variables. This can be explained by min-policies solving
smaller semidefinite programming problems [12, Conclusion]. Therefore, we made
min-policies the default in our tool.

5 Conclusion and Future Work

We have presented the two approaches to compute policy iterations: min- and
max-policies, and we have instantiated them on quadratic templates using SDP
solvers. Our implementation is then able to use both approaches and was applied
on a series of representative examples of linear controllers.

This paper proposed a presentation of those two techniques from the tool
implementation perspective. We also addressed mutiple issues that, for our
point of view, prevent the development of these techniques: how to initialize
the analysis? how to identify meaningful templates for a given problem? how
to check the soundness of the computation when using tools relying on floating
point implementation?

Our approch was implemented and actually integrated within a regular Kleene-
based fixpoint abstract interpreter. It shows that the use of policy iteration in a
more classic tool is accessible and could leverage the set of domains to perform
analyses.

Amongst the results we obtain with our experimentations, one can notice
that we obtain the same results with both approaches. Max-iteration were
theoretically proved to provide the exact fixpoint but such proof was not stated
for min-iteration. In practice – and in our setting – they give the same results.

However min-strategies showed to scale better, as expected. We have however
to stress again that this may not be the case for other setting like the use of linear
programming. Our experiments were only computed with quadratic templates
on linear systems.

In terms of future work, different directions are open. First, the floating point
semantics of analyzed programs has to be taken into account (instead of the real
numbers semantics currently used). Second, it would be interesting to perform so
called closed loop analyses of controllers, i.e., controllers considered with a model
of their environment (so called plant for control theorists). Finally, since we have
a prototype, it would be interesting to extend the kind of templates analyzable
with policy iterations. Bernstein polynomials can be used to bound polynomial
templates (beyond quadratic ones) [21]. Injecting this domain in the current
setting could enable the analysis of a much wider class of programs. A deeper
comparison of min- and max-policy should also consider an implementation with
linear templates.

References

1. Assalé Adjé, Stéphane Gaubert, and Éric Goubault. Coupling policy iteration with
semi-definite relaxation to compute accurate numerical invariants in static analysis.
In ESOP, 2010.

2. Fernando Alegre, Éric Féron, and Santosh Pande. Using ellipsoidal domains to
analyze control systems software. 2009. http://arxiv.org/abs/0909.1977.

3. Stephen Boyd, Laurent El Ghaoui, Éric Féron, and Venkataramanan Balakrishnan.
Linear Matrix Inequalities in System and Control Theory, volume 15 of SIAM.
Philadelphia, PA, June 1994.

4. Alexandru Costan, Stephane Gaubert, Eric Goubault, Matthieu Martel, and Sylvie
Putot. A policy iteration algorithm for computing fixed points in static analysis of
programs. In CAV, 2005.

5. Patrick Cousot and Radhia Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fixpoints. In
POPL, 1977.

6. Jérôme Feret. Static analysis of digital filters. In ESOP, number 2986, 2004.
7. Jérôme Feret. Numerical abstract domains for digital filters. In International

workshop on Numerical and Symbolic Abstract Domains (NSAD), 2005.
8. Stephane Gaubert, Eric Goubault, Ankur Taly, and Sarah Zennou. Static analysis

by policy iteration on relational domains. In ESOP, 2007.
9. Thomas Gawlitza and Helmut Seidl. Precise fixpoint computation through strategy

iteration. In ESOP, 2007.
10. Thomas Gawlitza and Helmut Seidl. Precise relational invariants through strategy

iteration. In CSL, 2007.
11. Thomas Martin Gawlitza and Helmut Seidl. Computing relaxed abstract semantics

w.r.t. quadratic zones precisely. In SAS, 2010.
12. Thomas Martin Gawlitza, Helmut Seidl, Assalé Adjé, Stéphane Gaubert, and Eric

Goubault. Abstract interpretation meets convex optimization. J. Symb. Comput.,
47(12), 2012.

13. Christian Jansson, Denis Chaykin, and Christian Keil. Rigorous error bounds for
the optimal value in semidefinite programming. SIAM J. Numerical Analysis, 46(1),
2007.

14. Bertrand Jeannet. Some experience on the software engineering of abstract inter-
pretation tools. Electr. Notes Theor. Comput. Sci., (2), 2010.

15. Bertrand Jeannet and Antoine Miné. Apron: A library of numerical abstract
domains for static analysis. In CAV, 2009.

16. Aleksandr Mikhailovich Lyapunov. Problème général de la stabilité du mouvement.
Annals of Mathematics Studies, 17, 1947.

17. Antoine Miné. The octagon abstract domain. In AST 2001 in WCRE 2001, IEEE,
October 2001.

18. David Monniaux. Compositional analysis of floating-point linear numerical filters.
In CAV, 2005.

19. Mardavij Roozbehani, Éric Féron, and Alexandre Megretski. Modeling, optimization
and computation for software verification. In HSCC, 2005.

20. Pierre Roux and Pierre-Löıc Garoche. Integrating policy iterations in abstract
interpreters. In ATVA, 2013.

21. Pierre Roux and Pierre-Löıc Garoche. A polynomial template abstract domain
based on bernstein polynomials. In NSV, 2013.

22. Pierre Roux, Romain Jobredeaux, Pierre-Löıc Garoche, and Éric Féron. A generic
ellipsoid abstract domain for linear time invariant systems. In HSCC. ACM, 2012.

23. Siegfried M. Rump. Verification of positive definiteness. BIT Numerical Mathemat-
ics, 46, 2006.

24. Yassamine Seladji and Olivier Bouissou. Numerical abstract domain using support
functions. In NFM, 2013.

	A Policy Iteration Primer Computing Quadratic Invariants with Min- and Max-Policy Iterations: a Practical Comparison

