
Formal Methods for the Analysis of
Critical Control Systems Models:

Combining Non-Linear and Linear Analyses

Adrien Champion1,2, Rémi Delmas1, Michael Dierkes2,
Pierre-Loïc Garoche1 and Pierre Roux1,3

1 Onera – The French Aerospace Lab
2 Rockwell collins France

3 ISAE, University of Toulouse

Abstract. Critical control systems are often built as a combination of a
control core with safety mechanisms allowing to recover from failures.
For example a PID controller used with triplicated inputs and voting.
Typically these systems would be designed at the model level in a syn-
chronous language like Lustre or Simulink, and their code automatically
generated from these models. We present a new analysis framework com-
bining the analysis of open-loop stable controllers with safety constructs
(redundancy, voters, ...). We introduce the basic analysis approaches: ab-
stract interpretation synthesizing quadratic invariants and backward anal-
ysis based on quantifier elimination and convex hull computation synthe-
sizing linear invariants. Then we apply it on a simple but representative
example that no other available state-of-the-art technique is able to ana-
lyze. This contribution is another step towards early use of formal meth-
ods for critical embedded software such as the ones of the aerospace in-
dustry.

1 Control-Command Software Focused Analyses
to Address V&V and Certification Needs

The aerospace industry is notoriously faced with highly critical issues. The
safety of systems should be guaranteed even if the cost of ensuring safety is
important. In development costs of the Boeing 777 [8], software accounts for
a third of all costs. In this third, 70% consists in verification costs while only
30% are devoted to software development. Other aircraft manufacturers have
similar figures.

The software specific certification regulatory document, ie. the recently up-
dated DO 178-C, characterizes different levels of criticality from level A - the
most critical - to level E - the less critical. Depending on the identified level, veri-
fication and validation activities are more or less intensive and therefore costly.
This certification document has recently been updated and it also provides a
formal methods supplement, identified as RTCA DO 333. This supplement ex-
plicitly enables the use of formal methods for critical embedded software.

Among the various systems of an aircraft, and their associated software, one
of the most critical is the flight control system of the aircraft. Addressing the is-
sue of verifying such specific software seems to be a pertinent goal: proposing

2 A. Champion, R. Delmas, M. Dierkes, P.L. Garoche, P. Roux

new ways to validate it could both increase the trust we have in the released
software and reduce the cost of V & V by providing more automatic (and ex-
haustive) analysis means.

These reactive system can be seen as the composition of two parts. The first
is the computation core itself, achieving the main objective of the software: con-
trolling the aircraft by receiving inputs from sensors and commanding the air-
craft actuators. The second part tries to handle any possible failure of sensors
or of the core system. This safety architecture is mainly based on information
redundancy and fusion. These two parts are usually designed using a model
based approach.

The approach of control system modeling as proposed by The MathWorks
with MATLAB Simulink, by Esterel Technologies with the SCADE language
or by the academic community with the Lustre language, is extensively used
for reactive systems design and often allows the automatic generation of the
embedded code. However, despite the existence of a few formal verification
tools supporting these languages, few system builders actually rely on formal
approaches to demonstrate safety properties of their software products.

Recent advances of formal methods, as well as the evolution of certification
standards enable the deployment of formal methods in the industry to analyze
such systems. Formal methods can thus be truly considered as a key techno-
logical advantage on the critical systems market. Thanks to long term research
efforts, formal methods have matured up to the point they were found, by in-
dustrials, to be helpful in dealing with the difficulties arising from highly com-
plex system designs, and enabled system providers to meet the requirements
of certification which are to:

– provide evidence of the system safety, and
– master the overall product life-cycle.

Our goal is to support the verification and validation of such systems for all
their specification, at the various stages of their development. This paper focus
on a representative running example: a controller for a physical device together
with inputs triplication and voting. We show how we propose to analyze such
systems by composing new-generation formal methods.

The paper is structured as follows: Section 2 recalls the state of the art of
formal methods in that context; Section 3 presents the running example in de-
tails; Sections 4 and 5 introduce our contribution, two new automatic analyses;
Section 6 illustrates the use of these new techniques in combination on the ex-
ample; and Section 8 presents the tools implementing these techniques.

2 State of the Art of Formal Methods

Since the early 60s, researchers have proposed multiple theoretical frameworks
to analyze systems and programs. These techniques, based on formal founda-
tions – mainly discrete mathematics, algebra – allow the exhaustive study of all
the behaviors of some categories of systems, as opposed to test or simulation
methodologies which only cover the system traces identified by a collection of
tests scenarios.

We briefly focus here on relevant techniques for the analysis of functional
specifications of control systems. These techniques, from early academic work

Combining Non-Linear and Linear Analyses 3

driven by industry needs, to actual transferred technologies[18], are currently
used in the aerospace industry, at different TRLs4.

2.1 Abstract Interpretation

Abstract interpretation was first proposed in the 70s as a general framework to
express static analyses. In practice, it has shown to be very efficient to compute
numerical invariants over programs.

The basic principle of this static analysis technique is to automatically com-
pute an over-approximation of the set of all behaviors of the program (i.e. its
semantics). This over-approximation is computed thanks to abstract domains.
The role of abstract domains is twofold: (1) they characterize the nature of the
over-approximation which is performed, (2) they are equipped with a set of
functions, the abstract primitives, which allow to compute the abstract seman-
tics.

Each abstract domain is associated with a given trade off between precision
(depending on the kind of properties that it can infer) and efficiency (related
to the computational complexity of its abstract primitives). A wide literature
addresses the definition of abstract domains, and more specifically numerical
abstract domains, eg. intervals [5], polyhedra [6] or weaker but less costly do-
mains such as zones [13] or octagons [14].

A success story of abstract interpretation is the complete analysis of the
flight control systems of the Airbus A380 [12], which has proved that no run-
time error (out of bounds memory accesses or arithmetic exceptions) can occur.

One of the domains used to perform this analysis is specifically focused on
second order linear filters. This domain is able to precisely over-approximate
their set of reachable states. We present in this paper another similar abstraction
that outperforms it in terms of expressiveness.

2.2 SMT-Based Verification Approaches

Satisfiability Modulo Theory Satisfiability Modulo Theories solvers are de-
cision procedures for logical theories in which some atoms belong to certain
decidable first order theories such as linear real/integer arithmetic, the theory
of bit-vectors, the theory of arrays (with read over write axioms), etc. Roughly
speaking, these procedures are usually built by extending Boolean satisfiability
procedures with a combination of dedicated background theory solvers [20].

SMT-solvers are used as back-end reasoning engines in a wide range of
formal verification applications, such as deductive methods, bounded model
checking, k-induction, test case generation, etc. Recently, the SMT-lib initia-
tive (http://www.smtlib.org/) has gathered major SMT-solver developers
around a standardized formula and solver command language. The SMT-lib 2.0
standard introduced specific features easing the implementation of incremental
verification approaches like BMC or k-induction.

4 Technology Readiness Levels as defined by NASA;
see http://esto.nasa.gov/files/trl_definitions.pdf

http://www.smtlib.org/
http://esto.nasa.gov/files/trl_definitions.pdf

4 A. Champion, R. Delmas, M. Dierkes, P.L. Garoche, P. Roux

Quantifier Elimination Assuming a first order formula over Boolean, real or
integer variables ∃x,F(x, y1, . . . , yn), whereF is quantifier-free, quantifier elim-
ination allows to generate a new formula

G(y1, . . . , yn) ≡ ∃x,F(x, y1, . . . , yn)

by eliminating the quantified variable x from F . Slightly rephrased, quantifier
elimination generates a condition G on variables y1, . . . , yn which, when satis-
fied, entails the existence of an x such that F(x, y1, . . . , yn) is also satisfied.

Even though the theory of real closed fields admits quantifier elimination
[4,19], general non-linear QE methods have extremely high computational costs,
limiting their practical applications. This is why QE for linear fragments of in-
teger and real theories has been a very busy research domain. The most recent
advance for linear QE combines state of the art SMT-solving with polyhedral
projection [15] for a great performance increase, the general idea of which is
given in Algorithm 1.

Algorithm 1 QE (F , V) QE by Lazy Model Enumeration.
Require: F : a linear arithmetic formula.
Require: V : a collection of variables to eliminate from F .
Ensure: O: a formula in disjunctive normal form such thatO ≡ ∃V,F
O ← ⊥
while isSatisfiable(F ∧ ¬O) do . check satisfiability using an SMT solver.

M ← getModel(F ∧ ¬O) . get a model using an SMT solver.
P ← extrapolate(F,M) . extrapolate M , yields a conjunction of literals which entail F .
P ′ ← project(P, V) . polyhedral projection.
O ← O ∨ P ′

end while
returnO

The extrapolate function generalizes the model M with respect to F and pro-
duces a conjunction of literals P , i.e. a polyhedron in geometric terms, such that
M |= P and P =⇒ F . Polyhedral projection is then used to eliminate variables
V from P and obtain another P ′ characterizing a polyhedron of lower dimen-
sion. The formula O resulting from this procedure can be viewed as a union of
polyhedra over reals/integers.

Quantifier elimination enjoys many applications in formal verification: pre-
image computation on transition systems, automatic program abstraction and
even controller synthesis, to name only a few. Section 5 details our use of QE
for pre-image computation and lemma generation.

3 Running Example: Coupled Mass System Linear Controller
Behind Triplicated Inputs with Saturations

Throughout this article, we consider the control of the coupled mass system5

shown in Figure 1a. Such a coupling can be used to model numerous physical
phenomena such as vibration propagation patterns in fluids and flexible struc-
tures, among others.

5 This system is extracted from [17].

Combining Non-Linear and Linear Analyses 5

M
1kg

m
100g

K = 0.091N/m

B = 0.0036N.s/mB = 0.0036N.s/m

u

pos0 pos1

(a) Coupled mass system.

in0_v

in1_v

in0_d

in1_d

Xk+1 = AXk +B

(
in0

in1

)

uk = CXk +D

(
in0

in1

) u

−
in0

+

− in1

+

Controller

(b) Controller node.

Fig. 1: Coupled mass system and its linear controller.

3.1 Controller Design

The continuous model for the plant, i.e. the physical system, is as follows:

ẋp =




0 1 0 0
−K/m −B/m K/M B/M

0 0 0 1
K/M B/M −K/M −B/M


xp +




0
0
0

1/M


up yp =

[
1 0 0 0
0 0 1 0

]
xp

where the output yp consists of the displacement of mass 1 and mass 2 with
respect to their equilibrium position.

It is discretized with a period T = 0.4s with a zero order hold, yielding:

xp,k+1 =




0.9285 0.3876 0.0715 0.0124
−0.3516 0.9146 0.3516 0.0854
0.0071 0.0012 0.9929 0.3988
0.0352 0.0085 −0.0352 −0.9915


xp,k+



0.0013
0.0124
0.0799
0.3988


up,k yp,k =

[
1 0 0 0
0 0 1 0

]
xp,k

Also assuming the presence of some sensor noise, the control theorist de-
signs the following so called linear quadratic Gaussian regulator:{

xk+1 = Axc,k +Byc,k
uc,k = Cxc,k +Dyc,k

with:

A =

 0.6229 0.3871 −0.117 0.0102
−0.3363 0.9103 −0.4062 0.06486
0.1134 −0.02646 −1.065 0.2669
0.2877 −0.1298 −1.333 0.3331

 B =

 0.3063 0.1866
−0.009808 0.7406
−0.07102 1.947
−0.07649 0.7439


C =

[
−0.1896 −0.346 6.709 −1.651

]
D =

[
0.6311 −8.098

]
The controller is parameterized by the positions of the two masses. Fig-

ure 1b illustrates the architecture of this linear controller, in which in0_d and
in1_d correspond to the desired positions while in0 and in1 (denoted yc,k in the
equations) are the differences between measured and desired positions.

This classic design uses a Kalman state estimator combined with a linear
quadratic regulator. Typical high level properties guaranteed by this design in-
clude that the variance of the estimation error is minimized and convergence

6 A. Champion, R. Delmas, M. Dierkes, P.L. Garoche, P. Roux

Fig. 2: Simulation of the controlled system. xp,i correspond to actual plant states
and xc,i to associated estimates in the controller. Simulation starts with an initial
position of 1 for m1.

to zero in the absence of noise, as shown in Figure 2, obtained by simulation in
the absence of noise and under xp,0 =

[
1 0 0 0

]T, xc,0 =
[
0 0 0 0

]T.
In the rest of this article, we focus on the simpler, yet essential bounded-

input, bounded-output (BIBO) stability of the controller, as it is a high level
property that can be established by inspecting the controller code alone. At the
system level of description, inspecting the modulus (.84, .84, .0063 and .73) of
the eigenvalues of the controller state matrix A is enough to guarantee that
property. However, more elaborate techniques are required at code level since
neither these eigenvalues nor their link with BIBO stability are readily available.

3.2 Safety Architecture

In real world systems, the controller will not be directly embedded on the target
platform but rather used in conjunction with a safety architecture used to obtain
a fault tolerant system.

In our case, we choose to rely on representative yet simple building blocks:
validators and voters. We assume the sensors could be faulty and provide an
erroneous data. Either the data could be out of a legal value range or it can vary
within the legal range. First, a set of validators allows to correct the signals by
saturating them to keep them within the legal range. Then, the triplication of
each sensor allows to tolerate a faulty sensor. We rely on the triplex presented
in [7].

This fault-tolerant system is depicted in Figure 3. To guard against execution
hardware errors (CPU or RAM), one could pursue the experiment by triplicat-
ing the controller core and vote on its outputs, or rely on the command/monitor

Combining Non-Linear and Linear Analyses 7

u
Controller

in0_d in1_d
Triplex
in0

Triplex
in1

System

in0_v

in1_v

Satin0a

Satin0b

Satin0c

Satin1a

Satin1b

Satin1c

Fig. 3: Full controller.

(COM/MON) architecture. An even
more fault-tolerant and diagnosable
system would also implement er-
ror detection flows with some alarm
logic combining information about
detected errors. However, in this pa-
per we focus on numerical properties
of control systems.

3.3 Need for Formal Specification

The specification of the obtained sys-
tem should now be precised. We rely
on axiomatic semantics with Hoare
triples to associate a function contract to each building block of the system.
For this running example, we can identify the following contracts:

– the system should ensure that the output on data flow u does not exceed
the capability of the moving mass m1 hardware actuator. For example, if
the maximal capability is 200N , we should ensure that |u| ≤ 200;

– the controller itself has specific system-level properties as described above.
In this paper we restrict on the BIBO property;

– the triplex voter contract, presented in [7], bounds the output of the voter
according to bounds on the input. It is also a BIBO property, the formalisa-
tion and verification of which is detailed in Section 5.1;

– the Sat nodes correspond to the validator nodes evocated above for the
replicated sensors, a typical specification would be that lb ≤ o ≤ ub where
o is the output flow, lb and ub are lower and upper saturation bounds.

These requirements should be satisfied by the blocks and their later imple-
mentations, and each of them should be formally expressed in a logic language
format that can be parsed and processed by available tools.

This running example is simple but representative of control command soft-
ware, and its analysis is meaningful since most of these properties are not cur-
rently analyzable at model or code level with existing formal tools.

4 BIBO (Bounded Input Bounded Output)
for the Control Core: the Need for Non-Linear Invariants

We focus here on the controller node and its BIBO property as characterized in
Section 3.1. Assuming a bound on the inputs in (yk in the equation), we want
to bound x in the system xk+1 = Axk +Byk and therefore the output uk.

Abstract interpretation is a good way to compute numerical abstraction of
reachable states, therefore computing bounds on reachable values. However
the precision of the obtained results highly depends on the abstraction used
(intervals, polyhedra, octagons, . . .). When we assume a bound of |y0k| ≤ 3.6

8 A. Champion, R. Delmas, M. Dierkes, P.L. Garoche, P. Roux

and |y1k| ≤ 3.6, trying to analyze this with intervals gives for the first few
iterates (rounding figures to one digit after the point):

x0 x1 x2 x3
[0, 0] [0, 0] [0, 0] [0, 0]

[−1.8, 1.8] [−2.7, 2.7] [−7.3, 7.3] [−3.0, 3.0]
[−4.8, 4.8] [−8.9, 8.9] [−16.1, 16.1] [−14.5, 14.5]

[−10.2, 10.2] [−19.9, 19.9] [−29.0, 29.0] [−31.7, 31.7]
...

...
...

...

This does not converge. Such linear system, so called open-loop stable (ie. ad-
mitting this BIBO property), usually do not admit linear inductive invariants. A
possible approach to prove such stability is to rely on Lyapunov stability theory,
stated as the existence of a positive definite6 matrix P such that

P −ATP A � 0

Finding any such P gives an invariant xTP x ≤ xT0 P x0 for the sequence
xk+1 = Axk. When assuming bounds on the inputs yk, it is possible to compute
a scalar λ such that the set of values of xk+1 = Axk + Byk could be bound by
the relation xTP x ≤ λ.

We developed an approach combining the synthesis of an appropriate quadratic
template P [16] for a given linear system with a static analysis engine based on
policy iteration to compute the appropriate λ.

Given a finite set { t1, . . . , tn } of expressions on program variables V, the
template domain T is defined as Rn

= (R ∪ {−∞,+∞})n and the meaning
of an abstract value (b1, . . . , bn) ∈ T is the set of environments γT (b1, . . . , bn) =
{ρ ∈ (V→ R) | Jt1K(ρ) ≤ b1, . . . , JtnK(ρ) ≤ bn}. In other words, the abstract value
(b1, . . . , bn) represents all the environments satisfying all the constraints ti ≤
bi. In our case, in addition to templates allowing to bound each variable, a
quadratic template will be added for each linear system of the program.

Example 1. We then have five templates on the running example: (1) t1 := 0.098x23−
0.224x3 x2 + 0.040x3 x1 − 0.026x3 x0 + 0.141x22 − 0.053x2 x1 + 0.030x2 x0 +
0.024x21 − 0.017x1 x0 + 0.019x20 (2) t2 := x20 (3) t3 := x21 (4) t4 := x32 (5) t5 := x25.

Policy iterations [1,10,11] give then a direct methods to compute a precise
over-approximation of the collecting semantics of a program, given a set of such
templates. It intends to achieve better precision than the usual widening/nar-
rowing approach of abstract interpretation Kleene iterations by computing a
numerical solution of the problem.

While Kleene iterations iterate locally through each construct of the pro-
gram, policy iterations require a global view of the analyzed program. For that
purpose, the whole program is first translated into a system of equations which
is later solved.

A first step in deriving these equations from the program is to build its con-
trol flow graph.

6 A matrix M is positive definite (noted M � 0) if xTP x > 0 for all x 6= 0.

Combining Non-Linear and Linear Analyses 9

st 2

true ,

x0 := 0
x1 := 0
x2 := 0
x3 := 0

−3.6 ≤ y0, y1 ≤ 3.6,

x′0 := x0 x′1 := x1 x′2 := x2 x′3 := x3
x0 := 0.6229 x0 − 0.3871 x1 − 0.117 x2 + 0.0102 x3 + 0.3063 y0 + 0.1866 y1
x1 := −0.3363 x0 + 0.9103 x1 − 0.4062 x2 + 0.06486 x3 − 0.009808y0 + 0.7406y1 in
x2 := 0.1134 x0 − 0.02646 x1 − 1.065 x2 + 0.2669 x3 − 0.07102 y0 + 1.947 y1
x3 := 0.2877 x0 − 0.1298 x1 − 1.333 x2 + 0.3331 x3 − 0.07649y0 + 0.7439 y1

Fig. 4: Control flow graph for our running example.

Example 2. Figure 4 represents the control flow graph for our running example.
Vertex “st” corresponds to the starting point of the program and vertex “2” to
the head of the loop. The edge between “st” and “2” reflects the four assign-
ments before the loop and the looping edge on vertex “2” represents the loop
body.

It is worth noting that, unlike the usual notion of control flow graph with
vertices between each single instruction of the program, whole sequences of
instructions are used to label the edges, with graph vertices only for starting
point and loop heads of the program. This will both improve the precision of
the analysis and decrease its cost by avoiding useless intermediate abstractions.

A system of equations is then defined with a variable bi,j for each vertex i
of the graph and each template tj .

Example 3. Here is the system of equations for our running example:
b1,1 = +∞ b1,2 = +∞ b1,3 = +∞ b1,4 = +∞ b1,5 = +∞
b2,1 = max{0 | be(1)} ∨ max{a(t1) | −3.6 ≤ in ≤ 3.6 ∧ be(2)}
b2,2 = max{0 | be(1)} ∨ max{a(t2) | −3.6 ≤ in ≤ 3.6 ∧ be(2)}
b2,3 = max{0 | be(1)} ∨ max{a(t3) | −3.6 ≤ in ≤ 3.6 ∧ be(2)}
b2,4 = max{0 | be(1)} ∨ max{a(t3) | −3.6 ≤ in ≤ 3.6 ∧ be(2)}
b2,5 = max{0 | be(1)} ∨ max{a(t4) | −3.6 ≤ in ≤ 3.6 ∧ be(2)}

where be(i) is a shorthand for t1 ≤ bi,1 ∧ t2 ≤ bi,2 ∧ t3 ≤ bi,3 ∧ t4 ≤ bi,4 ∧ t5 ≤ bi,5
and a(t) is the template t in which variable x0 to x3 are replaced by their image
by the linear combination Axk +Byk. The usual maximum on R is denoted ∨.

Each bi,j bounds the template tj at program point i and is defined in one
equation as a maximum over as many terms as incoming edges in i. More pre-
cisely, each edge between two vertices v and v′ translates to a term in each
equation bv′,j on the pattern: max

{
a(tj)

∣∣∣ c ∧∧j tj ≤ bv,j
}

where c and a are
respectively the constraints and the assignments associated to this edge. This
expresses the maximum value the template tj can reach in destination vertex v′
when applying the assignments a on values satisfying both the constraints c of
the edge and the constraints tj ≤ bv,j of the initial vertex v.

Our tool computes these steps automatically when provided with the set of
variables that participate in a BIBO linear controller. It rebuilds the control flow
graph and characterizes linear relations, synthesizes the associated quadratic
templates and performs the policy iterations computation to obtain the bounds.

On the running example, we obtain 0.098x23 − 0.224x3 x2 + 0.040x3 x1 −
0.026x3 x0+0.141x22−0.053x2 x1+0.030x2 x0+0.024x21−0.017x1 x0+0.019x20 ≤
14.259 resulting in following bounds on variables

|x0| ≤ 25.423 |x1| ≤ 26.844 |x2| ≤ 33.612 |x3| ≤ 37.164 |u| ≤ 194.499.

10 A. Champion, R. Delmas, M. Dierkes, P.L. Garoche, P. Roux

Figure 5 depicts a cut of this invariant along plane x2 = x3 = 0. The ellipsoid
shape corresponds to the bound on the quadratic polynomial while vertical cuts
on the x0 axis correspond to the bound on |x0|.

x0

x1

Fig. 5: Resulting quadratic invariant
projected on variables x0 and x1.

Indeed, the largest value we were
able to reach by random simulation
for variable u is 190.019. The ac-
tual maximum reachable value may
be higher but it is worth noting
that our bound 194.499 is less than
2.4% larger. Other linear abstrac-
tions perform poorly on such reac-
tive systems, or on typical aircraft
controllers. Our solution is automatic
when provided with the set of variables of the considered linear system.

5 BIBO Stability for the Triplex Voter: Linear Analysis

5.1 Triplex Voting Verification Challenges

The Triplex node used in the presented controller design implements redun-
dancy management for three sensor input values InA, InB , InC , aiming at pro-
viding sensor fault tolerance. This voter does not compute an average value,
but uses the median(x, y, z) function, which returns the median of its argu-
ments(for instance z when y ≤ z ≤ x). The values considered for voting are
equalized by substracting equalization values from the inputs. The role of the
equalization values is to compensate offset errors of the sensors, assuming that
the middle value gives the most accurate measurement. The recursive equa-
tions in Figure 6 describe the behavior of the voter. The satc(x) function satu-
rates its argument such that |satc(x)| ≤ c.

initialization
EqualizationA0 = 0.0
EqualizationB0 = 0.0
EqualizationC0 = 0.0

transition ∀k ∈ N
EqualizedAk = InAk − EqualizationAk
EqualizedBk = InBk − EqualizationBk
EqualizedCk = InCk − EqualizationCk
SatAk = sat0.5(EqualizedAk −Outputk)
SatBk = sat0.5(EqualizedBk −Outputk)
SatCk = sat0.5(EqualizedCk −Outputk)
EqualizationAk+1 = EqualizationAk + 0.05 ∗ (SatAk − SatCenteringk))
EqualizationBk+1 = EqualizationBk + 0.05 ∗ (SatBk − SatCenteringk))
EqualizationCk+1 = EqualizationCk + 0.05 ∗ (SatCk − SatCenteringk))
Centeringk = median(EqualizationAk,EqualizationBk,EqualizationCk)
SatCenteringk = sat0.25(Centeringk)
Outputk = median(EqualizedAk,EqualizedBk,EqualizedCk)

Fig. 6: Triplex voter equations.

Combining Non-Linear and Linear Analyses 11

Just as with the controller core, we are interested in proving the BIBO stabil-
ity of the voter, that is in ensuring that the voter output cannot grow indefinitely
as long as its inputs remain within a certain range. This property is needed
for the overall design validation since the BIBO stability of the controller core
makes assumptions on the voter outputs. Here, the difficulty of automating the
voter proof lies in inferring the right auxiliary inductive invariant on the inter-
nal equalization values EqualizationA, EqualizationB , EqualizationC , whereas
the main proof obligation and assumptions are expressed only on the voter’s
interface variables InA, InB , InC and Output . Equation (1) shows a refined, yet
still not inductive BIBO property including the equalization values.

BIBO(a) ≡ ∀k ∈ N, |InAk| ≤ a ∧ |InBk| ≤ a ∧ |InC k| ≤ a =⇒ |Outputk| ≤ 3a∧
|EqualizationAk| ≤ 2a ∧ |EqualizationBk| ≤ 2a ∧ |EqualizationC k| ≤ 2a

(1)

In [7], the author managed to manually identify octagonal regions enclosing
the equalization values (a relational invariant over the sums of equalization
values), and prove them using a k-induction tool. The k-induction technique,
as it can only prove user-specified properties and not infer new properties by
itself, is of no help in this situation. Discovering an appropriate invariant using
abstract interpretation is theoretically possible. However, the combination of
the non-linear median and satc functions with the filter-like calculations over
equalization values is such that abstract interpretation cannot infer the desired
invariants without specifying numerous domain partitioning directives, which
must be guessed by the human user, a task impossible to achieve in practice.

5.2 HullQe: A Technique for Property Directed Invariant Generation

The difficulties posed by systems such as the triplex voter lead us to design a
new invariant generation technique named HullQe, based on a backwards state
space traversal and polyhedral computations [3].

Given a triplet 〈〈I, T 〉, P 〉, where 〈I, T 〉 is transition system specified by an
initial state predicate I , and a transition predicate T , and P is a proof objective,
HullQe works as follows.

A backwards state space traversal allows to discover successive fringes of
gray states. Gray states are states which satisfy P but from which a states vi-
olating P can be reached in one or more T -transitions. When only numerical
state variables are considered, such fringes of gray states can be thought of as
unions of polyhedra over state variables. The quantifier elimination procedure
of Algorithm 1 is iterated as follows to discover new gray states:

G1(s) ≡ QE(s′, P (s) ∧ T (s, s′) ∧ ¬P (s′))
Gn(s) ≡ QE(s′, P (s) ∧ T (s, s′) ∧Gn−1(s′))

At each iteration n HullQe first checks whether I(s) ∧
∨

i∈[1,n]Gi(s) is sat-
isfiable, which would indicate that there exists a path to ¬P (s) from the initial
states. HullQe also checks whether

∨
i∈[1,n−1]Gi(s) =⇒ Gn(s) is valid, which

would indicate a fixed point has been reached in the backwards exploration.

12 A. Champion, R. Delmas, M. Dierkes, P.L. Garoche, P. Roux

In order to discover new invariants, HullQe performs a thorough explo-
ration of all possible partitionnings of the gray states discovered so far. The
following sets of new polyhedra are computed until no new polyhedra can be
found or merged. This computation takes place after each pre-image calculation
and is initialised with all pre-images found so far (

∨
iGi):

H1 = { p , p ∈
∨

i Gi }
H2 = { hull(p, p′) , p ∈ H1 , p′ ∈ H1 }
H3 = { hull(p, p′) , p ∈ H2 , p′ ∈ H1 ∪H2 }

...
...

...
...

Hn = { hull(p, p′) , p ∈ Hn−1 , p′ ∈
⋃

i∈[1,n−1] Hi }

In the above definitions, the hull function, which computes a convex hull of two
polyhedra, can be used in either exact mode, whereby a hull will be returned only
if it does not contain more points than the two source polyhedra, or in inexact
mode, by accepting hulls which contain strictly more points than the two given
polyhedra, thus performing abstraction by accepting more states than already
present in the root polyhedra. When using the inexact mode, it is possible to ac-
cept inexact hulls only for polyhedra with a non-empty intersection. This allows
to overapproximate clusters of gray states while avoiding to merge completely
disconnected zones of the gray state space. In order to limit the combinatorial
explosion, for each hull the algorithm keeps track of the base polyhedra it is
derived from, and mathematical properties of convex hulls as well as dynamic
programming techniques are used to skip uninteresting combinations of poly-
hedra, which would necessarily result in already existing hulls, or for which
the exact hull computation would fail.

Each polyhedra in H1, . . . , Hn is viewed as a conjunction of linear relations
over state variables delimiting portions of the gray state space. If P is invariant,
none of the gray states should be reachable, so the negations of these relations
are then taken as proof obligations and analyzed using k-induction in conjunc-
tion with P . Many of the generated relations will be non-invariant or even fal-
sifiable, but sometimes some of them can successfully strengthen the original
proof obligation.

Let us illustrate the HullQe technique on a two-input voter, for which the
BIBO proof objective is that:

BIBO(a) ≡∀k ∈ N, |InAk| ≤ a ∧ |InBk| ≤ a =⇒
|Outputk| ≤ 3a ∧ |EqualizationAk| ≤ 2a ∧ |EqualizationBk| ≤ 2a

The Figure 7a shows a plot of the state space for state variables EqualizationA
and EqualizationB of the two-input voter and the proof objective BIBO(0.2).
In green, we show the octagonal invariants of [7], in gray, we show the gray
states polyhedra obtained after two iterations of the pre-image computation.
The Figure 7b shows the result of HullQe’s inexact hull computation modulo
non-empty intersection on the two-input voter. We can see that the gray regions
obtained by HullQe match exactly the octagonal invariant of [7], their negation
then exactly delimits the octagonal region enclosing the equalization values.

Combining Non-Linear and Linear Analyses 13

(a) Octagonal invariant and gray states. (b) HullQe inexact hull computation.

Fig. 7: Two-input voter

The following results are obtained when analyzing BIBO(1.2) (cf Equa-
tion 1) on the triplex voter: the first pre-image of the negated proof objective
contain 23 distinct polyhedra, the HullQe lemma generation algorithm creates
41 potential lemmas, out of which 32 are found to be 1-inductive and allow to
strengthen the proof objective. Out of all the generated lemmas, the following
two suffice to prove the BIBO(1.2) proof objective:

−29/10 ≤ EqualizationAk + EqualizationBk + EqualizationC k (2)
EqualizationAk + EqualizationBk + EqualizationC k ≤ 29/10 (3)

So, we see that, given a non-inductive and non-relational proof objective on the
input, output and internal variables of the voter, HullQe is able to discover an
inductive polyhedra on internal state variables, which renders the BIBO proof
objective inductive.

6 Composing Proofs

Using the two previous techniques, implemented in our prototypes, it is now
possible to perform an analysis of the complete system presented in Figure 3.
When run in parallel, the analyzers communicate their results to each other. We
only assume the following knowledge:

– The Triplex node description is fitted with the contract presented in Equa-
tion 1, page 11;

– The Controller node is known to be a linear open stable controller; its inter-
nal variables are automatically considered for analysis with our quadratic
templates analysis.

We would like to guarantee that the system does not diverge whatever the
inputs are. This contract could either be implicit, ie. no overflow, or specific, eg.
the output should satisfy a given constraint |u| ≤ 200(N).

We recall that – up to our knowledge – none of these specifications is prov-
able by any academic nor commercial tool available except ours. Let us describe
the sequence of analyses needed to achieve the global proof:

14 A. Champion, R. Delmas, M. Dierkes, P.L. Garoche, P. Roux

1. Using abstract interpretation, Sat node outputs are bounded to their satu-
ration value of 1.2;

2. These bounds enable the instanciation of the Triplex contracts. As described
in Section 5, taking the instanciated contracts as proof objectives, HullQE
with k-induction generates the missing lemmas and proves the contracts,
effectively bounding the output of both voters by 3.6. The analysis is fully
automatic once the proof objective is given.

3. Once the inputs of the controller node are bounded (ie. voter outputs), the
analysis of Section 4 is enabled: the control flow graph is computed, the
quadratic template is synthetized and the policy iteration is performed,
bounding the internal variables and the output u of the controller: |u| ≤
194.499. The analysis is fully automatic and only requires the list of internal
variables of the controller as well as bounds on the inputs.

Finally the global contract can be checked. The quadratic invariant synthe-
sized by abstract interpretation satisfies the required bound of 200N .

7 Tools

The presented analyses are currently implemented in two different tools, freely
available.

Stuff [2] is a Lustre analysis framework that combines a k-induction en-
gine with the HullQE technique presented in Section 5.2. It is about 30k loc
of Scala. It uses the Actor-oriented programming approach to use the multiple
CPU cores of the machine. It must be provided with the Lustre code as weel as
a set of proof objectives to analyse.

SMT-AI [9] is an abstract interpreter that targets Lustre models. It computes
the over-approximation of reachable values. It relies on the APRON library for
linear domains and also embed the analysis presented in Section 4. It is written
mainly in Ocaml for about 20k loc, numerical computation are performed with
the CSDP and OCaml-GLPK libraries and Scilab.

8 Concrete Outcomes and Future Works

We proposed a combination of formal methods to achieve the verification of
formal functional specifications of control-command systems. This framework
of analysis is highly generic and automatic. The two presented analyses are
able either to compute precise information about reachable states or to validate
functional contracts; in both cases without needing to interact with the user.

The kind of systems targeted by this work – linear controllers stable in open-
loop analysis, with a safety architecture based on redundancy and voters – are
not analyzable in general at code or model level by any other tool we are aware
of.

The objective of the approach is to enable the analysis of realistic aerospace
critical software such as guidance and control-command systems, enabling the
analysis of system-level specifications (stability, fault tolerance) on the actual
implementation.

Combining Non-Linear and Linear Analyses 15

Future works will focus on a larger set of properties, eg. performance prop-
erties, and additional fault-tolerance constructs. We also consider studying more
complex controllers, for example the combination of linear controllers switched
according on the aircraft flight mode.

References

1. A. Adjé, S. Gaubert, and É. Coupling policy iteration with semi-definite relaxation
to compute accurate numerical invariants in static analysis. In ESOP, 2010.

2. A. Champion and R. Delmas. Stuff: Stuff is the ultimate formal framework.
https://cavale.enseeiht.fr/redmine/projects/stuff.

3. A. Champion, R. Delmas, and M. Dierkes. Generating property-directed potential
invariants by backward analysis. In FTSCS, pages 22–38, 2012.

4. G. E. Collins. Hauptvortrag: Quantifier elimination for real closed fields by cylindri-
cal algebraic decomposition. In Automata Theory and Formal Languages, pages 134–
183. Springer, 1975.

5. P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In POPL, pages
238–252. ACM, 1977.

6. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among vari-
ables of a program. In POPL, pages 84–97. ACM Press, 1978.

7. Michael Dierkes. Formal analysis of a triplex sensor voter in an industrial context.
In FMICS, pages 102–116, 2011.

8. E. Feron, G. Brat, P-L Garoche, P. Manolios, and M. Pantel. Formal methods for
areospace applications. FMCAD 2012 tutorial.

9. P.-L. Garoche and P. Roux. SMT-AI: SMT abstract interpreter.
https://cavale.enseeiht.fr/redmine/projects/smt-ai.

10. T. Gawlitza and H. Seidl. Computing relaxed abstract semantics w.r.t. quadratic
zones precisely. In SAS, 2010.

11. T. Gawlitza, H. Seidl, A. Adjé, S. Gaubert, and E. Goubault. Abstract interpretation
meets convex optimization. J. Symb. Comput., 47(12), 2012.

12. Daniel Kästner, Stephan Wilhelm, Stefana Nenova, Patrick Cousot, Radhia Cousot,
Jérôme Feret, Antoine Miné, Laurent Mauborgne, and Xavier Rival. Astrée: Proving
the absence of runtime errors. In ERTSS, 2010.

13. A. Miné. A new numerical abstract domain based on difference-bound matrices. In
PADO II, volume 2053 of LNCS, pages 155–172. Springer-Verlag, 2001.

14. A. Miné. The octagon abstract domain. In AST (satt. of WCRE), IEEE, pages 310–319,
2001.

15. D. Monniaux. Quantifier elimination by lazy model enumeration. In CAV, pages
585–599, 2010.

16. P. Roux, R. Jobredeaux, P.-L. Garoche, and E. Féron. A generic ellipsoid abstract
domain for linear time invariant systems. In HSCC. ACM, 2012.

17. D. Rowell. Dicrete time observers and lqg control. MIT, Dpt. of Mechanical En-
gineering – 2.151 Advanced System Dynamics and Control – http://web.mit.
edu/2.151/www/Handouts/Kalman.pdf, 2004.

18. J. Souyris and D. Favre-Félix. Proof of properties in avionics. In Building the Infor-
mation Society, volume 156, pages 527–535. Springer, 2004.

19. A. Tarski. A decision method for elementary algebra and geometry: Prepared for
publication with the assistance of j.c.c. mckinsey. Technical report, RAND Corpora-
tion, 1951.

20. C. Tinelli. Foundations of satisfiability modulo theories. In WoLLIC, page 58, 2010.

http://web.mit.edu/2.151/www/Handouts/Kalman.pdf
http://web.mit.edu/2.151/www/Handouts/Kalman.pdf

	Formal Methods for the Analysis ofCritical Control Systems Models:Combining Non-Linear and Linear Analyses

