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Practical Policy Iterations
A practical use of policy iterations for static analysis – The quadratic case.
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Abstract Policy iterations is a technique based on game theory that relies on a sequence
of numerical optimization queries to compute the fixpoint of a set of equations. It has been
proposed to support the static analysis of programs as an alternative to widening, when the
latter is ineffective. This happens for instance with highly numerical codes, such as found at
cores of control command applications. In this paper we present a complete, yet practical,
description of the use of policy iteration in this context. We recall the rationale behind policy
iteration and address required steps towards an automatic use of it: synthesis of numerical
templates, floating point semantics of the analyzed program and issues with the accuracy of
numerical solvers.

Keywords policy iterations · abstract interpretation · static analysis · quadratic templates ·
ellipsoids · Lyapunov functions · widening · controllers

1 Introduction

Since the first proposals in the 70s, static analysis, and more specifically abstract inter-
pretation through Kleene-based fixpoint computation [10,11,12], has been widely devel-
oped and is now considered usable on realistic systems. Those techniques provide an over-
approximation of the program semantics by computing iteratively a fixpoint in an abstract
domain. To cope with convergence issues, the iterative sequence of increasing elements is
itself approximated using the (in)famous widening operator.

When the target property, e.g., boundedness of the variable values, or unreachability
of bad values, cannot be guaranteed, those two elements can be blamed: the choice of the
abstract domain and the use of widening.

Since almost 40 years, the set of abstractions proposed by the static analysis community
is mainly bound to linear abstractions: from interval arithmetic based analysis, to convex
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polyhedra [13], or less expensive yet precise abstractions such as zonotopes [22] or oc-
tagons [31].

Regarding the widening, its use is mandatory but hard to control. Threshold widening, or
widening up to [27], for instance strongly depends on the set of thresholds chosen a priori,
and can give radically different results depending on this choice.

Among the solutions offered for those issues, policy1 iterations were introduced in the
last decade [18,19]. It is inspired by classical approaches in game theory. In short, using pol-
icy iterations could replace widening and compute precise fixpoints using numerical solvers.
It also enables the use of other than linear abstractions, such as quadratic polynomials [1,20,
21], thanks to the recent availability of efficient numerical solvers for convex optimization.

While policy iteration could have a wide impact in static analysis, its current use is
hampered by some practical issues:

1. It relies on an a priori known set of templates on which the computation is performed.
This choice of templates can have a dramatic impact on the result.
How to choose appropriate templates for a given problem/program?

2. It uses numerical solvers, relying on floating-point arithmetic, and analyzes programs,
themselves using floating-point arithmetic.
How to trust the validity of the resulting invariant?

The goal of the current paper is to address these two issues and therefore to assess and
sustain a wider applicability of policy iteration in static analysis.

Targeted programs are the typical time-triggered linear controllers as found in a wide
range of critical cyber-physical systems such as car engines, flight commands of an aircraft
or even medical devices such as pacemakers or insulin pumps. Most of them are based on a
linear update performed within an infinite loop.

For such systems, we offer

– an algorithm to compute appropriate quadratic templates;
– an a posteriori proof that the invariant, computed using numerical solvers, is actually

valid, even in presence of floating point computations in the analyzed program.

The first step is presented in Section 5 and relies on numerical optimization to identify
appropriate templates. This mostly consists in a more comprehensive exposition of material
already presented in previous papers [7,36,37,38]. The second step, detailed in Section 7, is
based on a set of theorems about error bounds on floating point computations. Their proofs
being particularly tedious and error prone, they are supported and mechanically checked by a
proof assistant (Coq [8]). Before that, Sections 2, 3 and 4 introduce respectively our interest
for quadratic invariants, compared to linear ones, the use of semi-definite programming and
policy iterations. Finally, Section 8 gives experimental results.

2 Need for Quadratic Invariants

This section introduces quadratic invariants and compares them to the more usual linear
invariants for static analysis of control-command systems.
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x0 := 0; x1 := 0; x2 := 0;
while −1≤ 0 do

in := ?(−1, 1);
x0’ := x0; x1’ := x1; x2’ := x2;
x0 := 0.9379x0’−0.0381x1’−0.0414x2’+0.0237in;
x1 := −0.0404x0’+0.968x1’−0.0179x2’+0.0143in;
x2 := 0.0142x0’−0.0197x1’+0.9823x2’+0.0077in;

od

Fig. 1: Example of a control-command program.
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x1

(a) an interval property: not inductive

x0

x1

(b) a quadratic property: inductive

Fig. 2: Intervals vs quadratic properties for a linear transformation.

2.1 Linear Domains

Most control systems are based on a linear core. This is for instance the case of the Linear
Quadratic Gaussian regulator given in Figure 1. Unfortunately, these are hard to analyze
using simple linear abstract domains, such as the intervals domain (for instance, the pre-
vious regulator does not admit any non trivial invariant in this domain). Figure 2a gives an
intuition of this point. An interval property on two variables undergoes a small rotation com-
posed with an homothety of factor 0.92< 1 (i.e., a strictly contracting linear transformation),
showing that the property is not inductive.

Nevertheless, as control theorists know for long, stable linear systems admit quadratic
invariants (called Lyapunov functions [5,30]). Such invariants can be depicted as ellipsoids.
On Figure 2b, an ellipsoid is depicted along with its image by the same linear transformation
as previously. This time, the property appears to be inductive.

In practice, when a quadratic invariant exists, approximating it with enough faces can
give an invariant in classic linear abstract domains such as the polyhedra [13] or the zonotope
domains [22]. Thus, it could be thought that quadratic invariants are useless and that the
same results can be obtained using solely linear invariants. However, this suffers from two,
often prohibitive, drawbacks making it a mere theoretical approach:

Large Number of Faces. “enough faces” can be way too large to be actually tractable, par-
ticularly when the number of variables grows. This issue becomes even more stringent
in presence of weakly contracting transformations, intuitively requiring the linear in-
variant to be “smooth” enough to be inductive, hence composed of a large number of
faces. More than the memory space required to store these objects, the cost of their ma-

1 The term strategy is also used in the literature, with equivalent meaning.
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x0 := 0; x1 := 0; x2 := 0; x3 := 0;
while −1≤ 0 do

in0 := ?(−1, 1);
in1 := ?(−1, 1);
x0’ := x0; x1’ := x1; x2’ := x2; x3’ := x3;
x0 := 0.6227x0’+0.03871x1’−0.113x2’+0.0102x3’+0.3064in0+0.1826in1;
x1 := −0.3407x0’+0.9103x1’−0.3388x2’+0.0649x3’−0.0054in0+0.6731in1;
x2 := 0.0918x0’−0.0265x1’−0.7319x2’+0.2669x3’+0.0494in0+1.6138in1;
x3 := 0.2643x0’−0.1298x1’−0.9903x2’+0.3331x3’−0.0531in0+0.4012in1;
if x0 > 0.5 then x0 := 0.5; else if x0 <−0.5 then x0 := −0.5; fi fi

od

Fig. 3: Example of a control-command program with guards.
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x1

Fig. 4: The interval property of Figure 2 is 6-inductive.

nipulation may render the approach intractable. Compared to linear invariants, quadratic
invariants have a space complexity quadratic in the number of variables and are intrin-
sically “smooth”.

Ineffectiveness of Kleene Iterations. Existence of an invariant does not mean existence of a
practical way to compute it. In particular, Kleene iterations with polyhedra are known
to perform poorly when trying to generate such linear invariants [42]. Moreover none
of the classic widening strategies allows to find such results without performing a large
number of iterations.

Moreover, control systems can also contain guards. For instance, resets and saturations
are two common kinds of guards. Resets can at any time reset the value of all program
variables to some constant (possibly different from the initial value). They are usually rather
easy to handle since they can just be considered as an additional initial value. Saturations
force a variable – such as x0 on Figure 3 – to remain in some range – [−0.5,0.5] on Figure 3 –
by keeping it constant when it reaches the boundaries of the range. They can be much harder
to handle. Adding a saturation to a stable linear system can even make it unstable.

2.2 Unrolling

Unrolling constitutes a practical alternative to the search for linear inductive invariants with
myriads of faces. For purely linear systems, unrolling to depths k ranging from a few hun-
dreds to a few thousands allows to compute precise k-inductive invariants while keeping the
number of faces reasonably small [15,22]. Recent work [42] even demonstrates that precise
bounds (i.e., the maximum reachable values) can be computed with simple support functions



Practical Policy Iterations 5

Fig. 5: Invariant for our running example.

by fully unrolling the system. Intuitively, unrolling turns a contracting transformation into
a more contracting one. Thus, properties which are not inductive may appear k-inductive.
This is illustrated on Figure 4.

These results are definitely interesting but only produce k-inductive invariants for large
values of k which exhibits the following drawbacks:

Checking Results. When the user does not trust the analyzer and wants to check its results
a posteriori, not having a simple inductive invariant can seriously complicate the task2.

Difficulty of Unrolling in Presence of Guards. Unrolling purely linear systems3 works well
because the size of the unrolled system is linear in the unrolling depth k. However,
when the system contains guards, as on Figure 3, things can become more intricate.
Considering all paths through k iterations, can lead to a system of exponential size 2k

which rapidly becomes intractable for large values of k.

2.3 Quadratic Invariants

Although quadratic invariants are known for long, as quadratic Lyapunov functions, from
control theorists [5,30], their use in static analysis dates back from just a decade.

The first famous use of quadratic invariants for static analysis was two dimensional
ellipsoids to bound second order filters [15,16,33]. Bounds on filters of order n could then be
computed by decomposing them in filters of order 1 (bounded with intervals) and 2 (bounded
with ellipsis) and refining the obtained bounds by means of some kind of unrolling [15,16,
33]. The method then presents the same advantages (precision of the computed bounds) and
drawbacks (no inductive invariant is produced) as other unrolling methods.

Other works offer to compute quadratic inductive invariants of higher dimensions on
larger classes of linear systems [1,2,20,34]. Such invariants are computed thanks to the use
of some numerical solvers, namely semi-definite programming solvers.

2 Although the k-inductive invariants can be made (1)-inductive by adding extra variables, representing
past values of program variables, in their expression.

3 Like the one in Figure 1.
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x0

x1

Fig. 6: Reachable state space for Ex. 3 (dark gray), compared to an ellipsoid (light gray).

linear domains with unrolling
[15,16,22,33,42]

quadratic domains [1,2,20,21,
38]

pure linear systems + high precision − less precise
simple guards (e.g., reset) + easily handled + easily handled
other guards (e.g., saturation) − cannot be handled + often handled
size of generated invariants − potentially huge + quadratic

Table 1: Pros and cons of linear domains with unrolling and quadratic domains.

Example 1 In the remainder of this paper, the following invariant4 will be fully automati-
cally computed on the code of Figure 1: 6.2547x2

0 + 12.1868x2
1 + 3.8775x2

2− 10.61x0x1−
2.4306x0x2 + 2.4182x1x2 ≤ 1.0029∧ |x0| ≤ 0.4236∧ |x1| ≤ 0.3371∧ |x2| ≤ 0.5251. This
invariant is a cropped ellipsoid as displayed on Figure 5.

Example 2 For the code of Figure 3, the following invariant is computed: 0.0483x2
0+0.0591x2

1+
0.1351x2

2+0.1388x2
3−0.0415x0x1+0.0229x0x2−0.0313x0x3−0.0763x1x2+0.0718x1x3−

0.2214x2x3 ≤ 2.4641∧|x0| ≤ 0.5∧|x1| ≤ 7.0380∧|x2| ≤ 5.5389∧|x3| ≤ 6.1607.

Remark 1 (Exact Reachable State Space is not an Ellipsoid) Despite the ability of quadratic
invariants to bound any stable linear system, it should be noted that the reachable state space
of such systems is usually not an ellipsoid. Thus, although ellipsoids are good invariants,
they will not always yield the tightest possible bounds.

Example 3 Consider the sequence defined by x(0) := [0,0]T and x(k+1) := Ax(k) + Bu(k)
where

A :=
[

0.92565 −0.0935
0.00935 0.935

]
B :=

[
1
0

]

and for all k ∈ N, x(k),u(k) ∈ R2×1 are column vectors and ‖u(k)‖∞ ≤ 1. The reachable state
space of this system, depicted in Figure 6, is not an ellipsoid.

Table 1 summarizes the respective advantages and drawbacks of linear invariants with
unrolling and quadratic invariants.

This section advocated how nice ellipsoids are to bound linear systems. Yet, they suffer a
significant disadvantage compared to classic abstract domains such as polyhedra, octagons,
zonotopes,. . . : the set of ellipsoids with the inclusion order can hardly be equipped with
a sensible join operator5, as illustrated on Figure 7. This constitutes a major obstacle to
practical computations through Kleene iterations on the whole set of ellipsoids as usually
done in the abstract interpretation framework. A common solution is to choose — prior to

4 All figures are rounded to the fourth digit.
5 Although the minimum volume (Löwner-Johns) ellipsoid [6, Section 8.4] could be a reasonable choice.
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x0

x1

Fig. 7: There is usually no smallest ellipsoid containing two other given ellipsoids: the two
light gray ellipsoids both contain the two darker ellipsoids but none of them is included in
the other.

the analysis — ellipsoid shapes and then only compute their radii. Section 4 reviews policy
iteration, an efficient technique to compute such radii, while Section 5 offers a technique to
determine relevant ellipsoid shapes.

3 Instrumentation: Use of Semi-Definite Programming

Let us first recall some definitions regarding semi-definite programming [6,43].

3.1 Semi-Definite Matrices and Linear Matrix Inequalities

A matrix M ∈ Rn×n is called positive semi-definite, which will be denoted by M � 0, when

∀x ∈ Rn, xT M x≥ 0.

A matrix M ∈ Rn×n is called positive definite, which will be denoted by M � 0, when

∀x ∈ Rn, x 6= 0⇒ xT M x > 0.

The notations M � 0 and M ≺ 0 will be used as syntactic sugar for −M � 0 and −M � 0
respectively and A� B and A� B for A−B� 0 and A−B� 0 respectively.

A Linear Matrix Inequality (LMI) [5] is an inequality of the form

∑
i

yiAi � 0

where the Ai ∈ Rn×n are known matrices and the yi ∈ R are scalar variables.
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3.2 Semi-Definite Programming

Semi-Definite Programming (SDP) [6,43] aims at minimizing a linear objective function
under LMI constraints. That is, given ci ∈ R and Ai, j ∈ Rn×n, we seek values of variables yi
minimizing ∑i ciyi under the constraints ∑i yiAi, j � 0. We will use the following notation for
semi-definite programs:

minimize ∑i ciyi

subject to ∑i yiAi,1 � 0
...
∑i yiAi,m � 0.

Semi-definite programming solvers compute approximate solutions to these programs in
polynomial time.

Although variables yi are scalars, we can easily have matrix variables since a matrix Y ∈
Rn×n can be expressed as ∑n−1,n−1

i=0, j=0 Yi, jE i, j, where E i, j is the matrix with zeros everywhere
except a one at line i and column j.

3.3 Abstract Implications with Lagrangian Relaxation

We will often encounter implications “⇒”. They will be handled thanks to a Lagrangian
relaxation.

Theorem 1 (Lagrangian relaxation) Assume f and g1, . . . ,gk functions R→ R, if there
exist λ1, . . . ,λk ∈ R all non negative such that.

∀x, f (x)−∑
i

λigi(x)≥ 0 (1)

then

∀x,
(
∧

i

gi(x)≥ 0

)
⇒ f (x)≥ 0. (2)

Semi-definite programming solvers being unable to directly handle (2), they are fed with (1).
Although the converse of the theorem does not generally hold, this relaxation is usually an
efficient way to handle implications, it is even exact in some cases [6, Section B.2].

Example 4 For any P,P1, . . . ,Pk ∈ Rn×n and b,b1, . . . ,bk ∈ R, the following

∃λ1, . . . ,λk ∈ R,

(
k∧

i=1

λi ≥ 0

)
∧
[
−P 0
0 b

]
−

k

∑
i=1

λi

[
−Pi 0

0 bi

]
� 0 (3)

is a sufficient condition for

∀x ∈ Rn,

(
k∧

i=1

xT Pi x≤ bi

)
⇒ xT Px≤ b. (4)

The previous relaxation is sometimes called S-Procedure by control theorists [17].
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M′ := 0;
for j from 1 to n do

for i from 1 to j−1 do
M′i, j :=

(
Mi, j−∑i−1

k=1 M′k,iM
′
k, j

)
/M′i,i;

od
M′j, j :=

√
M j, j−∑ j−1

k=1 M′k, j
2;

od

Fig. 8: Cholesky decomposition: from a matrix M � 0, computes M′ such that M = M′T M′.

3.4 Checking Positive Definiteness

To prove that a scalar r ∈ R is non negative, one can exhibit some r′ ∈ R such that r =
r′2 (typically r′ =

√
r). Similarly, one can prove that a matrix M ∈ Rn×n is positive semi-

definite by exposing a matrix M′ such that M = M′T M′ (since, for all x∈Rn, xT (M′T M′)x =
(M′x)T (M′x)= ‖M′x‖2

2≥ 0 for all x∈Rn). The Cholesky decomposition is an algorithm that
computes such a matrix M′ (c.f., Figure 8). It is interesting to notice that the actual value of
r′ or M′ doesn’t matter. It is enough to prove it exists. Indeed, if the Cholesky decomposition
of M runs to completion, without ever attempting to take the square root of a negative value
or perform a division by zero, hence produces a M′, this proves M � 0. This property will
later be used to check the results of SDP solvers.

4 Policy Iterations: State of the Art

Computation of precise invariants on numerical programs can be hard to achieve using clas-
sic Kleene iterations with widening. Policy iterations [1,9,19,20,21] is one of the alterna-
tives to simple widening developed during the last decade [4,14,23,26,41, and references
therein]. This technique allows computing precise postfixpoints, usually by relying on math-
ematical optimization solvers. Such techniques have been recently developed for the com-
putation of quadratic invariants for linear systems [1,20,21].

Policy iterations basically perform iterations with two phases
– Compute a policy, that is locally simplify the fixpoint problem;
– Solve the policy with efficient tools specialized for this simpler problem.

These two phases are alternatively performed until a good result is reached.

4.1 Template Domains

Policy iteration is performed on template domains. Given a finite set {t1, . . . , tn} of expres-
sions on program variables V, the template domain T is defined as Rn

= (R∪{−∞,+∞})n

and the meaning of an abstract value (b1, . . . ,bn) ∈T is the set of environments

γT (b1, . . . ,bn) = {ρ ∈ (V→ R) | Jt1K(ρ)≤ b1, . . . ,JtnK(ρ)≤ bn}

where JtiK(ρ) is the result of the evaluation of expression ti in environment ρ . In other words,
the abstract value (b1, . . . ,bn) represents all the environments satisfying all the constraints
ti ≤ bi.
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1 2

x0 := 0
x1 := 0
x2 := 0

−1 ≤ in ≤ 1 ,
x0 := 0.9379x0 −0.0381x1 −0.0414x2 +0.0237 in
x1 :=−0.0404x0 +0.968x1 −0.0179x2 +0.0143 in
x2 := 0.0142x0 −0.0197x1 +0.9823x2 +0.0077 in

Fig. 9: Control flow graph for our running example.

Example 5 Given the quadratic templates t1 := 6.2547x2
0+12.1868x2

1+3.8775x2
2−10.61x0x1−

2.4306x0x2 +2.4182x1x2, t2 := x2
0, t3 := x2

1 and t4 := x2
2, the quadratic invariant from Exam-

ple 1, page 5, can be written (1.0029, 0.1795, 0.1136, 0.2757) ∈T .

Indeed, many common abstract domains can be rephrased as template domains. For
instance the intervals domain is obtained with templates −xi and xi for all variables xi ∈ V
and the octagon domain [31] by adding all the ±xi ± x j. The shape of the templates to
be considered for policy iteration depends on the optimization tools used. For instance,
linear programming [18,19] allows any linear templates whereas quadratic templates can
be handled thanks to semi-definite programming [1,20,21]. This paper focuses on the latter
case.

4.2 System of Equations

While Kleene iterations iterate locally through each construct of the program, policy itera-
tions require a global view on the analyzed program. For that purpose, the whole program is
first translated into a system of equations which is later solved.

Starting from the control flow graph of the analyzed program, a system of equations is
defined with a variable bi, j for each vertex i of the graph and each template t j.

Example 6 Figure 9 displays the control flow graph for our running example (Figure 1,
page 3). Here is its translation as a system of equations:





b1,1 = +∞ b1,2 =+∞ b1,3 =+∞ b1,4 =+∞
b2,1 = max{0 | be(1)} t max{r(t1) | (−1≤ in≤ 1)∧be(2)}
b2,2 = max{0 | be(1)} t max{r(t2) | (−1≤ in≤ 1)∧be(2)}
b2,3 = max{0 | be(1)} t max{r(t3) | (−1≤ in≤ 1)∧be(2)}
b2,4 = max{0 | be(1)} t max{r(t4) | (−1≤ in≤ 1)∧be(2)}

(5)

where be(i) denotes (t1 ≤ bi,1)∧ (t2 ≤ bi,2)∧ (t3 ≤ bi,3)∧ (t4 ≤ bi,4) and r(t) is the template
t in which variable x0 is replaced by 0.9379x0−0.0381x1−0.0414x2 +0.0237 in, variable
x1 is replaced by −0.0404x0 + 0.968x1− 0.0179x2 + 0.0143 in and variable x2 is replaced
by 0.0142x0−0.0197x1 +0.9823x2 +0.0077 in. The usual maximum on R is denoted t6.

Each bi, j bounds the template t j at program point i and is defined in one equation
as a maximum over as many terms as incoming edges in i. More precisely, each edge
between two vertices v and v′ translates to a term in each equation bv′, j on the pattern:
max

{
r(t j)

∣∣ c∧∧ j(t j ≤ bv, j)
}

where c and r are respectively the constraints and the assign-
ments associated to this edge. This expresses the maximum value the template t j can reach

6 ∨ is often used instead in the policy iteration literature.
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in destination vertex v′ when applying the assignments r on values satisfying both the con-
straints c of the edge and the constraints t j ≤ bv, j of the initial vertex v. Finally, the program
starting point is initialized to (+∞, . . . ,+∞), meaning all equations for bi0, j, where i0 is the
starting point, become bi0, j =+∞.

Thus, for any solution (b1,1, . . . ,b1,n, . . .) of the equations, γT (bi,1, . . . ,bi,n) is an over-
approximation of reachable states of the program at point i. According to the Knaster-Tarski
theorem, this set of solutions has a least element which then gives the best overapproxima-
tion of the reachable state space of the program.

4.3 Policy Iterations

Policy iterations intend to compute the least solution of the previous system of equations.
They are an iterative process with two phases. First, an abstraction of the problem is com-
puted. This abstraction, called policy, can then be solved using techniques which were not
applicable on the original problem. This gives an approximation of the final result enabling
to find a better policy, itself giving a better approximation of the result and so on.

Two different techniques, min- and max-policies, can be found in the literature. They
basically apply the previous scheme top down or bottom up respectively.

4.3.1 Min-Policy Iterations

To some extent, Min-Policy iterations [1] can be seen as a very efficient narrowing, since
they perform descending iterations from a postfixpoint towards some fixpoint, working in
a way similar to the Newton-Raphson numerical method. Iterations are not guaranteed to
reach a fixpoint but can be stopped at any time leaving an overapproximation thereof. More-
over, convergence is usually fast.

Writing a system of equations b = F(b) with b = (bi, j)i∈J1,nK, j∈J1,pK and F : Rnp→Rnp

(n being the number of templates and p the number of vertices in the control flow graph), a
min-policy is defined as follows: F is a min-policy for F if for every b ∈ Rnp

, F(b)≤ F(b)
and there exist some b0 ∈ Rnp

such that F(b0) = F(b0). We will only consider linear min-
policies in the remaining of this paper. For instance, for a smooth concave function, its
min-policies are the tangents to its graph.

Example 7 Considering the system of one equation b1,1 = 0 t
√

b1,1 , where
√

x is defined

as −∞ for negative numbers x, F defined as F(b) := 0 t
(

b1,1
8 +2

)
is a min-policy. Indeed,

for all b1,1 ∈ R, F(b) = 0 t
√

b1,1 ≤ 0 t b1,1
8 +2 = F(b), and for b0 = 16, F(b0) =

√
16 =

16
8 +2 = F(b0). This is illustrated on Figure 10 on which F1 is the above F .

The following theorem can then be used to compute the least fixpoint of F .

Theorem 2 Given a (potentially infinite) set F of min-policies for F. If for all b ∈ Rnp

there exist a policy F ∈F interpolating F at point b (i.e. F(b) = F(b)) and if each F ∈F
has a least fixpoint lfpF, then the least fixpoint of F satisfies

lfpF =
∧

F∈F
lfpF .
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b1,1

0 ∨
√

b1,1

F1F2

b1,1
b0b1b2

Fig. 10: Illustration of Example 8.

Remark 2 This enables to better understand the name min-policies since, in the hypotheses
of the previous theorem, F is the pointwise minimum of the min-policies F ∈F :

F =
∧

F∈F
F .

Iterations are done with two main objects: a min-policy F and a tuple b of values for
variables bi, j of the system of equations. The following policy iteration algorithm starts from
some postfixpoint b0 of F and aims at refining it to produce a better overapproximation of
a fixpoint of F . Policy iteration algorithms always proceed by iterating two phases: first a
policy F i is selected, then it is solved giving some bi. More precisely in our case:

– find a linear min-policy F i+1 being tangent to F at point bi, this can be done thanks to
SDP solvers [21, Section 5.4];

– compute the least fixpoint bi+1 of policy F i+1 thanks to linear programming.

Iterations can be stopped at any point (for instance after a fixed number of iterations or when
progress between bi and bi+1 is considered small enough) leaving an overapproximation b
of a fixpoint of F .

Example 8 We perform min-policy iterations on the system of equation of Example 7.

– We start from the postfixpoint b0 = 16. This postfixpoint could be obtained through
Kleene iterations for instance7.

– For each term of the unique equation, we look for a hyperplane tangent to the term at
point b0. 0 is tangent to 0 at point b0 and b1,1

8 + 2 is tangent to
√

b1,1 at point b0 (c.f.,
Figure 10), this gives the following linear min-policy:
F1 =

{
b1,1 = 0 t

(
b1,1

8 +2
)

– The least fixpoint of F1 is then: b1 =
16
7 ' 2.2857.

– Looking for hyperplanes tangent at point b1 gives the min-policy:
F2 =

{
b1,1 = 0 t

(√
7

8 b1,1 +
2√
7

)

– Hence b2 =
16

8
√

7−7
' 1.1295.

These two first iterations are illustrated on Figure 10. The procedure then rapidly converges
to the fixpoint b1,1 = 1 (the next iterates being b3 ' 1.0035 and b4 ' 1.0000) and can be
stopped as soon as the accuracy is deemed satisfying.

7 Or a large enough guess can be used. Thanks to the fast convergence of min-policy iterations, there is
often no need for this postfixpoint to be close from the fixpoint eventually computed.
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Remark 3 The Newton-Raphson method on a smooth concave function is a particular case
of min-policy iterations.

Example 9 We perform min-policy iterations on the running example (Equation (5), page 10).

– We start from the postfixpoint b0 =(+∞,+∞,+∞,+∞, 1000000,+∞,+∞,+∞), which
could be obtained through Kleene iterations for instance.

– For each term of each equation, we look for an hyperplane tangent to the term at point
b0. This can be done thanks to SDP solvers and gives the following linear min-policy:
F1 = 




b1,1 =+∞ b1,2 =+∞ b1,3 =+∞ b1,4 =+∞
b2,1 = 0 t 0.9857b2,1 +0.0152 b2,2 = 0 t 0.2195b2,1 +11.0979
b2,3 = 0 t 0.1143b2,1 +4.8347 b2,4 = 0 t 0.2669b2,1 +3.9796

For instance, looking at the second term of b2,1, i.e., max{r(t1) | (−1≤ in≤ 1)∧be(2)},
that is max{r(t1) | (−1≤ in≤ 1)∧ (t1 ≤ 1000000)} at point b0. This can be rewritten

max
{

xT RT
r Pt1 Rr x

∣∣ xT Ein x≤ 1∧ xT Pt1 x≤ 1000000
}

(6)

where Rr is a matrix encoding assignment r (i.e., Rr x is the result of assignment r on
variables x) and Pt1 and Ein are matrix representation of respectively template t1 and in2

(i.e., xT Pt1 x is the template t1 on variables x). In our case x := [x0 x1 x2 in]T ,

Rr :=




0.9379 −0.0381 −0.041 0.0237
−0.0404 0.968 −0.0179 0.0143
0.0142 −0.0197 0.9823 0.0077

0 0 0 0


 Pt1 :=




6.2547 −5.305 −1.2153 0
−5.305 12.1868 1.2091 0
−1.2153 1.2091 3.9775 0

0 0 0 0


 .

Ein :=
[

03×3 03×1
01×3 1

]

(6) can be rewritten

max
{

tr((RT
r Pt1 Rr)(xT x))

∣∣ tr(Ein(xT x))≤ 1∧ tr(Pt1(x
T x))≤ 1000000

}

and overapproximated by

max
X

{
tr((RT

r Pt1 Rr)X)
∣∣ tr(EinX)≤ 1∧ tr(Pt1 X)≤ 1000000∧X � 0

}

which by duality [6, Chapter 5] is less or equal

min
y

{
1y0 +1000000y1

∣∣ y0Ein + y1Pt1 � RT
r Pt1 Rr ∧ y0 ≥ 0∧ y1 ≥ 0

}
.

A SDP solver eventually answers y0 = 0.0152 and y1 = 0.9857 on the previous problem.
– A linear programming solver allows computing the least fixpoint of F1:

b1 = (+∞,+∞,+∞,+∞,1.0664,11.3324,4.9568,4.2644).
– F2 = 




b1,1 =+∞ b1,2 =+∞ b1,3 =+∞ b1,4 =+∞
b2,1 = 0 t 0.9857b2,1 +0.0143 b2,2 = 0 t 0.2302b2,1 +0.0120
b2,3 = 0 t 0.1190b2,1 +0.0052 b2,4 = 0 t 0.2708b2,1 +0.0042

– b2 = (+∞,+∞,+∞,+∞,1.0029,0.2429,0.1245,0.2757).
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– F3 =




b1,1 =+∞ b1,2 =+∞ b1,3 =+∞ b1,4 =+∞
b2,1 = 0 t 0.9857b2,1 +0.0143
b2,2 = 0 t 0.0390b2,1 +0.7426b2,2 +0.0114
b2,3 = 0 t 0.0340b2,1 +0.6635b2,3 +0.0050
b2,4 = 0 t 0.2709b2,1 +0.0040

– b3 = (+∞,+∞,+∞,+∞,1.0029,0.1962,0.1160,0.2757).
– F4 =





b1,1 =+∞ b1,2 =+∞ b1,3 =+∞ b1,4 =+∞
b2,1 = 0 t 0.9857b2,1 +0.0143
b2,2 = 0 t 0.0194b2,1 +0.8340b2,2 +0.0104
b2,3 = 0 t 0.0214b2,1 +0.7688b2,3 +0.0049
b2,4 = 0 t 0.2709b2,1 +0.0040

– b4 = (+∞,+∞,+∞,+∞,1.0029,0.1803,0.1137,0.2757).

Two additional iterations lead to b6 = (+∞,+∞,+∞,+∞, 1.0029, 0.1795, 0.1136, 0.2757)
which is the invariant given in Example 1 and depicted on Figure 5.

Remark 4 (Number and size of semi-definite programs) At each iteration, one semi-definite
program has to be solved for each term of each equation in order to compute a new policy.
This leads to many semi-definite programs but each focusing on a single term, hence rather
small. The computed policies being linear are then solved through linear programming. This
way, at the scale of the whole system, only linear programs are solved, which scales better
than semi-definite programming.

4.3.2 Max-Policy Iterations

Behaving somewhat as a super widening, Max-Policy iterations [20] work in the opposite
direction compared to Min-Policy iterations. They start from bottom and iterate computa-
tions of greatest fixpoints on a set of max-policies until a global fixpoint is reached. Unlike
the previous approach, this terminates with a theoretically precise fixpoint, but the user has
to wait until the end since intermediate results are not overapproximations of a fixpoint.

Max-policies are the dual of min-policies: F is a max-policy for F if for every b ∈ Rnp
,

F(b) ≤ F(b) and there exist some b0 ∈ Rnp
such that F(b0) = F(b0). In particular, the

choice of one term in each equation is a max-policy. From now on, only this last kind of
max-policies will be considered.

Example 10 A max-policy of the system of equations from Example 6:




b1,1 =+∞ b1,2 =+∞ b1,3 =+∞ b1,4 =+∞
b2,1 = max{r(t1) | (−1≤ in≤ 1)∧be(2)}
b2,2 = max{0 | be(1)}
b2,3 = max{0 | be(1)}
b2,4 = max{r(t4) | (−1≤ in≤ 1)∧be(2)}

Theorem 3 Given the set F of max-policies for F as defined above (choice of one term in
each equation), any fixpoint of F is also a fixpoint of some F0 ∈F .

Iterations are again done with two main objects: a max-policy F and a tuple b of values
for variables bi, j of the system of equations. The following policy iteration algorithm aims
at finding a policy F0 as in the above theorem by solving optimization problems. The initial
value b0 := (−∞, . . . ,−∞) is chosen, then policies are iterated:
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– find an improving policy F i+1 at point bi, i.e. that reaches (strictly) greater values eval-
uated at point bi, this can be done by evaluating each term of the system of equations at
point bi [21, Section 6.2]; if none is found, exit;

– compute the greatest fixpoint8 bi+1 of policy F i+1.

The last tuple b is then a fixpoint of the whole system of equations.

Remark 5 Although min and max policies are dual concepts, we are in both cases looking
for overapproximations of the least fixpoint of the system of equations, thus the algorithms
are not dual.

Example 11 We perform max-policy iterations on the running example (Equation (5), page 10).

– We start with the initial value
b0 = (−∞,−∞,−∞,−∞,−∞,−∞,−∞,−∞).

– We now look for an improving policy F1 at point b0. For the first four equations, there
is no choice and the term +∞ is chosen. For the first remaining equations, replacing the
bi, j with values−∞ from b0 in be(1) and be(2) gives formula equivalent to f alse, hence
both terms of these equations are maximum of the empty set and evaluate to −∞. We
can then choose any of them and the following policy is then a suitable choice:
F1 = 




b1,1 =+∞ b1,2 =+∞ b1,3 =+∞ b1,4 =+∞
b2,1 = max{0 | be(1)} b2,2 = max{0 | be(1)}
b2,3 = max{0 | be(1)} b2,4 = max{0 | be(1)}.

– Hence
b1 = (+∞,+∞,+∞,+∞,−∞,−∞,−∞,−∞).

– We again look for an improving policy F2, but this time at point b1. There is still no
choice for the first four equations. In the four remaining equations, replacing the bi, j
with values from b1 in be(1) and be(2) respectively gives formula equivalent to true
and f alse. This way, for these four equations, the first term reduces to 0 whereas the
second term evaluates to−∞. 0 being greater than the−∞ from b1, we get an improving
policy
F2 = 




b1,1 =+∞ b1,2 =+∞ b1,3 =+∞ b1,4 =+∞
b2,1 = max{0 | be(1)} b2,2 = max{0 | be(1)}
b2,3 = max{0 | be(1)} b2,4 = max{0 | be(1)}.

– b2 = (+∞,+∞,+∞,+∞,0,0,0,0).
– Now that the b2, j in b2 are no longer −∞, be(2) is no longer f alse and it becomes

interesting to select the second terms in the last four equations, hence
F3 = 




b1,1 =+∞ b1,2 =+∞ b1,3 =+∞ b1,4 =+∞
b2,1 = max{r(t1) | −1≤ in≤ 1∧be(2)}
b2,2 = max{r(t2) | −1≤ in≤ 1∧be(2)}
b2,3 = max{r(t3) | −1≤ in≤ 1∧be(2)}
b2,4 = max{r(t4) | −1≤ in≤ 1∧be(2)}.

8 More precisely, first determine which bi, j are±∞ in the least fixpoint in Rnp greater than bi, then compute
a greatest fixpoint for the remaining values in R.
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– The greatest fixpoint of F3 can be computed thanks to SDP solvers [21, Section 3.7]:
b3 = (+∞,+∞,+∞,+∞, 1.0077, 0.1801, 0.1141, 0.2771). More precisely, the greatest
fixpoint of F3 is, according to the Knaster-Tarski theorem, its largest prefixpoint. We are
then looking for maximal b2,1, b2,2, b2,3 and b2,4 satisfying





b2,1 ≥max{r(t1) | −1≤ in≤ 1∧be(2)}
b2,2 ≥max{r(t2) | −1≤ in≤ 1∧be(2)}
b2,3 ≥max{r(t3) | −1≤ in≤ 1∧be(2)}
b2,4 ≥max{r(t4) | −1≤ in≤ 1∧be(2)}.

or equivalently for

max
b2,i

{
b2,1 +b2,2 +b2,3 +b2,4

∣∣∣∣∣−1≤ in≤ 1∧be(2)∧
∧

i

r(ti)≤ b2,i

}

which can be encoded as a SDP program, similarly to what was done in Example 9.
– No more improving policy.

After four iterations, the algorithm has found the same least fixpoint than min policies in
Example 9.

Remark 6 (Number and size of semi-definite programs) Contrary to min-policies (c.f., Re-
mark 4), max-policies are not linear. Solving them then requires semi-definite programs
whereas min-policies only solves linear programs at the scale of the whole system.

The Max-Policy iteration builds an ascending chain of abstract elements similarly to
Kleene iterations elements. However it is guaranteed to be finite, while Kleene iterations
require the use of widening to ensure termination. Indeed, since there are exponentially
many max-policies, in the number of templates and points of the control flow graph, and
since each policy can give only an exponential number of solutions9, we have a bound on
the number of iterations. And despite these exponential bounds, in practice, only a small
number of policies are usually considered and the number of iterations remains reasonable.

5 Template Generation

Template domains used by policy iteration require templates to be given prior to the analy-
ses. This greatly limits the automaticity of the method. However, heuristics can be designed
for linear systems of the form x(k+1) = Ax(k)+Bu(k), like our running example. Those are
ubiquitous in control applications where the vector x represents the internal state of the con-
troller and u a bounded input.

After a brief introduction to Lyapunov stability theory, this section first focuses on gen-
erating templates for pure linear systems then for guarded linear systems given as a control
flow graph.

9 More precisely, for a given policy F i+1, once determined which bi, j are ±∞ there is a unique greatest
fixpoint for the remaining bi, j ∈ R, hence finitely many possible bi+1.
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5.1 Introduction to Lyapunov Stability Theory

One common way to establish stability of a discrete, time-invariant closed (i.e., with no
inputs) system described in state space form, (i.e., x(k+1) = f (x(k))) is to use what is called a
Lyapunov function. It is a function V : Rn→ R which must satisfy the following properties

V (0) = 0∧∀x ∈ Rn\{0},V (x)> 0∧ lim
‖x‖→∞

V (x) = ∞ (7)

∀x ∈ Rn,V ( f (x))−V (x)≤ 0. (8)

It is shown, for instance in [25], that exhibiting such a function proves the Lyapunov stabil-
ity of the system, meaning that its state variables will remain bounded through time. Equa-
tion (8) expresses the fact that the function k 7→V (x(k)) decreases, which, combined with (7),
shows that the state variables remain in the bounded sublevel-set {x ∈ Rn|V (x) ≤ V (x(0))}
at all instants k ∈ N.

In the case of Linear Time Invariant systems [5] (of the form x(k+1) = Ax(k), with A ∈
Rn×n), one can always look for V as a quadratic form in the state variables of the system:
V (x) = xT Px with P ∈ Rn×n a symmetric matrix such that

P� 0 (9)

AT PA−P� 0. (10)

Now, to account for the presence of an external input to the system (which is usually
the case with controllers: they use data collected from sensors to generate their output), the
model is usually extended into the form

x(k+1) = Ax(k)+Bu(k),‖u(k)‖∞ ≤ 1. (11)

The condition ‖u(k)‖∞ ≤ 1 reflects the fact that values coming from input sensors usually
lie in a given range. The bound 1 is chosen without loss of generality since one can always
alter the matrix B to account for different bounds. Then, through a slight reinforcement of
Equation (10) into

AT PA−P≺ 0 (12)

we can still guarantee that the state variables x of (11) will remain in the sublevel set (for
some λ > 0)

{
x ∈ Rn

∣∣ xT Px≤ λ
}

, which is an ellipsoid in this case, as illustrated on Fig-
ure 11. This approach only enables us to study control laws that are inherently stable, i.e.,
stable when taken separately from the plant they control. Nevertheless a wide range of con-
trollers remains that can be analyzed. In addition, inherent stability is required in a context
of critical applications.

These stability proofs have the very nice side effect that they provide a quadratic invari-
ant on the state variables, which can be used at the code level to find bounds on the program
variables. Furthermore, there are many P matrices that fulfill the equations described above.
This gives some flexibility as to the choice of such a matrix: by adding relevant constraints
on P, one can obtain increasingly better bounds.



18 Pierre Roux, Pierre-Loïc Garoche

{
x
∣∣ xT rIx≤ 1

}

{
x
∣∣ xT Px≤ 1

}

{
Ax
∣∣ xT Px≤ 1

}

{
Ax(k)+Bu

∣∣ ||u||∞ ≤ 1
}

x(k)

Ax(k)

Fig. 11: Illustration of the stability concepts: if x(k) is in the dark gray ellipse, then, after a
time step, Ax(k) is in the light gray one, which is exactly what is expressed by Equation (10).
The white box represents the potential values of x(k+1) after adding the effect of the bounded
input u(k). We see here the necessity that the light gray ellipse be strictly included in the dark
gray one, which is the stronger condition expressed by Equation (12). We will then look for
an invariant ellipsoid included in the smallest possible sphere by maximizing r.

5.2 Generating Templates

Given a pure linear system (x(k+1) = Ax(k)+Bu(k) with ‖u(k)‖∞ ≤ 1), we want to generate a
quadratic template enabling policy iterations to bound the system. According to Section 5.1,
any positive definite matrix P solution of the Lyapunov equation (12) gives a quadratic
template t := xT Px enabling policy iterations to bound the system. Section 3 introduced
semi-definite programming which constitutes an efficient way to solve this equation. How-
ever, taking any random solution may lead to very grossly overapproximated invariants. It
would be interesting to constrain more the set of solutions. Multiple approaches exist [38],
the one we detail here gives good results at a reasonable cost.

The basic idea is to force the invariant to lie in a sphere as small as possible. More
precisely, we will look for an ellipsoid included in the smallest possible sphere and which is
stable, i.e., a symmetric positive definite matrix P with r maximal in P� rI such that

∀x,∀u,
(
||u||∞ ≤ 1∧ xT Px≤ 1

)
⇒ (Ax+Bu)T P(Ax+Bu)≤ 1. (13)
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This is illustrated on Figure 11.

Remark 7 If P � Q, then the ellipsoid
{

x
∣∣ xT Px≤ 1

}
is included in

{
x
∣∣ xT Qx≤ 1

}
. In

particular, if P� rI, the ellipsoid defined by P is included in the sphere of radius 1√
r . Indeed,

for all x ∈
{

x
∣∣ xT Px≤ 1

}
, we have xT Qx≤ xT Px≤ 1, hence x ∈

{
x
∣∣ xT Qx≤ 1

}
.

The rationale behind this heuristic10 is to minimize the largest bound given by the invari-
ant ellipsoid. Other heuristics are possible, for instance if the user is interested in a particular
variable, the sphere can be replaced by an ellipsoid that is ’thinner’ in this dimension [35,
Section 5.3.4].

The previous condition (13) can be rewritten

∀x,∀u,
((

p−1∧

i=0

(
eT

i u
)2 ≤ 1

)
∧ xT Px≤ 1

)
⇒ (Ax+Bu)T P(Ax+Bu)≤ 1.

where ei is the i-th vector of the canonical basis (i.e., with all coefficients equal to 0 except
the i-th one which is 1). This amounts to: ∀x,∀u,

(
p−1∧

i=0

[
x
u

]T[0 0
0 E i,i

][
x
u

]
≤ 1

)
∧
[

x
u

]T[P 0
0 0

][
x
u

]
≤ 1⇒

[
x
u

]T[AT PA AT PB
BT PA BT PB

][
x
u

]
≤ 1

where E i, j is the matrix with 0 everywhere except the coefficient at line i, column j which
is 1. Using a Lagrangian Relaxation (c.f., Example 4, page 8), a sufficient condition for this
to hold is the existence of τ and λ0, . . . ,λp−1 all non negative such that



−AT PA −AT PB 0
−BT PA −BT PB 0

0 0 1


− τ



−P 0 0
0 0 0
0 0 1


−∑p−1

i=0 λi




0 0 0
0 −E i,i 0
0 0 1


� 0 (14)

This is not a LMI since τ and P are both variables which means it cannot be directly solved
’as is’. The idea will then be to fix the value of τ and solve the resulting LMI to obtain
P. The first thing to determine is then the set of ’interesting’ values for τ . The following
lemmas will prove that there is a τmin ∈ [0,1] such that all solutions satisfy τ ∈ [τmin,1] and,
conversely, there is a solution for all τ ∈ (τmin,1].

Lemma 1 For all solutions of (14), τ ∈ [0,1].

Proof τ is non negative and according to the bottom right coefficient of (14), 1−τ−∑λi≥ 0
hence τ ≤ 1 since all λi are non negative.

Lemma 2 If (14) has a solution for some τ , it has a solution for any τ ′ ∈ (τ,1].

Proof Assume the non negative scalars τ , λ0, . . . ,λp−1 and the symmetric positive definite
matrix P are solutions of (14) and τ ′ ∈ (τ,1]. Then by multiplying the first diagonal block
of (14) by 1−τ ′

1−τ ≥ 0 we get

[
−AT P′A −AT P′B
−BT P′A −BT P′B

]
− τ
[
−P′ 0

0 0

]
−∑p−1

i=0 λ ′i

[
0 0
0 −E i,i

]
� 0

10 There is usually no best ellipsoidal invariant, so we have to resort on a heuristic.
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with P′ := 1−τ ′
1−τ P and λ ′i := 1−τ ′

1−τ λi. Since P� 0 and τ ′ ≥ τ ≥ 0 we have τ ′P′ � τP′, hence

[
−AT P′A −AT P′B
−BT P′A −BT P′B

]
− τ ′

[
−P′ 0

0 0

]
−∑p−1

i=0 λ ′i

[
0 0
0 −E i,i

]
� 0

Moreover

1− τ ′−∑λ ′i = 1− τ ′− 1− τ ′

1− τ ∑λi =
1− τ ′

1− τ
(
1− τ−∑λi

)
≥ 0

These last two inequalities being equivalent to (14) prove that it has a solution for τ ′.

Lemma 3 There is a τmin ∈ [0,1] such that all solutions of (14) satisfy τ ∈ [τmin,1] and,
conversely, there is a solution for all τ ∈ (τmin,1].

Proof Defining τmin as the least upper bound of the set of τ solution of (14) (or 1 if this set
is empty), the result follows by the two previous lemmas.

The value of τmin can then be approximated by a binary search on τ ∈ [0,1] in (14), which
is a LMI for any fixed value of τ . A last lemma will enable a more efficient computation by
performing the binary search in the, simpler but equivalent, inequality AT PA− τP� 0.

Lemma 4 For τ ∈ [0,1], τ 6= τmin, (14) has a solution if and only if AT PA− τP� 0 does.

Proof If τ is solution of (14), then according to the upper left block of (14), −AT PA−
τ(−P)� 0, that is AT PA− τP� 0. Conversely, if AT PA− τP� 0 has a solution for some
τ , then for all τ ′ ∈ (τ,1), we have AT PA− τ ′P≺ 0. This implies the existence of a solution
of (14) for τ ′ (the formal proof being a bit painful is omitted, intuitively the strict inequality
leaves enough room to fit the additional bounded input Bu by scaling P by a small enough
factor α ∈ (0,1) (hence a large enough ellipsoid defined by αP)). Thus, τ ≥ τmin and if
τ 6= τmin, (14) has a solution for τ .

Example 12 With the following matrix A of the running example (c.f., Figure 1, page 3):

A :=




0.9379 −0.0381 −0.0414
−0.0404 0.968 −0.0179
0.0142 −0.0197 0.9823


 ,

looking by binary search for τmin ∈ [0,1], the first tested value is τ = 0.5, i.e., a solution to
the following semi-definite program is looked for

minimize 0

subject to AT PA−0.5P� 0
P� 0
PT = P.

Since there is no solution, τmin is now looked for in interval [0.5,1]. τ = 0.75 is tested,
without more success, then tau = 0.875, τ = 0.9375 and τ = 0.96875 are still unsuc-
cessful. τ = 0.984375 is eventually successful meaning τmin ∈ [0.96875,0.984375]. Then
τ = 0.9765625 fails and τ = 0.98046875 succeeds. Stopping here leaves the overapproxi-
mated value τmin = 0.98046875.
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ττmin 1

τ 1√
f (τ)

bounds

0.9805 0.78 0.50, 0.49, 0.71
0.9821 0.64 0.46, 0.42, 0.61
0.9837 0.56 0.44, 0.37, 0.56
0.9854 0.58 0.43, 0.35, 0.53
0.9870 0.61 0.43, 0.33, 0.52
0.9886 0.65 0.43, 0.32, 0.52
0.9902 0.70 0.43, 0.31, 0.54
0.9918 0.77 0.44, 0.31, 0.56
0.9935 0.85 0.46, 0.31, 0.59
0.9951 0.98 0.49, 0.32, 0.63
0.9967 1.19 0.53, 0.35, 0.70
0.9984 1.68 0.65, 0.42, 0.83

Fig. 12: Example 13: radius of the smallest sphere (1/
√

f (τ)) containing the invariant with
respect to τ . The table on the right displays the values actually computed and the bounds on
the three program variables that would be obtained if the solution P for the given value of τ
is kept as template (for comparison, the maximal reachable values are 0.38, 0.26, 0.48).

It now remains to choose the ’best’ τ in this interval [τmin,1], that is the one leading to
a solution P defining an ellipsoid included in the smallest sphere. We denote f the function
mapping τ ∈ (τmin,1] to the optimal value of the following semi-definite program:

maximize r

subject to (14),P� rI,PT = P,
p−1∧

i=0

(λi > 0)

Thus, this function can be evaluated for a given input τ simply by solving the above semi-
definite program. f is then sampled for some equally spaced values in the interval (τmin,1]
and the resulting matrix P linked to the maximum r is kept.

Example 13 With the following matrices A and B of the running example:

A :=




0.9379 −0.0381 −0.0414
−0.0404 0.968 −0.0179
0.0142 −0.0197 0.9823


 B :=




0.0237
0.0143
0.0077


 ,

eight steps of binary search gave τmin = 0.98046875 in Example 12. Then the function f
is computed for a dozen of values between τmin and 1 as displayed on Figure 12 and the
following matrix P is selected, corresponding to τ = 0.9837:

P =




5.6309 −3.9553 −0.9322
−3.9553 9.9229 1.5347
−0.9322 1.5347 3.5184


 .

The quadratic template xT Px can then be used by policy iterations as seen in examples of
Section 4.

From a control flow graph, matrices A and B are extracted by looking, along each edge,
at the strongly connected components of the relation “variable x linearly depends on variable
y”. Templates are then generated as above for these matrices. This is a pure heuristic since
existence of templates for such subsystems does not mean that they will allow to bound the
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1 2

0 ≤ x1 ≤ 1
0 ≤ x2 ≤ 1 x1 := x1 +0.01x2

x2 :=−0.01x1 +0.99x2

Fig. 13: Control flow graph for an harmonic oscillator [1,20,21].

whole system, not even that it is stable. However, this is a reasonable choice since actual
systems are usually designed around a pure linear core.

Finally, as seen in the running example (c.f., Example 1, page 5), we add templates x2

for each variable modified by the program. In the literature [1,20,21], templates x and −x
are often used. Since results are usually symmetrical in our context (i.e. the same bound b
is obtained for both templates: x ≤ b and −x ≤ b), templates x2 yield the same result (i.e.
x2 ≤ b2) making use of two times less templates for policy iteration11, hence saving on
computation costs.

6 Initializing Policy Iterations

This section deals with policy iterations and initial values of the analyzed program, an im-
portant point in order to get a fully automatic implementation of policy iterations. This rather
technical issue is not essential, though, for the understanding of the remainder of this article.

According to the seminal papers on policy iteration with quadratic templates [1,20,21],
the control flow graph of Figure 13 should give the following system of equations for the
templates t1 :=−x1, t2 := x1, t3 :=−x2, t4 := x2 and t5 := 2x2

1 +3x2
2 +2x1x2:





b2,1 = 0t max{r(t1) | be(2)}
b2,2 = 1t max{r(t2) | be(2)}
b2,3 = 0t max{r(t3) | be(2)}
b2,4 = 1t max{r(t4) | be(2)}
b2,5 = 7t max{r(t5) | be(2)}

where be(i) denotes (t1 ≤ bi,1)∧ (t2 ≤ bi,2)∧ (t3 ≤ bi,3)∧ (t4 ≤ bi,4)∧ (t5 ≤ bi,5) and r(t) is
the template t in which variable x1 is replaced by x1 +0.01x2 and variable x2 is replaced by
−0.01x1+0.99x2. This translation is not straightforward. In particular, it is unclear how the
numerical values 0, 1 and 7 should be computed12. It would be possible to compute them
using a SDP solver but an easy and not much more expensive solution is to use the process
described in Section 4.2 which automatically gives the system of equations





b1,1 = +∞ b1,2 =+∞ b1,3 =+∞ b1,4 =+∞ b1,5 =+∞
b2,1 = max{t1 | 0≤ x1 ≤ 1∧0≤ x2 ≤ 1∧be(1)} t max{r(t1) | be(2)}
b2,2 = max{t2 | 0≤ x1 ≤ 1∧0≤ x2 ≤ 1∧be(1)} t max{r(t2) | be(2)}
b2,3 = max{t3 | 0≤ x1 ≤ 1∧0≤ x2 ≤ 1∧be(1)} t max{r(t3) | be(2)}
b2,4 = max{t4 | 0≤ x1 ≤ 1∧0≤ x2 ≤ 1∧be(1)} t max{r(t4) | be(2)}
b2,5 = max{t5 | 0≤ x1 ≤ 1∧0≤ x2 ≤ 1∧be(1)} t max{r(t5) | be(2)}.

This system of equations is essentially the same than the previous one, except that the com-
putation of the values 0, 1 and 7 is now delegated to policy iteration itself.

11 Moreover, x2 being an homogeneous degree two polynomial is easier to express in semi-definite pro-
grams than linear constraints which would require an extra dimension to encode linear terms.

12 Although they are clearly the maximal values of each template under constraint 0≤ x1 ≤ 1∧0≤ x2 ≤ 1.
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−x2 +4x+5

λ1(x−1)

λ2(3− x) λ1(x−1)+λ2(3− x)

−1 1 3 5
x

−x2 +4x+5

λ
(
1− (x−2)2)

−1 1 3 5
x

Fig. 14: Relaxation of interval constraints.

The above transformation introduced computation of optimal values under linear con-
straints (0≤ x1≤ 1, for instance). Unfortunately, the relaxation offered in the policy iteration
literature [1,20,21] does not enable to compute such values. The remainder of this section
exemplifies the problem and offers an efficient workaround.

We have seen that implications are handled thanks to a Lagrangian relaxation (Theo-
rem 1, page 8). This relaxation is not always exact, in particular with a quadratic objective
f and two linear constraints g1 and g2.

Example 14 We want to apply a relaxation on x ∈ [1,3]⇒ −x2 + 4x+ 5 ≥ 0, that is (2),
page 8, with f := x 7→ −x2 +4x+5, g1 := x 7→ x−1 and g2 := 3− x. Formula (1), page 8,
then boils down to: ∀x,−x2 +(4−λ1 +λ2)x+(5+λ1− 3λ2) ≥ 0. Unfortunately, not any
non negative λ1,λ2 ∈ R satisfy this13. This is depicted on left of Figure 14.

This case is commonly encountered in practice, for instance with initial values of a
program living in some range (such as 0 ≤ x1 ≤ 1 on Figure 13) or with inputs bounded
by an interval (c.f., −1 ≤ in ≤ 1 on Figure 9). Replacing the two linear constraints by an
equivalent quadratic one constitutes an efficient workaround, i.e., any constraint b≤ aT x≤ c
is translated into

(
aT x− b+c

2

)2 ≤
( c−b

2

)2
.

Example 15 When constraints x− 1 ≥ 0 and 3− x ≥ 0 are replaced by the equivalent 1−
(x−2)2 ≥ 0, relaxation works just fine (with relaxation coefficient λ = 2 for instance). This
is depicted on right of Figure 14.

7 Floating-Point Issues

Two fundamentally different issues arise with floating-point arithmetic:

The analysis itself is carried out with floating-point computations for the sake of efficiency,
this usually works well in practice but might give erroneous results, hence the need for
some a-posteriori validation, see Section 7.1 for further details;

The analyzed system uses floating-point arithmetic with rounding errors, making it behave
differently from the way it would using real arithmetic, this is discussed in Section 7.2.

13 For, denoting p the previous degree two polynomial, lim
x→∞

p(x) =−∞, whatever the values of λ1 and λ2.
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7.1 Floating-Point Arithmetic in the Analyzer

For the sake of efficiency, the semi-definite programming solvers we use perform all their
computations on floating-point numbers and do not offer any strict soundness guarantee on
their results. To address this issue, we adopt the following strategy:

– first perform policy iterations with unsound solvers, just padding the equations to hope-
fully get a correct result;

– then check the soundness of previous result.

Padding the Equations means for min-policies multiplying each temporary result bi by
(1+ ε) for some small ε . For max-policies, all equations max{p | q≤ c} are basically re-
placed by max{(1+ ε)p | q≤ (1+ ε)c}. In practice, a value of 10−4 for ε appears to be a
good choice. The induced loss of accuracy on the final result is considered acceptable since
bounds finally computed by our analysis are usually found to be at least a few percent larger
than the actual maximal values reachable by the program. In case the following check fails,
each bound can be multiplied by (1+ ε ′) with ε ′ > ε (for instance ε ′ = 10−3 or ε ′ = 10−2)
and the check can be run again. This often enables to retrieve a correct result at the cost of
a, relatively cheap, additional check.

Checking Soundness of the Result Policy iterations return a vector of values (bi, j) ∈ Rnp

(where n is the number of templates and p the number of vertices in the control flow graph)
expected to be an overapproximation for a solution of the system of equations introduced
in Section 4.2. Since this result was computed using floating-point arithmetic, we have to
check it.

This amounts to checking that for each equation (i.e., for each vertex v′ ∈ J1, pK and
each template t j), the following inequality holds

bv′, j ≥
⊔

v∈J1,pK

max



r(t j)

∣∣∣∣∣∣
e≤ c∧

∧

j′
(t j′ ≤ bv, j′)



 (15)

where e ≤ c and r are respectively the constraint14 and the assignments associated to the
edge between v and v′. This can be rewritten

bv′, j ≥
⊔

v∈J1,pK

max





[
x
1

]T

RT
r Pt j Rr

[
x
1

]
∣∣∣∣∣∣∣∣∣∣

[
x
1

]T

Pe

[
x
1

]
≤ c∧

∧

j′∈J1,nK

[
x
1

]T

Pt j′

[
x
1

]
≤ bv, j′





(16)

by denoting Rr the matrix implementing the linear assignments r (i.e., for all x, Rr
[
xT ,1

]T
=[

x′T ,1
]T where x′ is the result of assignments r on x) and Pt the one expressing the quadratic

template t (i.e., unfolding
[
xT ,1

]
Pt
[
xT ,1

]T gives t). Thus, we have to check that for all
v,v′ ∈ J1, pK and all t j:

∀x,



[

x
1

]T

Pe

[
x
1

]
≤ c ∧

∧

j′∈J1,nK

[
x
1

]T

Pt j′

[
x
1

]
≤ bv, j′


⇒

[
x
1

]T

RT
r Pt j Rr

[
x
1

]
≤ bv′, j.

14 Only one constraint here for ease of exposition. Everything works the same with multiple constraints.
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We can restrict ourselves to the case where all c and b lie in R since constraints of the form
.≤+∞ can just be ignored and constraints .≤−∞ make the implication trivially true.

According to Theorem 1, it is enough to prove the existence of τ and λ j′ all non negative
such that

([
0 0
0 bv′, j

]
−RT

r Pt j Rr

)
− τ
([

0 0
0 c

]
−Pe

)
− ∑

j′∈J1,nK
λ j′

([
0 0
0 bv, j′

]
−Pt j′

)
� 0. (17)

Such τ and λ j′ can be computed (as floating-point values) using a SDP solver. Then, the
matrix in previous inequality can be computed exactly using rational numbers (or it could
be approximated using cheaper floating-point interval arithmetic) and it remains to check its
positive definiteness.

This can be done by carefully bounding the rounding error on a floating point Cholesky
decomposition [39]15 as detailed in the following paragraph. Proof of positive definiteness
of an n× n matrix can then be achieved with O

(
n3
)

floating point operations, which in
practice induces only a very small overhead to the whole analysis.

Positive Definiteness Check According to Section 3.4, a Cholesky decomposition can be
used to prove that a matrix M is positive definite. However, performing it with floating-point
arithmetic, it could run to completion while M 6� 0, due to rounding errors. But rounding
errors remain bounded, so that there exists an e ∈R such that, if the floating-point Cholesky
decomposition of M succeeds, then M + eId � 0. The successful floating-point Cholesky
decomposition of M− eId is then a sufficient condition for M � 0. Moreover, such an e
can be easily computed from simple characteristics of M and the floating-point arithmetic
format used, as stated by the following theorem.

Remark 8 (Alternative to the floating-point Cholesky decomposition) When coefficients of
M are rational, a slightly modified Cholesky decomposition can compute matrices M′ and
D with rational coefficients such that M = M′T DM′ and D is diagonal with non negative
coefficients. This would be much simpler, hence easier to trust, than the following non trivial
theorem. However, rational arithmetic is more expensive than floating-point arithmetic.16

Theorem 4 ([39, Corollary 2.7]) Given eps the precision of the floating point format F
used, eta its precision in case of underflows and M ∈ Rn×n, if 4(n+ 1)eps < 1, if MT =
M, if there exist md , ε ∈ R and M̃ ∈ Fn,n such that for all i, 0 ≤ Mi,i ≤ md , for all i 6= j,∣∣∣M̃i, j−Mi, j

∣∣∣ ≤ ε and for all i, M̃i,i ≤Mi,i− (n+1)eps
1−2(n+1)eps tr(M)−4n(2(n+1)+md)eta−nε ,

if the floating-point Cholesky decomposition (c.f., Section 3.4) of M̃ succeeds then M � 0.

eps and eta are very small constants defined by the floating-point format in use. For
instance, eps = 2−53(' 10−16) and eta = 2−1075(' 10−323) for the IEE754 binary64 for-
mat [29]17. Pen and paper proofs of this kind of results being particularly tedious hence error
prone, we mechanically checked it with a proof assistant (Coq [8]). Our development (4.3
kloc of Coq) is available at http://cavale.enseeiht.fr/practicalpolicy2014/ and
based on the Flocq library [3] for the formal definition of floating-point arithmetic.

15 Thanks to Timothy WANG for pointing this to us.
16 Although, in our case, this positive definiteness check only accounts for a very small part of the total

analysis time. Thus, the eventual overhead would remain limited.
17 Usual implementation of type double in C.

http://cavale.enseeiht.fr/practicalpolicy2014/
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Remark 9 (Matrices interval) The matrix M has coefficients in R whereas M̃ has coefficients
in F, since we actually compute its Cholesky decomposition, which prevents M = M̃. That’s

why Theorem 4 handles intervals of matrices
{

M
∣∣∣∣MT = M ∧ ∀i, j,

∣∣∣M̃−M
∣∣∣
i, j
≤ ε
}

. This

is particularly convenient, whether (17) is computed with rationals or approximated with
interval arithmetic.

Remark 10 Theorem 4 differs slightly from [39, Corollary 2.7] for two reasons. We only use
real and not complex numbers and minor issues (all pertaining with denormalized numbers)
had to be fixed when performing the Coq proof.

Remark 11 (Positive semi-definiteness) The criterion given in Theorem 4 is not complete.
In particular, it is only able to prove positive definiteness (M � 0) and not positive semi-
definiteness (M � 0) as in (17). This is not an actual issue thanks to the padding previously
performed.

Remark 12 Theorem 4 should be valid for any reasonable implementation of the Cholesky
decomposition. However, the Coq proof has been performed for the algorithm shown in
Figure 8, page 9 with sums performed from left to right. Furthermore, the proof considers
the binary64 format with normal and denormalized numbers, ignoring special values NaN
and ±∞ (although handling them should be relatively easy through a corollary of the cur-
rent theorem). Finally, only the algorithm, not its implementation, is proved. However, this
implementation is particularly straightforward compared to the non trivial result proved.

7.2 Floating-Point Arithmetic in the Analyzed Program

Until now, the analyzed program was considered as if it were executed with arithmetic oper-
ations in the real field R. Actual implementations will usually use floating-point arithmetic
instead. This induces rounding errors which have to be taken into account in our analysis.

Taking floating-point arithmetic into account, (15) becomes

bv′, j ≥
⊔

v∈J1,pK

max



fl(r)(t j)

∣∣∣∣∣∣
fl(e)≤ fl(c)∧

∧

j′
(t j′ ≤ bv, j′)



 (18)

since guards e ≤ c and assignments r are now performed in F. All the remaining of (15)
is kept unchanged since it only corresponds to mathematical expressions (in R) and not to
parts of the analyzed program (in F). Our goal is to derive slightly modified bounds c′ and
b′v′, j such that

b′v′, j ≥
⊔

v∈J1,pK

max



r(t j)

∣∣∣∣∣∣
e≤ c′∧

∧

j′
(t j′ ≤ bv, j′)





is a sufficient condition for the previous (18) to hold. These inequalities can then be checked
just as (15) in the previous Section 7.1.

Definition 1 F⊂R denotes the set of floating point values and fl(e)∈F represents the float-
ing point evaluation of expression e with any rounding mode and any order of evaluation18.

18 Order of evaluation matters since floating point addition is not associative.
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Example 16 The value fl(1+2+3) can be either round(1+ round(2+3)) or round(round(1+
2)+3) with round any valid rounding mode (toward +∞ or to nearest for instance).

We will first see how to handle the guards fl(e) ≤ fl(c) then the assignments fl(r)(t j).
That is, we will first derive c′ such that fl(e) ≤ fl(c) implies e ≤ c′ which guarantees that
max

{
fl(r)(t j)

∣∣ e≤ c′∧∧ j′(t j′ ≤ bv, j′)
}
≥max

{
fl(r)(t j)

∣∣ fl(e)≤ fl(c)∧∧ j′(t j′ ≤ bv, j′)
}

.
Then b′v′, j will be derived such that r(t j)≤ b′v′, j implies fl(r)(t j)≤ bv′, j.

Guards For all guards e ≤ c, the actually implemented guard is fl(e) ≤ fl(c) and there can
be values of program variables such that the later holds but not the former. Our goal is to
define a c′ ≥ c such that fl(e) ≤ fl(c) implies e ≤ c′. To that end, we will bound fl(e)− e,
the rounding error on e, and choose c′ ≥ fl(c)− (fl(e)− e). We will only consider the case
of linear guards aT x≤ c with a ∈Rn, c ∈R, x ∈ Fn. That is, we have to bound the rounding
error fl

(
aT x
)
−aT x on the dotproduct aT x.

Property 1 ([40]) eps is the precision of the floating point format F and eta its precision
in case of underflows. In particular, we have for all x,y ∈ F

∃δ ∈ R, |δ | ≤ eps∧fl(x+ y) = (1+δ )(x+ y)

and
∃δ ,η ∈ R, |δ | ≤ eps∧|η | ≤ eta∧fl(x× y) = (1+δ )(x× y)+η .

Remark 13 eps is the relative error pertaining with regular, called normal, numbers whereas
eta is the absolute error pertaining with very small number, close to 0, called denormalized
numbers. The addition and subtraction are exact for denormalized numbers.

Property 2 ([28, Lemma 3.3]) The values γn := neps
1−neps with n ∈ N have the following

property, particularly useful to accumulate relative error bounds: for all n ∈ N, assuming
(n+1)eps< 1

∀θn,∀δ ,(|θn| ≤ γn∧|δ | ≤ eps)⇒∃θn+1, |θn+1| ≤ γn+1∧ (1+θn)(1+δ ) = 1+θn+1.

The following corollary will also be used: for all n ∈ N, if neps< 1 then

∀δ1, . . . ,δn,(∀i, |δi| ≤ eps)⇒∃θn, |θn| ≤ γn∧
n

∏
i=1

(1+δi) = 1+θn

as well as the monotonicity of γ (for all n, n′, if n≤ n′ and n′ eps< 1 then γn ≤ γn′ ).

Theorem 5 Assuming 2(n+1)eps< 1, we have for all a ∈ Rn and x ∈ Fn

∣∣∣∣∣fl
(

n

∑
i=1

aixi

)
−

n

∑
i=1

aixi

∣∣∣∣∣≤ γn+1

n

∑
i=1
|aixi|+2

(
n+

n

∑
i=1
|xi|
)
eta.

To prove the previous theorem, we first need the following lemma.

Lemma 5 Assuming (n−1)eps < 1, for all x ∈ Fn, there exists θ ∈ Rn such that for all i,
|θi| ≤ γn−1 and

fl

(
n

∑
i=1

xi

)
=

n

∑
i=1

(1+θi)xi.
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Remark 14 Those are fairly classic notations and results [28,40].

Proof (Lemma 5) According to Definition 1, if the sum is computed from left to right, there
exists δn−1 ∈ R such that |δn−1| ≤ eps and

fl

(
n

∑
i=1

xi

)
= fl

(
fl

(
n−1

∑
i=1

xi

)
+ xn

)
= (1+δn−1)

(
fl

(
n−1

∑
i=1

xi

)
+ xn

)
.

Then, by an immediate induction, there exists δ ∈ Rn−1 such that for all i, |δi| ≤ eps and

fl

(
n

∑
i=1

xi

)
=

(
n−1

∏
j=1

(1+δ j)

)
x1 +

n

∑
i=2

((
n−1

∏
j=i−1

(1+δ j)

)
xi

)
.

According to Property 2, for all i, there exists θi ∈R such that |θi| ≤ γn−i+1 and ∏n−1
j=i−1(1+

δ j) = 1+θi, hence the result19.

Proof (Theorem 5) According to Lemma 5, there exists θ ∈Rn such that for all i, |θi| ≤ γn−1
and

fl

(
n

∑
i=1

aixi

)
=

n

∑
i=1

(1+θi)fl(aixi) .

Then, according to Definition 1, there exist δ ,η ∈ Rn such that for all i, |δi| ≤ eps, |ηi| ≤
eta and

fl

(
n

∑
i=1

aixi

)
=

n

∑
i=1

(1+θi)((1+δi)fl(ai)fl(xi)+ηi) .

Since xi ∈ F, fl(xi) = xi but ai ∈ R hence fl(ai) = (1 + δ ′i )ai + η ′i for some δ ′i ,η ′i ∈ R,
|δ ′i | ≤ eps and |η ′i | ≤ eta. Hence

fl

(
n

∑
i=1

aixi

)
=

n

∑
i=1

(1+θi)(1+δi)(1+δ ′i )aixi +(1+θi)(1+δi)η ′i xi +(1+θi)ηi.

According to Property 2, for all i, there exists θ ′i ∈ R such that |θ ′i | ≤ γn+1 and (1+θi)(1+
δi)(1+δ ′i ) = 1+θ ′i . Similarly, there exists θ ′′i ∈R such that |θ ′′i | ≤ γn and (1+θi)(1+δi) =
(1+θ ′′i ), which gives

fl

(
n

∑
i=1

aixi

)
=

n

∑
i=1

(
(1+θ ′i )aixi +(1+θ ′′i )η

′
i xi +(1+θi)ηi

)
.

Then

fl

(
n

∑
i=1

aixi

)
−

n

∑
i=1

aixi =
n

∑
i=1

θ ′i aixi +
n

∑
i=1

(
(1+θ ′′i )η

′
i xi +(1+θi)ηi

)
.

We can notice that
∣∣∣∣∣

n

∑
i=1

θ ′i aixi

∣∣∣∣∣≤
n

∑
i=1

∣∣θ ′i
∣∣ |aixi| ≤

n

∑
i=1

γn+1 |aixi|= γn+1

n

∑
i=1
|aixi|

19 A similar proof can be performed if the sum is not computed in this left-right order.
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and similarly
∣∣∣∣∣

n

∑
i=1

(
(1+θ ′′i )η

′
i xi +(1+θi)ηi

)
∣∣∣∣∣≤ 2

(
n+

n

∑
i=1
|xi|
)
eta

since |θ ′′i | ≤ γn ≤ 1 and |θi| ≤ γn−1 ≤ 1, which finally gives the result.

This theorem gives the desired property, for all c′≥ fl(c)+γn+1 |a|T|x|+2(n+‖x‖1)eta,
the inequality fl

(
aT x
)
≤ fl(c) implies aT x≤ c′. Since we used templates x2

i for each variable
xi of the analyzed program, we actually have a bound on ‖x‖1 and it is easy to compute such
an appropriate c′ (for instance with floating-point arithmetic and rounding toward +∞).

Assignments Things are a bit more involved than in the case of guards. We are now looking
for a b′v′, j ≤ bv′, j such that r(t j)≤ b′v′, j implies fl(r)(t j)≤ bv′, j, that is [x 1]RT

r Pt j Rr[x 1]T ≤
b′v′, j implies fl

(
[x 1]RT

r
)

Pt j fl
(
Rr[x 1]T

)
≤ bv′, j (where Rr and Pt are matrix encoding of the

assignment r and the template t as already used in (16)). The next theorem will guarantee
us that this property holds for any b′v′, j ≤

(√
bv′, j−

√
s‖e‖2

)2 with s ∈ R such that Pt j � s I

and ei := γn+2
∣∣Rri,.

∣∣ [|x|T 1]T + 2(n+2+‖x‖1)eta. Again, such a b′v, j is easy to compute
(with a SDP solver for s and rounding toward +∞ for e).

Theorem 6 Given matrices P,R ∈R(n+1)×(n+1), with 2(n+2)eps< 1, and scalars s,b ∈R
such that P is symmetric positive semi-definite (i.e., PT = P and P� 0) and P� s I, for any
x ∈ Fn, denoting ei := γn+2 |Ri,.| [ |x|T 1]T +2(n+2+‖x‖1)eta, if s‖e‖2

2 ≤ b and

[
x
1

]T

RT PR
[

x
1

]
≤
(√

b−√s‖e‖2

)2

then

fl

([
x
1

]T

RT

)
Pfl
(

R
[

x
1

])
≤ b

where Ri,. denotes the i-th line of the matrix R.

Proof Denoting y := R[x 1]T we have, thanks to Theorem 5, |fl(yi)− yi| ≤ ei, hence fl(y)i =
yi +δiei for some δi ∈ R such that |δi| ≤ 1. Thus, denoting D the diagonal matrix such that
for all i, Di,i = δi, we have

fl(y)T Pfl(y) = (y+De)T P(y+De) = yT Py+ eT DT PDe+2yT PDe.

Then, by the Cauchy-Schwarz inequality

fl(y)T Pfl(y)≤ yT Py+ eT DT PDe+2
√

yT Py
√

eT DT PDe

and since P� s I

fl(y)T Pfl(y)≤ yT Py+ s‖e‖2
2 +2

√
yT Py

√
s‖e‖2.

Hence the result, since yT Py≤
(√

b−√s‖e‖2

)2
.
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Fig. 15: Time (t in seconds) spent performing min (− signs) and max (+ signs) policy
iterations depending on the number v of variables in the analyzed program. Less + than
− in a column indicates a failure of max-policies on a benchmark. All computations were
performed on an Intel Core2 @ 2.66GHz.

Finally, if the following holds

b′v′, j ≥
⊔

v∈J1,pK

max





[
x
1

]T

RT
r Pt j Rr

[
x
1

]
∣∣∣∣∣∣∣∣∣∣

[
x
1

]T

Pe

[
x
1

]
≤ c′∧

∧

j′∈J1,nK

[
x
1

]T

Pt j′

[
x
1

]
≤ bv, j′





(19)

then (18) holds and we can now proceed as in Section 7.1 by just replacing (16) with the
above (19). The check should still succeed since the differences between the values in (16)
and (19) are orders of magnitude smaller than the accuracy the bv, j were initially computed
with using SDP solvers20.

Again, Theorems 5 and 6 are mechanically checked with a proof assistant (3.8 kloc
of Coq, among which 2.8 kloc are common with the aforementioned positive-definiteness
check proof).

Such use of abstract domains in the real field to soundly analyze floating-point compu-
tations is not new [32] and some techniques even allow to finely track rounding errors and
their origin in the analyzed program [24].
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8 Experimental Results

All the elements presented in this paper have been implemented as a new abstract do-
main in our static analyzer. Experiments were conducted on a set of stable linear sys-
tems. These systems were extracted from the literature [1,16,38,42]. The analyzer is re-
leased under GPL and available with all examples at http://cavale.enseeiht.fr/
practicalpolicy2014/.

Comparing Min- and Max-Policies As seen in Section 4, two methods exist to compute
invariants by policy iterations, namely min- and max-policies. Figure 15 compares analysis
times with min and max-policy iterations. In both cases, the number of iterations always
remained reasonable. For min-policies, the number of iterations performed lies between 3
and 7 when the stopping criterion is a relative progress below 10−4 between two consecu-
tive iterates. For max-policies, the number of iterations was between 4 and 7. As shown on
Figure 15, computation times for min and max-policies are comparable but the actual dif-
ference appear on the largest benchmarks for which max-policies where unable to produce
sound results while min-policies did21. Finally, it can be noticed that, when both methods
work, results obtained with min and max-policies are the same. However, due to numeri-
cal issues, min-policies often yield slightly more precise results. For all these reasons, min
policies were made the default in our tool.

Benchmarks Figure 15 only gave times for policy iterations. Total analysis times also in-
clude building the control flow graph and the equation system, computing appropriate tem-
plates and eventually checking the soundness of the result. Time needed for control flow
graph construction and soundness checking is very small compared to the time spent in pol-
icy iterations, whereas computing templates takes the same amount of magnitude in time
than min-policies iteration. All this is detailed in Table 2.

Finally, Table 3 details the bounds obtained for each benchmark and compares them
with the maximum reachable values of the programs. The padding ε = 10−4 was enough
in most cases. Only 4 of the 22 successful cases required a larger padding (ε ′ = 10−2 for
Ex. 3, Ex. 3 with reset and Ex. 6 with saturation and ε ′ = 10−1 for Ex. 3 with saturation).

9 Conclusion

In this paper we attempted to provided a complete, yet practical, use of policy iterations to
perform static analysis of programs. Policy iteration is shown to be a strong candidate to
support the computation of precise post-fixpoints when over-approximating the collecting
semantics of a program.

We presented the background of policy iterations and the rationals of its use, either using
min-policy decreasing iterations – a kind of smart narrowing, starting from a post-fixpoint –
or max-policies, performing increasing iterations. In both cases, bounds over template do-
mains are obtained relying on numerical solvers, at each step of the computation.

20 The relative difference between the bv′, j and the b′v′, j or the c and c′ never exceeded 10−10 in our exper-
iments (to be compared to the 10−4 padding previously applied).

21 This is explained by the fact that max-policies have to solve larger SDP problems, incurring more nu-
merical difficulties [21, Conclusion] (c.f., Remarks 4, page 14 and 6, page 16).

http://cavale.enseeiht.fr/practicalpolicy2014/
http://cavale.enseeiht.fr/practicalpolicy2014/
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n Total (s) Templates (s) Iterations (s) Check (s)

Ex. 1
From [16, slides]

3 0.12 0.05 0.03 0.01
3 0.16 0.05 0.06 0.02
4 0.50 0.15 0.22 ⊥ (0.01)

Ex. 2
From [16, slides]

5 0.33 0.16 0.06 0.02
5 0.44 0.15 0.10 0.04
6 0.77 0.15 0.28 0.12

Ex. 3
Discretized lead-lag
controller

3 0.20 0.07 0.10 0.02
3 0.32 0.07 0.18 0.03
4 0.68 0.07 0.43 0.08

Ex. 4
Linear quadratic gaussian
regulator

4 0.47 0.16 0.19 0.03
4 0.67 0.16 0.32 0.06
5 1.13 0.20 0.64 0.13

Ex. 5
Observer based controller
for a coupled mass system

6 0.96 0.46 0.16 0.06
6 1.25 0.47 0.33 0.11
7 2.28 0.45 0.85 0.26

Ex. 6
Butterworth low-pass filter

6 1.18 0.47 0.35 0.08
6 1.76 0.45 0.77 0.15
7 2.67 0.45 1.10 0.26

Ex. 7
Dampened oscillator from [1]

2 0.14 0.01 0.09 0.01
2 0.23 0.01 0.16 0.02
3 0.36 0.01 0.20 ⊥ (0.01)

Ex. 8
Harmonic oscillator from [1]

2 0.11 0.01 0.07 0.01
2 0.19 0.01 0.12 0.03
3 0.65 0.01 0.43 0.10

Table 2: Result of the experiments: quadratic invariants inference. For each of the eight ex-
amples, the first line is for the bare linear system, the second for the same system with an
added reset and the third with a saturation. Column n gives the number of program vari-
ables considered for policy iteration while column ’Total’ gives the time spent for the whole
analysis. The remaining columns detail the computation time: ’Templates’ corresponds to
the quadratic template computation, ’Iterations’ to the actual policy iterations and ’Check’
to the soundness checking. ⊥ indicates failure of the soundness checking (in both cases
because the template generation heuristic failed to generate an appropriate template).

We supported the use of policy iteration, as a way to replace the widening operator
when it is ineffective, by addressing key points required by the technique and often left
unaddressed by former works:

– the automatic computation of templates;
– handling the floating point semantics of the analyzed program;
– guaranteeing the soundness of the computation despite the possible errors of the numer-

ical solvers used.

We believe our contribution could support a wider use of policy iterations within the
abstract interpretation framework and more generally the static analysis of programs. The
setting in which the current work is performed is specific: the analysis of control software,
focusing on quadratic templates and using SDP solvers as optimization solvers; but it is a
first step towards more extensions and a wider applicability:

– more complex templates, e.g., disjunction of quadratic forms or polynomials (for in-
stance thanks to sum-of-squares (SOS) relaxations);

– wider class of programs analyzable precisely, e.g., complex discrete versions of con-
trolled systems including the system (also known as plant) behavior.
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max |λi| Bounds Reachable

Ex. 1 0.837
15.98,15.98 14.84,14.84
15.98,15.98 14.84,14.84
+∞,+∞ 12.31,12.31

Ex. 2 0.837
1.65,1.65,1.00,1.00 1.42,1.42,1.00,1.00
1.65,1.65,1.00,1.00 1.42,1.42,1.00,1.00
2.20,0.50,1.00,1.00 1.04,0.50,1.00,1.00

Ex. 3 0.999
4.03,20.41 3.97,20.00
4.03,20.41 3.97,20.00
4.14,21.41 2.04,1.68

Ex. 4 0.989
0.43,0.35,0.54 0.38,0.26,0.48
1.03,1.01,1.47 1.00,1.00,1.00
0.45,0.37,0.56 0.19,0.11,0.17

Ex. 5 0.840
4.60,4.74,4.34,4.38 2.79,2.73,3.50,3.30
4.60,4.74,4.34,4.38 2.79,2.73,3.50,3.30
3.58,7.04,5.54,6.17 1.28,1.69,3.31,2.87

Ex. 6 0.804
1.42,1.10,1.75,1.82,2.57 1.42,0.91,1.44,1.52,2.14
1.42,1.76,2.63,3.14,4.45 1.42,0.91,1.44,1.52,2.14
1.03,1.37,1.99,2.95,4.02 1.03,0.65,0.77,0.88,1.16

Ex. 7 0.995
1.74,1.74 1.29,1.00
1.74,1.74 1.29,1.00
+∞,+∞ 1.00,1.00

Ex. 8 0.955
1.27,1.27 1.10,1.00
1.27,1.27 1.10,1.00
1.00,1.01 1.00,0.99

Table 3: Result of the experiments: quadratic invariants inference. The examples are the
same than in Table 2. Column ’Bounds’ gives the bounds on absolute values of each vari-
ables inferred and proved by the tool whereas column ’Reachable’ gives underapproxima-
tions of the maximum reachable values (obtained by random simulation) for comparison
purpose. max |λi| is the maximum of modules of eigenvalues of the linear application con-
sidered, which gives an idea of ’how contractive’ the linear application is.

Another important aspect of the approach is the capability to express and analyze more
complex behaviors than just the boundedness of the considered system. The synthesized
templates, even if constrained by a bound, could express high level behavior of the program.
In our setting of controllers, these templates can be used to encode stability, robustness
or performance properties, leading to a broader impact of static analysis when applied to
critical software and systems.
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