
Closed Loop Analysis
of Control Command Software∗

Pierre Roux
ONERA/ISAE

Toulouse, FRANCE
pierre.roux@onera.fr

Romain Jobredeaux
Georgia Tech

Atlanta, Georgia, USA
jobredeaux@gatech.edu

Pierre-Loïc Garoche
ONERA

Toulouse, FRANCE
pierre-

loic.garoche@onera.fr

ABSTRACT
Recent work addressing the stability analysis of controllers
at code level has been mainly focused on the controller alone.
However, most of the properties of interest of control software
lie in how they interact with their environment. We introduce
an extension of the analysis framework to reason on the
stability of closed loop systems, i.e., controllers along with a
model of their physical environment, the plant. The proposed
approach focuses on the closed loop stability of discrete linear
control systems with saturations, interacting with a discrete
linear plant. The analysis is performed in the state space
domain using Lyapunov-based quadratic invariants. We
specifically address the automatic synthesis of such invariants
and the treatment of floating-point imprecision.

1. INTRODUCTION
While control theorists are familiar with the notion of

open and closed-loop stability and have developed various
means to study it – e.g. Routh-Hurwitz criterion, Root-
Locus or Nyquist stability criteria –, its evaluation or formal
verification at code or system level remains an open question.

At the computer science level, these control level properties
are rarely known and hard to express or evaluate in the latest
stages of system development. In other words, these mean-
ingful requirements of the system tend to disappear when
defining the software requirements. This absence precludes a
precise analysis of the interaction between the real arithmetic
equations characterizing the dynamic of the plant and the
actual implementation of the controller in a computer, with
all its associated limitations: bounded memory, real time
issues, floating point computations, etc.

Addressing these questions, i.e., evaluating control level
properties at code level, would allow for a clearer under-

∗This work has been partially supported by the fol-
lowing grants: ANR-INSE-2012-CAFEIN, NSF CrAVES
(1135955), ARO MURI W911NF-11-1-0046, and NSF SOR-
TIES (1446758).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
HSCC’15,
Copyright 2015 ACM ...$15.00.

standing of the behavior of the final system and could avoid
detecting issues too late in the development process.

In this paper we adopted the usual approach of control
theorists while performing static analysis: our input is a
linear and discrete model of the controlled system, or plant,
and a linear controller as typically defined in Matlab Simulink
or Esterel Scade. This controller represents the actual code
that will be compiled and embedded in the final product.
We focus here on the closed-loop stability of this system:
the plant (described with real arithmetic) + the controller
(described with floating point arithmetic).

An interesting outcome of this kind of analyses is the
possibility to exhaustively evaluate control-level properties,
as usually evaluated through simulation on hybrid systems. It
also enables the study of these properties over more complex
systems that embed the controller and its safety architecture,
including redundancy, voters, data consolidation, etc. To
the authors’ knowledge no existing approach is yet able to
perform a formal and exhaustive analysis of these control
level properties, such as stability, over a complete system.

Stability as considered in control theory can be expressed
in different manners. In the so-called temporal domain, it
amounts to guarantee a BIBO property: Bounded Input,
Bounded Output, i.e., assuming a bounded command, the
system starting in a stable position (typically 0) should
remain in a bounded set of states. A common approach to
address these issues is to rely on the theory of Lyapunov
functions, characterizing both variants and invariants, as
sublevel sets of the functions.

We propose to extend previous work focused on static
analysis of open-loop stable controllers to closed-loop sys-
tems. The main difficulty faced is the addition of saturations
between the plant and the controller. Without those satura-
tions, closed loop analysis would just amount to open loop
analysis of a compound system of controller and plant.

We perform the analysis by first characterizing an invari-
ant – the Lyapunov function – over the global system as a
quadratic template; then we compute bounds on this tem-
plate, using a method called policy iterations. This allows
us to bound the set of reachable states of the system. Our
analysis also ensures that floating point computations won’t
break the stability property computed and the related theo-
rems are formalized within a proof assistant (Coq) to ensure
the required confidence.

Related work.
Few analyses address this issue of closed-loop stability in

settings comparable to ours.

At control level, this property is historically the earliest
considered. Lots of techniques address it through different
means, we refer the interested (computer scientist) reader
to an introductory lecture on control theory [12]. In control
theory, two main approaches exist to analyze systems. Either
the temporal domain, mentionned above, or the frequency
domain, more commonly used. In the frequency domain,
stability is usually analyzed by studying the pole placement
of the transfer function, either on the Laplace transform of
the signal (negative-real part), or on its Z-transform (within
the unit circle). In both cases, the system has to be fully
linearized (ie removing saturation around the linearization
point) and the analysis assumes a real semantics, without
considering floating points computations.

Even in the temporal domains analyses, as computed by
control theorists, the effect of floating point computations
performed at the controller level and those potentially done
during the analysis itself are typically forgotten.

Lyapunov functions rely on a temporal-domain expression
of the system. Basically a Lyapunov function expresses a
notion of energy that is shown to (strictly) decrease along
the evolution of the system. In computer science terms, they
act as both a loop invariant – when they are loose – and a
variant – when they are strict. In 2010, Féron [6] proposed
to annotate the closed-loop system with Lyapunov based
Hoare triples in order to express closed-loop stability at code
level. Since then, open-loop stability has been verified at
code level, either by proving these Lyapunov annotations [9,
26] or by automatically synthesizing them [20, 21].

On the static analysis side, few existing analyses are able to
express the simple property of stability. Most of the existing
abstract domains, used to compute an over-approximation of
reachable states, rely on linear approximations. Some classes
of non linear domains have been introduced specifically to
analyze control software, e.g., second order linear filters [5].
Another static analysis approach named policy iteration,
see [8] for a global survey, allows to manipulate quadratic
properties using semi-definite programming (SDP) numerical
solvers [25]. However, an appropriate quadratic template
must be provided, and is usually not computed in a tool but
rather as a set of scripts in Matlab. In [20], we presented our
approach to perform those policy iterations in an automatic
manner using the template synthesis of [21]; our analysis
is implemented and can be applied on any linear controller.
However it was only applicable on globally stable systems
while the method proposed in this paper is more suited to
deal with saturated systems.

Finally a last line of work has to be mentioned: the vast
set of work focusing on hybrid systems [14, 16, 17, 18, 23].
It is difficult to summarize in a few words those analyses.
We could however say that usually (1) they address systems
of a somewhat different nature with a central continuous
behavior described by differential equations and few discrete
events (for instance a bouncing ball or an overflowing water
tank) whereas controllers perform discrete transitions on a
periodical basis, and (2) they focus on bounded time prop-
erties rather than invariant generation. These two points
can be major obstacles to the adaptation of very interesting
techniques to our setting.

For instance, although bounded time analyses do not pro-
vide invariants, they enable the use of techniques directly
analyzing the continuous plant, such as guaranteed integra-
tion [2]. This avoids discretizing the plant, as done in this

m 1kg

1N/m

y

Controller

u

yd

Figure 1: Motivating example: a spring-mass
damper

paper, which can introduce additional conservatism in the
analysis.

Outline.
The paper is structured as follows. Section 2 presents the

running example, inspired from [6]. Section 3 gives the global
approach of our analysis. It performs a static analysis of the
closed-loop system by computing an over-approximation of
all reachable states. It relies on a policy iteration algorithm
parametrized by an appropriate quadratic template. In this
first setting, we assume the quadratic template given as well
as real arithmetic computation.

Then Section 4 offers ways to automatically compute a
quadratic template for closed-loop stable linear systems with
saturations.

Finally, the last sections address technical issues when
analyzing automatically a closed-loop system and how to
solve them: removing linear redundancy from the closed-loop
system in Sections 5 and taking floating point computations
into account in Section 6.

2. MOTIVATING EXAMPLE
We reuse the running example of [6, 7] and achieve an

automatic closed-loop stability analysis of this system. This
dynamical system is composed of a single mass and a single
spring. The control is performed by a lead-lag controller
obtained through classical control recipes where the input is
defined as the saturation in the interval [−1, 1] of y− yd with
y the measure of the mass position and |yd| ≤ 0.5 a bounded
command.

Both controller and plant have been discretized at an
execution rate of 100Hz.

The plant is described by a linear system over the state
variables p = [xp1 xp2]T ∈ R2, characterized by the matrices
AP ∈ R2×2, BP ∈ R1×2 and CP ∈ R2×1 where u denotes the
actuator command of the plant and y the projection of the
plant state p over the y sensor:

pk+1 = AP pk +BPuk
yk+1 = CP pk+1

(1)

with

AP :=

[
1 0.01

−0.01 1

]
BP :=

[
0.00005

0.01

]
CP :=

[
1 0

]

The controller without saturation is similarly described by
a linear system over the state variables c = [xc1 xc2]T ∈ R2,
controlled by both the feedback from the plant sensors y ∈
Rdy and the user command yd ∈ R, and parametrized by the
four real matrices AC ∈ R2×2, BC ∈ R1×2, CC ∈ R2×1 and
DC ∈ R:

ck+1 = ACck +BC(yk − yd,k)
uk+1 = CCck+1 +DC(yk+1 − yd,k+1)

(2)

with

AC :=

[
0.4990 −0.05
0.01 1

]
BC :=

[
1
0

]
CC :=

[
564.48 0

]
DC := −1280

These numerical values have been obtained by control theo-
rists applying any of their classical control recipes.

The resulting closed-loop system is defined by considering
Equations (1) and (2) at once. It can be expressed over the
state space x := [c p]T as

xk+1 = Axk +Byd,k (3)

with

A :=

[
AC BcCP

BPCC AP +BPDCCP

]

=

0.499 −0.05 1 0
0.01 1 0 0

0.028224 0 0.936 0.01
5.6448 0 −12.81 1

B :=

[
−BC
−BPDC

]
=

−1
0

0.064
12.8

Or, with the saturation over (y − yd):

xk+1 = Axk +B SAT(Cxk − yd,k) (4)

where

A :=

[
AC 0

BPCC AP

]
=

0.499 −0.05 0 0
0.01 1 0 0

0.028224 0 1 0.01
5.6448 0 −0.01 1

B :=

[
BC

BPDC

]
=

1
0

−0.064
−12.8

 C :=

[
0
CP

]T
=

0
0
1
0

T

and SAT is defined as

SAT(x) =

 −1 if x < −1
x if − 1 ≤ x ≤ 1
1 if x > 1

The closed-loop stability will be expressed as a BIBO
property: given a bound on the input yd, find a bound on
the vector x.

3. COMPUTING QUADRATIC INVARIANTS
FROM GIVEN TEMPLATES

xc1 = xc2 = xp1 = xp2 = 0;
while (1) {

yd = acquire_input();
assert(yd >= -0.5 && yd <= 0.5);
oxc1 = xc1; oxc2 = xc2; oxp1 = xp1; oxp2 = xp2;
xc1 = 0.499 * oxc1 - 0.05 * oxc2 + (oxp1 - yd);
xc2 = 0.01 * oxc1 + oxc2;
xp1 = 0.028224 * oxc1 + oxp1 + 0.01 * oxp2

- 0.064 * (oxp1 - yd);
xp2 = 5.6448 * oxc1 - 0.01 * oxp1 + oxp2

- 12.8 * (oxp1 - yd);
wait_next_clock_tick();

}

Figure 2: Analyzed code for the closed loop system.

3.1 Without Saturation
An ideal system is first considered in this section. Thus,

an already discretized model of the plant is considered, the
controller is purely linear, without any saturation, and its
computations are assumed to be performed in the real field
R. Moreover, we assume a quadratic Lyapunov function
for the closed loop system is already known. Most of these
limitations will be alleviated, one by one, in further sections
of the paper.

Figure 2 displays the analyzed code for the closed loop
system described in the previous section. From such a code,
our analyzer extracts the control flow graph of Figure 3.

remark 1. This corresponds to the system presented in
Equation (3) with the input yd bounded by 0.5 (|yd,k| ≤ 0.5
for all k).

From this control flow graph and a set of expressions
ti on program variables, called templates, policy iterations
techniques [8] can compute, for each graph vertex, bounds bi
such that

∧
i ti ≤ bi is an invariant. This is basically done by

reducing the problem to subproblems, called policies1, which
can be solved thanks to some numerical solver. For instance,
linear programming could be used with linear templates.
Focusing on quadratic templates, SDP [25] is used here.

Given the templates t1 := xTPx, t2 := x2c1, t3 := x2c2, t4 :=
x2
p1 and t5 := x2

p2 where x is the vector [xc1 xc2 xp1 xp2]T

and (rounded to four digits)

P :=

1.7776 1.3967 −0.6730 0.1399
1.3967 1.1163 −0.4877 0.1099
−0.6730 −0.4877 0.3496 −0.0529
0.1399 0.1099 −0.0529 0.0111

 ,
policy iterations compute the invariant

t1 ≤ 0.2302 ∧ t2 ≤ 51.0162 ∧ t3 ≤ 15.4720

∧ t4 ≤ 10.1973 ∧ t5 ≤ 1767.75

which implies

|xc1| ≤ 7.1426 ∧ |xc2| ≤ 3.9334 ∧ |xp1| ≤ 3.1933

∧ |xp2| ≤ 42.0446.

Our static analyzer took 1.28s to produce this result on an
Intel Core2 @ 1.2GHz.

1The word “strategies” is also used in the literature, with
equivalent meaning.

st 1

true ,

xc1 := 0
xc2 := 0
xp1 := 0
xp2 := 0

−0.5 ≤ yd ≤ 0.5 ,

xc1 := 0.499 xc1 − 0.05 xc2 + xp1 − yd

xc2 := 0.01 xc1 + xc2

xp1 := 0.028224 xc1 + xp1 + 0.01 xp2 − 0.064 (xp1 − yd)
xp2 := 5.6448 xc1 − 0.01 xp1 + xp2 − 12.8 (xp1 − yd)

Figure 3: Control flow graph for code of Figure 2.

remark 2. The actual maximal reachable values for xc1,
xc2, xp1 and xp2 are 2.0234, 0.0850, 0.7796 and 23.1525
respectively. The bounds above are then rather conservative.

3.2 With Saturation
Actual controllers usually contain saturations to bound

the values read from sensors or sent to actuators, in order
to ensure that these values remain in the operating ranges
of those devices. With such a saturation on its input, the
control flow graph of our running example changes to the
one shown in Figure 4.

remark 3. This corresponds to the system presented in
Equation (4) with the input yd bounded by 0.5 (|yd,k| ≤ 0.5
for all k).

Given the templates t1 := xTPx, t2 := x2c1, t3 := x2c2, t4 :=
x2
p1 and t5 := x2

p2 where x is the vector [xc1 xc2 xp1 xp2]T

and (rounded to four digits)

P :=

0.2445 0.3298 −0.0995 0.0197
0.3298 1.0000 −0.0672 0.0264
−0.0995 −0.0672 0.0890 −0.0075
0.0197 0.0264 −0.0075 0.0016

 ,
policy iterations compute the invariant

t1 ≤ 0.1754 ∧ t2 ≤ 6.1265 ∧ t3 ≤ 0.3505

∧ t4 ≤ 4.1586 ∧ t5 ≤ 1705.1748

which implies

|xc1| ≤ 2.4752 ∧ |xc2| ≤ 0.5921 ∧ |xp1| ≤ 2.0393∧
|xp2| ≤ 41.2938.

Our static analyzer took 1.39s to produce this result on an
Intel Core2 @ 1.2GHz.

4. COMPUTING SUITABLE QUADRATIC
TEMPLATES

In the previous section, a quadratic template P was re-
quired to perform the analysis. In order to get a fully auto-
matic analysis method, this section addresses the computa-
tion of such templates.

4.1 Without Saturation
Given a system with x0 = 0 and xk+1 = Axk +Byk with a

bounded input y (‖yk‖∞ ≤ 1 for all k), control theorist have
known for long that this system is stable (i.e., x remains
bounded) if and only if the Lyapunov equation2 [3, 13]

ATPA− P ≺ 0

admits a positive definite matrix P (i.e. for all x 6= 0,
xTPx > 0) as a solution.

2In which M ≺ 0 means that M is negative definite (i.e.,
−M is positive definite).

This equation can be numerically solved thanks to a SDP
solver [3, 25]. However, in practice, it has many solutions,
some dramatically worse than others (i.e., leading to much
less precise invariants). Fortunately enough, simple heuris-
tics [21] allow to easily compute good templates P (i.e., with
which policy iterations can compute small invariants). The
matrix P used in Section 3.1 was computed this way. Thus,
the analysis becomes completely automatic, since matrices
A and B, needed to compute P , can just be extracted from
the control flow graph of Figure 3. Our static analyzer took
0.76s to produce this template on an Intel Core2 @ 1.2GHz,
hence a fully automatic computation in a total of 2.19s.

4.2 With Saturation
The previous method does not readily apply for a system

with saturation such as the one of Section 3.2.
A first idea could be to try to generate, as previously

described, a quadratic template P for each edge of the control
flow graph of Figure 4. This approach sometimes proves
successful but fails on our running example. Indeed, only one
of the edges of the graph on Figure 4 leads to a template P
(for other edges, the Lyapunov equation has no solution) and
this template does not allow policy iterations to compute a
worthwhile invariant on the whole program.

Using common Lyapunov functions constitutes a second
idea. That is, looking for a solution to the conjunction of
Lyapunov equations for each edge. Again, this fails since
Lyapunov equations have no solution for some of the edges.
This is due to the fact that the closed-loop system is not
globally stable. Indeed, intuitively, when its input is satu-
rated, the controller is not able to stabilize any arbitrary
state of the plant.

The following two Sections 4.2.1 and 4.2.2 offer two alterna-
tive ways to generate a template xTP x such that xTP x ≤ r
is an invariant of the closed loop system with saturation for
some r. Both methods manage to produce such a template
but more investigations are needed to determine their relative
advantages and drawbacks.

4.2.1 Linearizing the Saturation
One solution in this case, strongly inspired from [6], pro-

vides a heuristic that can be used on systems with saturations,
such as the one described in equation (4). Indeed, let P be
a candidate matrix describing an invariant ellipsoid for the
system. We try to characterize P as closely as possible while
keeping the solving process tractable:

Assuming xTkPxk ≤ 1, a bound on |Cxk| is given by γ :=√
CP−1CT. Since |yd,k| ≤ 0.5, the constant γ̃ := γ+0.5 is an

upper bound on |Cxk−yd,k|. Letting yc,k := SAT(Cxk−yd,k),
we have the following sector bound:(

yc,k − 1

γ̃
(Cxk − yd,k)

)
(yc,k − (Cxk − yd,k)) ≤ 0. (5)

Figure 5 illustrates the reason for this inequality. With the

st 1

true ,

xc1 := 0
xc2 := 0
xp1 := 0
xp2 := 0

−0.5 ≤ yd ≤ 0.5
xp1 − yd > 1

,

xc1 := 0.499 xc1 − 0.05 xc2 + 1
xc2 := 0.01 xc1 + xc2

xp1 := 0.028224 xc1 + xp1 + 0.01 xp2 − 0.064 × 1
xp2 := 5.6448 xc1 − 0.01 xp1 + xp2 − 12.8 × 1

−0.5 ≤ yd ≤ 0.5
−1 ≤ xp1 − yd ≤ 1

,

xc1 := 0.499 xc1 − 0.05 xc2 + xp1 − yd

xc2 := 0.01 xc1 + xc2

xp1 := 0.028224 xc1 + xp1 + 0.01 xp2 − 0.064 (xp1 − yd)
xp2 := 5.6448 xc1 − 0.01 xp1 + xp2 − 12.8 (xp1 − yd)

−0.5 ≤ yd ≤ 0.5
xp1 − yd < −1

,

xc1 := 0.499 xc1 − 0.05 xc2 − 1
xc2 := 0.01 xc1 + xc2

xp1 := 0.028224 xc1 + xp1 + 0.01 xp2 − 0.064 × (−1)
xp2 := 5.6448 xc1 − 0.01 xp1 + xp2 − 12.8 × (−1)

Figure 4: Control flow graph for the system with a saturation.

Cx− yd

(Cx− yd)/γ̃

SAT(Cx− yd)

Cx− yd
1

−1

γ̃

−γ̃

Figure 5: Illustration of the sector bound relation-
ship. The equality yc = SAT(Cx−yd) (thick line) is ab-
stracted by the inequalities (Cx− yd)/γ̃ ≤ yc ≤ Cx− yd
(grey area).

added bound γ̃ on |Cxk − yd,k|, we see that yc,k necessarily
lies between Cxk − yd,k and 1

γ̃
(Cxk − yd,k). Then yc,k −

1
γ̃

(Cxk − yd,k) and yc,k − (Cxk − yd,k) must be of opposite
signs, hence the inequality.

We thus look for a matrix P such that
√
CP−1CT ≤ γ (6)

and(
xTkPxk ≤ 1 ∧ y2d,k ≤ 0.52 ∧ (5)

)
=⇒ xTk+1Pxk+1 ≤ 1.

(7)

Defining an extended state vector εk := [xk yc,k yd,k 1]T and
the matrices

U :=

ATPA ATPB 04×1 04×1

BTPA BTPB 0 0
01×4 0 0 0
01×4 0 0 −1

V :=

P 04×1 04×1 04×1

01×4 0 0 0
01×4 0 0 0
01×4 0 0 −1

 ,

W :=

2
γ̃
CTC −

(
1 + 1

γ̃

)
CT − 2

γ̃
CT 04×1

−
(

1 + 1
γ̃

)
C 2 1 + 1

γ̃
0

− 2
γ̃
C 1 + 1

γ̃
2
γ̃

0

01×4 0 0 0

 ,

Y :=

04×4 04×1 04×1 04×1

01×4 0 0 0
01×4 0 1 0
01×4 0 0 −0.52

 ,
we can rewrite equation (7) as(
εTk Vεk ≤ 0 ∧ εTkYεk ≤ 0 ∧ εTkWεk ≤ 0

)
=⇒ εTk Uεk ≤ 0.

Equation (7) can then be relaxed by S-procedure: it will hold
if there exists positive coefficients λ, µ, and ν, such that

U − λV − µW − νY � 0. (8)

Equation (6) can be rewritten using Schur complement:[
γ2 C
CT P

]
� 0. (9)

Note that for fixed λ and γ, equations (8) and (9) form a
Linear Matrix Inequality (LMI) in P , µ and ν, which means
it can be solved by an SDP solver. γ̃ = γ + 0.5 is expected
to be larger than 1 (otherwise the saturation would never be
activated), moreover since the saturation should somewhat
“bound” this value, we can expect it not to span over multiple
orders of magnitude. We also know that λ ∈ (0, 1) thanks
to the bottom right coefficient of the LMI (8) (since ν > 0).
One possible strategy is then to iterate on potential values of
λ and γ, and solving the corresponding LMI at each iteration.
If a solution exists, it will provide the invariant xTPx ≤ 1
for the system with saturation.

For our running example, we generated a suitable template
in 279s on an Intel Core2 @ 2.4GHz. Values for λ are chosen
by exploring (0, 1) with numbers of the form k

2i
for increasing

values of i ≥ 1, and k < 2i. For each choice of λ, the LMI is
solved with values of γ̃ ranging from 1 to 5 by increments
of .1. The solution is found for λ = 63

64
and γ̃ = 3.1, which

amounts to 2605 calls to the LMI solver.

4.2.2 First Abstracting the Disturbance
In the previous section, the method used was mainly based

on an abstraction of the saturation. This section exposes an

alternative method in which the disturbance yd, rather than
the saturation, is abstracted.

Let us first neglect the disturbance yd and look for a
Lyapunov function for the following system:

xk+1 =

 Axk −B if Cxk ≤ −0.5
(A+BC)xk if − 1.5 ≤ Cxk ≤ 1.5
Axk +B if Cxk ≥ 0.5

(10)

where A, B and C are the matrices given in (4).

remark 4. yd is abstracted in the sense that the term
(A+BC)x−Byd of (4) is replaced by (A+BC)x in (10).
Similarly, guards such as Cx − yd ≤ −1 are replaced by
Cx ≤ −0.5 (since |yd| ≤ 0.5).

remark 5. In case 0.5 ≤ ±Cxk ≤ 1.5, the system non
deterministically takes one of the two available transitions,
the transition taken by the actual system (4) being determined
by the value of the abstracted variable yd.

A quadratic Lyapunov function x 7→ xTPx for this system
must then satisfy xTk+1Pxk+1 ≤ xTk Pxk for all xk ∈ R4 and
all possible transitions from xk to xk+1. Hence for all x ∈ R4

Cx ≤ −0.5⇒ (Ax−B)TP (Ax−B) ≤ xTPx
−1.5 ≤ Cx ≤ 1.5⇒ ((A+BC)x)TP ((A+BC)x) ≤ xTPx
Cx ≥ 0.5⇒ (Ax+B)TP (Ax+B) ≤ xTPx.

It is worth noting that we can get rid of the first constraint
by a symmetry argument. Indeed, the first constraint holds
for some x if and only if the third one holds for −x. Similarly,
we can remove the left part of the implication in the second
constraint. Indeed, the right part of the implication holds
for some x if and only if it holds for αx and, for α small
enough, αx will satisfy the left part of the implication. Thus
x 7→ xTPx is a Lyapunov equation for (10) if and only if for
all x ∈ R4{

((A+BC)x)TP ((A+BC)x) ≤ xTPx
Cx ≥ 0.5⇒ (Ax+B)TP (Ax+B) ≤ xTPx. (11)

By defining the vector x′ := [xT 1]T , this can be rewritten{
xT (A+BC)TP (A+BC)x ≤ xTPx
[C 0]x′ ≥ 0.5⇒ x′T[A B]TP [A B]x′ ≤ x′T[I4 0]TP [I4 0]x′.

By a langrangian relaxation, this holds when there exists a
λ ≥ 0 such that P − (A+BC)TP (A+BC) � 0

[I4 0]TP [I4 0]− [A B]TP [A B]− λ
[

0 CT

C −1

]
� 0

where M � 0 means that the matrix M is positive semi-
definite (i.e., for all x, xTPx ≥ 0).

We eventually want the template xTP x to provide an
invariant for the original system with the disturbance yd.
For that purpose, we not only want (A+BC)TP (A+BC)
in the first inequality to be less than P but rather the least
possible, in order to leave some room to later reintroduce
yd. That is, we look for τmin, the least possible τ ∈ (0, 1)
satisfying

τP − (A+BC)TP (A+BC) � 0

for some positive definite matrix P . For any given value of
τ , this is a LMI and a SDP solver can be used to decide

whether a P satisfying it exists or not. Thus, τmin can be
efficiently approximated by a bisection search in the interval
(0, 1).

remark 6. τmin is also called minimum decay rate [28].

We are thus looking for a positive definite matrix P satis-
fying τminP − (A+BC)TP (A+BC) � 0

[I4 0]TP [I4 0]− [A B]TP [A B]− λ
[

0 CT

C −1

]
� 0.

This is a LMI and could then be fed to a SDP solver. Un-
fortunately, it has no solution. Indeed, A has eigenvalues
larger than 1 and taking x large enough can break the second
constraint in (11) for any value of P .

However, x is saturated when Cx ≥ 1.5 and it is then
reasonable to expect Cx not to go to far beyond this threshold.
We thus need to add a constraint Cx ≤ γ for some γ > 1.5, in
the hope that the generated invariant will eventually satisfy
it. This results in the following LMI{

τminP − (A+BC)TP (A+BC) � 0

[I4 0]TP [I4 0]− [A B]TP [A B]− λD � 0
(12)

where D := [C − 0.5]T [−C γ] + [−C γ]T [C − 0.5].
Finally, for a solution P of the above LMI, xTPx ≤ rmax

should be a good candidate invariant for the original system

(4), with rmax := γ2

CP−1CT the largest r such that xTPx ≤ r
implies Cx ≤ γ.

On our running example, 15 bisection search iterations first
enable to compute τmin = 0.9804 (rounded to four digits).
Then, the values 2, 3, 4,. . . are successively tried for γ in (12).
The LMI appears to have a solution for γ = 2 and γ = 3 but
not for γ = 4. The value of P obtained for the last succeeding
value of γ (γ = 3) is then kept as a template and fed to policy
iterations along with rmax = 0.26. All these computations
(bisection search for τmin, tests for γ and computation of
rmax) took 0.83s on an Intel Core2 @ 1.2GHz.

This matrix P is the one used in Section 3.2 in which it
had been seen that policy iterations were able to refine the
radius rmax = 0.26 down to 0.1754 and infer bounds for
each dimension. Despite the fact that the disturbance yd
was abstracted to generate P , it is worth noting that policy
iterations are performed on the complete system, with yd.

remark 7. Although quite heuristic, the choice for γ does
not seem that difficult since any value in the interval (2.40, 3.85)
would also have led to a good template.

5. REMOVING REDUNDANT VARIABLES
In previous sections, the analyzed closed loop system was

written as a single set of equations mixing the controller
and the model of the plant (c.f., code of Figures 2 and 4).
However, it would be a lot more convenient to clearly separate
the code of the controller (which is intended to be compiled
and executed on the actual device) and the model of the
plant (a model of the controlled physical system, part of the
specification but not intended to be compiled nor executed).
For our running example, this results in the control flow
graph of Figure 6.

Along the rightmost edge of this graph, the assignment
can be written xk+1 = Axk +Byd,k+1 where x denotes the

st 2

true ,

xc1 := 0
xc2 := 0
xp1 := 0
xp2 := 0
yc := 0
u := 0

−0.5 ≤ yd ≤ 0.5
x′
p1 − yd > 1

,

xc1 := 0.499 xc1 − 0.05 xc2 + yc

xc2 := 0.01 xc1 + xc2

xp1 := xp1 + 0.01 xp2 + 0.00005u
xp2 := −0.01 xp1 + xp2 + 0.01u
yc := 1
u := 281.67552 xc1 − 28.224 xc2 + 564.48 yc − 1280

−0.5 ≤ yd ≤ 0.5
−1 ≤ x′

p1 − yd ≤ 1
,

xc1 := 0.499 xc1 − 0.05 xc2 + yc

xc2 := 0.01 xc1 + xc2

xp1 := xp1 + 0.01 xp2 + 0.00005u
xp2 := −0.01 xp1 + xp2 + 0.01u
yc := xp1 + 0.01 xp2 + 0.00005u − yd

u := 281.67552 xc1 − 28.224 xc2 − 1280 xp1 − 12.8 xp2

+564.48 yc − 0.064u + 1280 yd

−0.5 ≤ yd ≤ 0.5
x′
p1 − yd < −1

,

xc1 := 0.499 xc1 − 0.05 xc2 + yc

xc2 := 0.01 xc1 + xc2

xp1 := xp1 + 0.01 xp2 + 0.00005u
xp2 := −0.01 xp1 + xp2 + 0.01u
yc := −1
u := 281.67552 xc1 − 28.224 xc2 + 564.48 yc + 1280

Figure 6: Control flow graph with extra variables (x′p1 denotes xp1 + 0.01xp2 + 0.00005u).

vector [xc1 xc2 xp1 xp2 yc u]T and

A :=

0.499 −0.05 0 0 1 0
0.01 1 0 0 0 0

0 0 1 0.01 0 0.00005
0 0 −0.01 1 0 0.01
0 0 1 0.01 0 0.00005

281.67552 −28.224 −1280 12.8 564.48 0.064

 ,

B :=

0
0
0
0
−1

1280

 .
(13)

Matrix A is noticeably singular (for instance, its fifth row
is equal to its third one) and we incur less precise or more
computationally expensive invariants at best, serious numeri-
cal troubles at worse, if we try to compute invariants from it
as described in Section 4. Thus, we first have to reduce the
number of variables from six to four (the rank of matrix A).

example 1. Considering the system defined by x0 = 0
and xk+1 = Axk +Byk+1 where x denotes the vector [u v]T

and

A :=

[
0.5 0.1
0.25 0.05

]
, B :=

[
0

4.5

]
,

it appears that vk+1 = 0.5uk+1 + 4.5 yk+1 for all k. Hence3

u0 = 0 and uk+1 = 0.55uk + 0.45 yk. Assuming that yk
is bounded by 1, this enables to prove that uk lies in the
interval (ellipsoid of dimension 1) [−1, 1] (hence vk remains
in [−5, 5]). In comparison, directly analyzing the two-variable
system with an ellipsoid of dimension 2 would lead to much
larger bounds as illustrated on Figure 7.

From edges of the control flow graph of Figure 6, matri-
ces such as the one of (13) can be extracted. From such

3Assuming y0 = 0, we have vk = 0.5uk + 4.5 yk for all k.

u

v

−1 1−5.1 5.1

Figure 7: Illustration of Example 1. The dark gray
parallelogram represents the invariant that can be
computed after eliminating the redundant variable
whereas the light gray ellipse is an invariant directly
computed on the two variables system (other choices
of ellipses are possible, we chose the one contained in
the smallest possible disc). The latter is noticeably
much larger than the former.

matrices, a Gaussian elimination implemented with ratio-
nal arithmetic allows to discover linear dependencies such
as yc,k+1 = xp1,k+1 − yd,k+1 and uk+1 = 564.48xc1,k+1 −
1280xp1,k+1 + 1280 yd,k+1 along the rightmost edge of Fig-
ure 6. Unfolding these dependencies finally leads to a control
flow graph without the redundant variables. For our running
example, we obtain the graph of Figure 4.

After this preprocessing, the analysis can proceed from
the freshly computed graph as in Sections 3 and 4.

remark 8. Removing redundant variables can also be seen
as the discovery and use of linear equality invariants. This
symbolic analysis is of particular interest for the following
numerical analysis not well suited to handle equalities.

6. FLOATING-POINT ROUNDING ERRORS
Two fundamentally different issues arise with floating-point

arithmetic:

The analysis itself is carried out with floating-point com-
putations for the sake of efficiency, this usually works
well in practice but might give erroneous results, hence
the need for some a-posteriori validation;

The analyzed system uses floating-point arithmetic with
rounding errors, making it behave differently from the
way it would using real arithmetic.

Proofs of the mathematical results used in this section
being rather painful and error prone, they were mechanically
checked using the proof assistant Coq [4] which gives us a very
high level of confidence in these results. Our development
(3.8 kloc of Coq) is available at http://cavale.enseeiht.

fr/formalbounds2014/ and based on the Flocq library [1]
for the formal definition of floating-point arithmetic.

6.1 Floating-Point Arithmetic in the Analyzer
For the sake of efficiency, the SDP solvers used perform

all their computations on floating-point numbers and do not
offer any strict soundness guarantee on their results. To
address this issue, we adopt the following strategy:

• first perform policy iterations with unsound solvers,
just padding the equations to hopefully get a correct
result;

• then check the soundness of previous result.

From a control flow graph and a set of templates tj , policy
iterations return a vector of values bv,j ∈ R such that, at each
vertex v of the control flow graph,

∧
j tj ≤ bv,j should be an

invariant. Since this result was computed using floating-point
arithmetic, we have to check it. This amounts to check that
for each edge from v to v′ in the control flow graph and for
each template tj , the following inequality holds

bv′,j ≥ max

r(tj)
∣∣∣∣∣∣ e ≤ c ∧

∧
j′

(tj′ ≤ bv,j′)

 (14)

where e ≤ c and r are respectively the constraint and the
assignments associated to the edge between v and v′. Infor-
mally, this inequalities mean that, if for all j the constraints
tj ≤ bj hold in vertex v, then they also hold in vertex v′.

This can be checked efficiently [19], although details are
outside the scope of this paper.

6.2 Floating-Point Arithmetic in the Analyzed
Program

Up to this point, all computations performed by the an-
alyzed code were assumed to be done in the real field R.
However, developers of control systems commonly resort to
floating-point numbers.

Floating-point arithmetic can potentially lead to far dif-
ferent results than the ones expected with real numbers [10,
15, 22], thus floating-point computations must be taken into
account in our analysis.

Definition 1. F ⊂ R denotes the set of floating-point val-
ues and fl(e) ∈ F represents the floating-point evaluation
of expression e with any rounding mode and any order of
evaluation4.

example 2. The value fl(1 + 2 + 3) can be either round(1+
round(2 + 3)) or round(round(1 + 2) + 3) with round any
valid rounding mode (toward +∞ or to nearest for instance).

Taking floating-point arithmetic into account, (14) be-
comes

bv′,j ≥ max

fl(r(tj))

∣∣∣∣∣∣ fl(e) ≤ fl(c) ∧
∧
j′

(tj′ ≤ bv,j′)

(15)

since guards e ≤ c and assignments r are now performed in
F. All the remaining of (14) is kept unchanged since it only
corresponds to mathematical expressions (in R) and not to
parts of the analyzed program (in F).

We will first see how to handle the guards fl(e) ≤ fl(c) then
the assignments fl(r(tj)). Our goal is to obtain a slightly
modified version of (14) to be able to proceed as in the
previous Section 6.1.

Guards.
For all guards e ≤ c, the actually implemented guard is

fl(e) ≤ fl(c) and there can be values of program variables
such that the later holds but not the former. Our goal is to
define a c′ ≥ c such that fl(e) ≤ fl(c) implies e ≤ c′. We will
only consider the case of linear guards aTx ≤ c with a ∈ Rn,
c ∈ R, x ∈ Fn.

Definition 2. eps is the precision of the floating-point for-
mat F and eta its precision in case of underflows. In partic-
ular, we have for all x, y ∈ F

∃δ ∈ R, |δ| ≤ eps ∧ fl(x+ y) = (1 + δ)(x+ y)

and

∃δ, η ∈ R, |δ| ≤ eps∧|η| ≤ eta∧fl(x× y) = (1+δ)(x×y)+η.

remark 9. Those are fairly classic notations and results [10,
22]. eps and eta are very small constants defined by the
floating-point format in use. For instance, eps = 2−53('
10−16) and eta = 2−1075(' 10−323) for the IEE754 binary64
format with a rounding to nearest5 [11].

4Order of evaluation matters since floating-point addition is
not associative.
5Usual implementation of type double in C.

http://cavale.enseeiht.fr/formalbounds2014/
http://cavale.enseeiht.fr/formalbounds2014/

Theorem 1. Assuming 2(n+ 1)eps < 1, we have for all
a ∈ Rn and x ∈ Fn∣∣∣∣∣fl

(
n∑
i=1

aixi

)
−

n∑
i=1

aixi

∣∣∣∣∣ ≤ γn+1

n∑
i=1

|aixi|

+ 2

(
n+

n∑
i=1

|xi|
)
eta

where γn+1 := (n+1)eps
1−(n+1)eps

.

This theorem gives us the desired property: for all c′ ≥
fl(c)+γn+1 |a|T |x|+2(n+‖x‖1)eta, the inequality fl

(
aTx

)
≤

fl(c) implies aTx ≤ c′. Since we used templates x2
i for each

variable xi of the analyzed program, we actually have a
bound on ‖x‖1 and it is easy to compute such an appropriate
c′ (for instance with floating-point arithmetic and rounding
toward +∞).

Assignments.
Things are a bit more involved than in the case of guards.

We are now looking for a b′v′,j ≤ bv′,j such that r(tj) ≤ b′v′,j
implies fl(r(tj)) ≤ bv′,j , that is [xT 1]RTr PtjRr[x

T 1]T ≤ b′v′,j
implies fl

(
[xT 1]RTr

)
Ptj fl

(
Rr[x

T 1]T
)
≤ bv′,j where Rr and

Ptj are matrix representations of assignment r and template

tj respectively6. The next theorem will guarantee us that

this property holds for any b′v′,j ≤
(√

bv′,j −
√
s‖e‖2

)2
with

s ∈ R such that Ptj � s I and ei := γn+1 |Rri,.| [|x|T 1]T +
2 (n+ 2 + ‖x‖1) eta. Again, such a b′v′,j is easy to compute
(with a SDP solver for s and rounding toward +∞ for e).

Theorem 2. Given matrices P,R ∈ R(n+1)×(n+1), with
2(n+2)eps < 1, and scalars s, b ∈ R such that P is symmetric
positive semi-definite (i.e., PT = P and P � 0) and P �
s I, for any x ∈ Fn, denoting ei := γn+2 |Ri,.| [|x|T 1]T +
2 (n+ 2 + ‖x‖1) eta, if s‖e‖22 ≤ b and[

x
1

]T
RTP R

[
x
1

]
≤
(√

b−√s‖e‖2
)2

then

fl

([
x
1

]T
RT
)
P fl

(
R

[
x
1

])
≤ b

where Ri,. denotes the i-th row of the matrix R.

Finally, if the following holds

b′v′,j ≥ max

r(tj)
∣∣∣∣∣∣ e ≤ c′ ∧

∧
j′

(tj′ ≤ bv,j′)

 (16)

then (15) holds and we can now proceed as in Section 6.1 by
just replacing (14) with the above (16). The check should
still succeed since the differences between the values in (14)
and (16) are orders of magnitude smaller than the accuracy
the bv,j were initially computed with using SDP solvers.

A possible improvement would be to avoid over-approximating
the computations of the model of the plant since they do
not need to be performed with floating-point values like the
computations of the controller.
6Again, the assignment r is actually computed with
floating-point arithmetic whereas r(tj) ≤ bv′,j is a purely
mathematical property. That’s why we don’t need
fl
(
[x 1]RTr PtjRr[x 1]T

)
≤ bv′,j .

remark 10 (About fixed-point arithmetic). In some
sense, floating-point arithmetic can seem harder to analyze
than fixed-point arithmetic due to the relative error (δ terms).
However, the fact that floating-point usually only induce tiny
errors, makes the proof search7 then proof checking scheme,
used in this section, practical. Fixed-point arithmetic may
introduce larger errors which may require the use of more
involved proof search techniques, actually taking rounding
errors into account [24, 27].

7. CONCLUSION AND PERSPECTIVES
The presented analyses extended previous work of the au-

thors focused on the software part of a controlled system. In
the present work addressing the complete system, the choice
has been made to follow the usual approach of control engi-
neers and consider the behavior of the controller with respect
to a linear approximation of the plant, i.e., a linearized plant.
It differs from the vast state of the art of the analysis of
hybrid systems.

However this simplified setting, where the non linearity of
the plant is hidden, remains an interesting challenge. First it
is meaningful with respect to the design process of the con-
troller, it is important to ensure that the stability properties
targeted at design level remain valid at the implementa-
tion level. Second the proposed analysis achieves an over-
approximation of all reachable states while arguing about a
control level property, closed-loop stability of the controlled
system. Third, it is able to handle more than linear systems,
e.g., including saturations or constructs leading to non glob-
ally stable systems. It also opens the possibility to evaluate
a control law within its safety architecture.

We are currently completing the implementation8 of the
template generation method of Section 4.2.2 in our static an-
alyzer. Everything is available at http://cavale.enseeiht.

fr/closedloop2014/.
To the best of authors’ knowledge, none of the existing

static analysis tools performs a computation by taking the
plant into account and computing an over-approximation of
all reachable states. Furthermore our proposal also considers
the mix of floating-point computations at the software level
with real computations for the plant part. The extension of
previous work on stability of the controller to the complete
system also enlightened the need for new Lyapunov-based
heuristics to deal with saturations.

In terms of future work, the presented analysis would
have to be applied on more examples of control systems as
shared by our academic and industrial partners (e.g., control
command of aircraft, full-authority digital engine control
(FADEC), etc). It would also be interesting to add sensor
and actuation noise to the model of the plant9. Another
exciting outcome of this work is the now open possibility to
consider control level properties when dealing with the actual
code. Our next goal would address the analysis of robustness
and performances properties with a similar approach.

8. REFERENCES
[1] S. Boldo and G. Melquiond. Flocq: A Unified Library

for Proving Floating-point Algorithms in Coq. In

7Completely ignoring rounding errors.
8Currently only prototyped as a Scilab script.
9Handling sensor noise is very easy but actuation noise seems
a bit less trivial.

http://cavale.enseeiht.fr/closedloop2014/
http://cavale.enseeiht.fr/closedloop2014/

Proceedings of the 20th IEEE Symposium on Computer
Arithmetic, pages 243–252, Tübingen, Germany, July
2011.

[2] O. Bouissou, E. Goubault, S. Putot, K. Tekkal, and
F. Védrine. Hybridfluctuat: A static analyzer of
numerical programs within a continuous environment.
In A. Bouajjani and O. Maler, editors, Computer Aided
Verification, 21st International Conference, CAV 2009,
Grenoble, France, June 26 - July 2, 2009. Proceedings,
volume 5643 of Lecture Notes in Computer Science,
pages 620–626. Springer, 2009.

[3] S. Boyd, L. El Ghaoui, E. Féron, and V. Balakrishnan.
Linear Matrix Inequalities in System and Control
Theory, volume 15 of SIAM. Philadelphia, PA, June
1994.

[4] T. Coq development team. The Coq proof assistant
reference manual, 2012. Version 8.4.

[5] J. Feret. Static Analysis of Digital Filters. In ESOP,
number 2986, 2004.

[6] E. Féron. From Control Systems to Control Software.
Control Systems, IEEE, 30(6), dec. 2010.

[7] G. F. Franklin, M. L. Workman, and D. Powell. Digital
Control of Dynamic Systems. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 2nd edition,
1990.

[8] T. M. Gawlitza, H. Seidl, A. Adjé, S. Gaubert, and
E. Goubault. Abstract interpretation meets convex
optimization. J. Symb. Comput., 47(12), 2012.

[9] H. Herencia-Zapana, R. Jobredeaux, S. Owre, P.-L.
Garoche, E. Feron, G. Perez, and P. Ascariz. Pvs linear
algebra libraries for verification of control software
algorithms in c/acsl. In NASA Formal Methods, pages
147–161, 2012.

[10] N. J. Higham. Accuracy and Stability of Numerical
Algorithms. Society for Industrial and Applied
Mathematics, Philadelphia, PA, USA, 1996.

[11] IEEE Computer Society. IEEE Standard for
Floating-Point Arithmetic. IEEE Standard 754-2008,
2008.

[12] W. S. Levine. The control handbook. The electrical
engineering handbook series. CRC Press New York,
Boca Raton (Fl.), 1996.

[13] A. M. Lyapunov. Problème général de la stabilité du
mouvement. Annals of Mathematics Studies, 17, 1947.

[14] E. Möhlmann and O. E. Theel. Stabhyli: a tool for
automatic stability verification of non-linear hybrid
systems. In C. Belta and F. Ivancic, editors, Proceedings
of the 16th international conference on Hybrid systems:
computation and control, HSCC 2013, April 8-11, 2013,
Philadelphia, PA, USA, pages 107–112. ACM, 2013.

[15] D. Monniaux. The pitfalls of verifying floating-point
computations. ACM Trans. Program. Lang. Syst.,
30(3), 2008.

[16] A. Podelski and S. Wagner. Region stability proofs for
hybrid systems. In J. Raskin and P. S. Thiagarajan,
editors, Formal Modeling and Analysis of Timed
Systems, 5th International Conference, FORMATS
2007, Salzburg, Austria, October 3-5, 2007, Proceedings,
volume 4763 of Lecture Notes in Computer Science,
pages 320–335. Springer, 2007.

[17] P. Prabhakar and M. G. Soto. Abstraction based

model-checking of stability of hybrid systems. In
N. Sharygina and H. Veith, editors, Computer Aided
Verification - 25th International Conference, CAV 2013,
Saint Petersburg, Russia, July 13-19, 2013. Proceedings,
volume 8044 of Lecture Notes in Computer Science,
pages 280–295. Springer, 2013.

[18] S. Ratschan and Z. She. Providing a basin of attraction
to a target region of polynomial systems by
computation of lyapunov-like functions. SIAM J.
Control and Optimization, 48(7):4377–4394, 2010.

[19] P. Roux and P. Garoche. Computing quadratic
invariants with min- and max-policy iterations: A
practical comparison. In C. B. Jones, P. Pihlajasaari,
and J. Sun, editors, FM 2014: Formal Methods - 19th
International Symposium, Singapore, May 12-16, 2014.
Proceedings, volume 8442 of Lecture Notes in Computer
Science, pages 563–578. Springer, 2014.

[20] P. Roux and P.-L. Garoche. Integrating policy
iterations in abstract interpreters. In D. V. Hung and
M. Ogawa, editors, ATVA, volume 8172 of Lecture
Notes in Computer Science, pages 240–254. Springer,
2013.

[21] P. Roux, R. Jobredeaux, P.-L. Garoche, and E. Féron.
A generic ellipsoid abstract domain for linear time
invariant systems. In HSCC. ACM, 2012.

[22] S. M. Rump. Verification methods: Rigorous results
using floating-point arithmetic. Acta Numerica,
19:287–449, May 2010.

[23] S. Sankaranarayanan and A. Tiwari. Relational
abstractions for continuous and hybrid systems. In
G. Gopalakrishnan and S. Qadeer, editors, Computer
Aided Verification - 23rd International Conference,
CAV 2011, Snowbird, UT, USA, July 14-20, 2011.
Proceedings, volume 6806 of Lecture Notes in Computer
Science, pages 686–702. Springer, 2011.

[24] A. Suardi, S. Longo, E. C. Kerrigan, and G. A.
Constantinides. Robust explicit mpc design under finite
precision arithmetic. In World Congress of the
International Federation of Automatic Control,
volume 19, pages 2939–2944, 2014.

[25] L. Vandenberghe and S. Boyd. Semidefinite
programming. SIAM Review, 38(1):49–95, 1996.

[26] T. Wang, R. Jobredeaux, H. Herencia-Zapana, P.-L.
Garoche, A. Dieumegard, E. Feron, and M. Pantel.
From design to implementation: an automated,
credible autocoding chain for control systems. CoRR,
abs/1307.2641, 2013.

[27] Y. Xia, J. Yan, P. Shi, and M. Fu. Stability analysis of
discrete-time systems with quantized feedback and
measurements. Industrial Informatics, IEEE
Transactions on, 9(1):313–324, Feb 2013.

[28] Q. Yang. Minimum Decay Rate of a Family of
Dynamical Systems. PhD thesis, Stanford University,
1992.

APPENDIX
A. PROOFS

This appendix contains proofs not included in the paper.

Lemma 1. Let C ∈ R1×n be a non-zero row vector, P ∈
Rn×n a positive definite matrix, and x ∈ Rn×1 a column
vector. Assume xTPx ≤ 1. Then

|Cx| ≤
√
CP−1CT

Proof Lemma 1. To look for an upper and lower bound
on Cx given the ellipsoid constraint, consider the following
extremization problem:

extremize
x

Cx

subject to xTPx− 1 ≤ 0

Introducing the Lagrangian L = Cx − λ(xTPx − 1), an
extremal solution x∗ must satisfy ∂L

∂x
= 0, that is:

C − λx∗TP = 0 (17)

Multiply (17) by x∗ to the right and solve for λ:

λ =
Cx∗

x∗TPx∗

(Note that x∗ 6= 0,otherwise (17) would yield C = 0). Then,
transposing (17) and multiplying by CP−1 on the left:

CP−1CT − λCx∗ = 0

⇐⇒ CP−1CT − (Cx∗)(Cx∗) = 0

⇐⇒ Cx∗ = ±
√
CP−1CT

The two solutions yield the required upper and lower bound
on Cx.

To prove Theorem 1, we first need the following lemma.

Lemma 2. Assuming (n−1)eps < 1, for all x ∈ Fn, there
exists θ ∈ Rn such that for all i, |θi| ≤ γn−1 and

fl

(
n∑
i=1

xi

)
=

n∑
i=1

(1 + θi)xi.

Proof Lemma 2. According to Definition 2, if the sum
is computed from left to right, there exists δn−1 ∈ R such
that |δn−1| ≤ eps and

fl

(
n∑
i=1

xi

)
= fl

(
fl

(
n−1∑
i=1

xi

)
+ xn

)

= (1 + δn−1)

(
fl

(
n−1∑
i=1

xi

)
+ xn

)
.

Then, by an immediate induction, there exists δ ∈ Rn−1 such
that for all i, |δi| ≤ eps and

fl

(
n∑
i=1

xi

)
=

(
n−1∏
j=1

(1 + δj)

)
x1+

n∑
i=2

((
n−1∏
j=i−1

(1 + δj)

)
xi

)
.

According to classic results [10, Lemma 3.3] about the terms

γk := keps
1−keps , for all i, there exists θi ∈ R such that |θi| ≤

γn−i+1 and
∏n−1
j=i−1(1 + δj) = 1 + θi, hence the result10.

10A similar proof can be performed if the sum is not computed
in this left-right order.

Proof Theorem 1. According to Lemma 2, there exists
θ ∈ Rn such that for all i, |θi| ≤ γn−1 and

fl

(
n∑
i=1

aixi

)
=

n∑
i=1

(1 + θi)fl(aixi) .

Then, according to Definition 2, there exist δ, η ∈ Rn such
that for all i, |δi| ≤ eps, |ηi| ≤ eta and

fl

(
n∑
i=1

aixi

)
=

n∑
i=1

(1 + θi) ((1 + δi)fl(ai) fl(xi) + ηi) .

Since xi ∈ F, fl(xi) = xi but ai ∈ R hence fl(ai) = (1+δ′i)ai+
η′i for some δ′i, η

′
i ∈ R, |δ′i| ≤ eps and |η′i| ≤ eta. Hence

fl

(
n∑
i=1

aixi

)
=

n∑
i=1

(1 + θi)(1 + δi)(1 + δ′i)aixi

+ (1 + θi)(1 + δi)η
′
ixi + (1 + θi)ηi.

According to classic results [10, Lemma 3.3] about the terms
γk, for all i, there exists θ′i ∈ R such that |θ′i| ≤ γn+1 and
(1 + θi)(1 + δi)(1 + δ′i) = 1 + θ′i. Similarly, there exists θ′′i ∈ R
such that |θ′′i | ≤ γn and (1 + θi)(1 + δi) = (1 + θ′′i), which
gives

fl

(
n∑
i=1

aixi

)
=

n∑
i=1

(
(1 + θ′i)aixi + (1 + θ′′i)η′ixi + (1 + θi)ηi

)
.

Then

fl

(
n∑
i=1

aixi

)
−

n∑
i=1

aixi =

n∑
i=1

θ′iaixi

+

n∑
i=1

(
(1 + θ′′i)η′ixi + (1 + θi)ηi

)
.

We can notice that∣∣∣∣∣
n∑
i=1

θ′iaixi

∣∣∣∣∣ ≤
n∑
i=1

∣∣θ′i∣∣ |aixi| ≤ n∑
i=1

γn+1 |aixi| = γn+1

n∑
i=1

|aixi|

and similarly∣∣∣∣∣
n∑
i=1

(
(1 + θ′′i)η′ixi + (1 + θi)ηi

)∣∣∣∣∣ ≤ 2

(
n+

n∑
i=1

|xi|
)
eta

since |θ′′i | ≤ γn ≤ 1 and |θi| ≤ γn−1 ≤ 1, which finally gives
the result.

Proof Theorem 2. Denoting y := R[x 1]T we have,
thanks to Theorem 1, |fl(yi)− yi| ≤ ei, hence fl(y)i =
yi + δiei for some δi ∈ R such that |δi| ≤ 1. Thus, de-
noting D the diagonal matrix such that for all i, Di,i = δi,
we have

fl(y)T P fl(y) = (y +De)TP (y +De)

= yTP y + eTDTP D e+ 2yTP D e.

Then, by Cauchy-Schwarz inequality

fl(y)T P fl(y) ≤ yTP y+eTDTP D e+2
√
yTP y

√
eTDTP D e

and since P � s I
fl(y)T P fl(y) ≤ yTP y + s‖e‖22 + 2

√
yTP y

√
s‖e‖2.

Hence the result, since yTP y ≤
(√

b−√s‖e‖2
)2

.

	Introduction
	Motivating Example
	Computing Quadratic Invariants from Given Templates
	Without Saturation
	With Saturation

	Computing Suitable QuadraticTemplates
	Without Saturation
	With Saturation
	Linearizing the Saturation
	First Abstracting the Disturbance

	Removing Redundant Variables
	Floating-Point Rounding Errors
	Floating-Point Arithmetic in the Analyzer
	Floating-Point Arithmetic in the Analyzed Program

	Conclusion and perspectives
	References
	Proofs

