
A Polynomial Template Abstract Domain
based on Bernstein Polynomials

Pierre Roux1,2 and Pierre-Löıc Garoche1

1 ONERA – The French Aerospace Lab, Toulouse, FRANCE
2 ISAE, Toulouse, FRANCE

Abstract. The analysis of reactive systems such as the command con-
trol of aircrafts requires the ability to analyze nonlinear systems and
synthesize nonlinear invariants. However, in the static analysis state of
the art, few analyses are applicable or effective when applied to those
systems. We present a template abstract domain that relies on Bern-
stein polynomials to bound the reachable states of polynomial reactive
systems with polynomial invariants.

1 Introduction

The most critical systems have to achieve a high level of quality. A wide category
of such systems can be characterized as reactive systems. Such reactive systems
are typically designed by control theorists to control a plant — a plane, a UAV
or the thrust of an engine for instance — through an endless loop of commands:
reading the input sensors, and computing the feedback on the actuators. The
design and the V&V process of such systems widely rely on tests even if recent
works from academia have been transfered into industry [27]. In [2] Air Force
developed its vision of the Technology Horizons 2010-2030 and identified this
issue as the second most important grand challenge of the years to come. NASA
expressed similar interest through different projects or initiatives.

Static analysis, like abstract interpretation [7] or deductive methods [8,19]
try to answer those needs and many publications, e.g. [27,11] address the use
of tools to over-approximate the behaviors of those control command systems
relying on various abstractions, mainly linear and convex, from intervals to more
costly ones, octagons or convex polyhedra.

However the analysis of such systems, even of simplest of those, often requires
to deal with nonlinear properties. In fact, even the open loop stable linear PID
controllers do not admit in general a linear inductive invariant but a quadratic
one. The software itself contains monitor systems or fault detection ones that
also embed complex numerical cores, e.g. Kalman filters.

Recent works addressed more specifically those numerical cores of control-
command systems [14,23] . They are however restricted to linear systems ad-
mitting quadratic invariants, while in general systems are more complex. It is
therefore mandatory to leverage those static analysis techniques in order to (1)
permit the analysis of higher level properties that cannot be expressed within
convex linear values or to (2) allow the analysis of realistic reactive systems.

2 Pierre Roux and Pierre-Löıc Garoche

This paper presents a template abstract domain [26] that relies on Bernstein
polynomials to bound the reachable states of polynomial reactive systems with
polynomial invariants.

This polynomial representation admits a set of interesting properties for ver-
ification purposes. Our proposal describes how to rely on such polynomials to
reason over systems expressed with polynomials. We also took care of the floating
point implementation issues, providing a safe over-approximation of the reach-
able states of such systems. This contribution is a first step towards the general
analysis of nonlinear systems, for example through polynomialization of system’s
equations via Taylor or Poisson expansions.

The paper is structured as follows. The remainder of this introduction section
presents notations and a toy imperative language on which our latter analyses
are applied. Then Section 2 offers a basic overview of Bernstein polynomials
and how they can be used for static analysis purposes. Section 3 presents our
instantiation of a template domain with polynomials. Finally Sections 4 and 5
compare the current approach with related work and conclude.

1.1 A Toy Imperative Language

Throughout this paper, a classical toy imperative language will be used to illus-
trate our abstract domain.

Notations Given some n ∈ N∗, we denote n-tuples (x1, . . . , xn) by bold letters
x. 0 stands for the tuple (0, . . . , 0). We extend order relation ≤ on tuples: x ≤ y
if for all i between 1 and n, xi ≤ yi. The interval notation [0,1] then represents
all tuples x satisfying 0 ≤ x ≤ 1. For x ∈ Rn and i ∈ Nn, xi is the mono-

mial
∏n

j=1 x
ij
j . Finally R[x] is the set of polynomials with coefficients in R over

variables x1, . . . , xn. Polynomials p ∈ R[x] are of the form p(x) =
∑

0≤i≤d cix
i

where d ∈ Nn is called degree of the multivariate polynomial p.

Syntax A program of the language is a statement stm in the following grammar:

stm ::= x := pol | x := ?(r, r) | stm; stm
| if pol ≤ 0 then stm else stm fi | while pol ≤ 0 do stm od

with x ∈ V = {x1, . . . , xn } a set of variables and pol ∈ R[x] polynomials on
those variables. ?(r1, r2) represents a random choice of a real between r1 ∈ R
and r2 ∈ R (useful to simulate inputs).

Collecting Semantics Semantics of statements JsK(R) ⊆ Rn for a statement s
and a set of environments R ⊆ Rn is defined as:

Jxi := pK(R) = {(x1, . . . , xi−1, p(x), xi+1, . . . , xn) | x ∈ R}
Jxi := ?(r1, r2)K(R) = {(x1, . . . , xi−1, r, xi+1, . . . , xn) | x ∈ R, r ∈ R, r1 ≤ r ≤ r2}
Js1; s2K(R) = Js2K(Js1K(R))
Jp1 0K(R) = {x ∈ R | p(x) 1 0} for 1 ∈ {>,≥, <,≤}
Jif p ≤ 0 then s1 else s2 fiK(R) = Js1K(Jp ≤ 0K(R)) ∪ Js2K(Jp > 0K(R))
Jwhile p ≤ 0 do s odK(R) = Jp > 0K(lfp (X 7→ R ∪X ∪ JsK(Jp ≤ 0K(X))))

A Polynomial Template Abstract Domain based on Bernstein Polynomials 3

with lfpf the least fixpoint of monotone function f on complete lattice 2R
n

.
Finally the semantics of a program prog is given by JprogK(Rn), i.e. semantics

of statement prog starting from an unknown memory state.

x := 0; y := ?(0, 0.5);
while x ≤ 1 do

y := y + 0.001× (18x2 − 18x + 3);
x := x + 0.001;
if y ≤ 0 then y := 0 else y := y fi od

Fig. 1. Example of program.

We can notice that this se-
mantics is given with operations
over reals R whereas an actual
program would compute using
floating point values. This im-
portant issue will not be ad-
dressed in this paper and is left
as future work.

Example 1. Figure 1 presents an integrator - a basic constriction of typical com-
mand control systems - in this language performing a discrete integration of the
polynomial 18x2−18x+3. On this example, the intervals abstract domain do not
allow to bound the variable y, the polyhedra domain gives the bound y ≤ 3.53

whereas the domain developed in this paper will allow to prove that y ≤ 0.833
(the actual maximum being between 0.7901 and 0.7902).

2 Bernstein Polynomials Optimization

Bernstein polynomials were first introduced in 1912 by Sergei Natanovich Bern-
stein to constructively prove Weierstrass theorem. However, their use really took
off in the early sixties with the work of Paul de Faget de Casteljau and Pierre
Étienne Bézier to describe car bodyworks in the French car industry. They are
now a fundamental tool in the field of Computer Aided Geometric Design and
are also used in other domains, such as global optimization [15,21], for their nice
properties when representing polynomials on closed intervals. The interested
reader is referred to [13] for a detailed overview.

2.1 Bernstein Polynomials

Definition 1 (Bernstein basis). Any polynomial p ∈ R[x] can be written

p(x) =
∑

0≤i≤d

bp,iBd,i(x) with Bd,i(x) =

n∏
j=1

(
dj
ij

)
x
ij
j (1− xj)dj−ij .

When considering a polynomial p on the box [0,1], the coefficients bp,i of
this representation have the interesting property of bounding p.

Property 1. For any polynomial p, for all x ∈ [0,1],

min {bp,i | 0 ≤ i ≤ d} ≤ p(x) ≤ max {bp,i | 0 ≤ i ≤ d}.

Moreover, p(i) = bp,i for all i ∈ Cd where we call endpoints the indices in the
set Cd = {i ∈ Nn | ∀j, 0 ≤ j ≤ n⇒ (ij = 0 ∨ ij = dj)}.
3 When the nonlinear assignment y := y + 0.001(18x2 − 18x + 3) is abstracted by
y := y + [−0.018, 0]x+ 0.003 knowing that 0 ≤ x ≤ 1.

4 Pierre Roux and Pierre-Löıc Garoche

This property can be generalized to any box [a, b] by considering the poly-
nomial p′(x) = p

(
σ[a,b](x)

)
with σ[a,b] mapping each xi to ai + (bi − ai)xi.

2.2 Optimization Problem

We are targeting the following polynomial global optimization problem:

max {p(x) | q1(x) ≤ b1 ∧ . . . ∧ qk(x) ≤ bk} (1)

where p, q1, . . . , qk ∈ R[x] are multivariate polynomials such that for all i ∈
{ 1, . . . , n }, the polynomials xi and −xi are included in the set { q1, . . . , qk } and
b1, . . . , bk are constant bounds in R. That is the maximum value reached by a
polynomial on a feasible set defined by a box and potential polynomial con-
straints. This can be −∞ if the feasible set is empty and a value in R otherwise.

Definition 2. We will later denote formula 1 as Opt(p; q1, . . . , qk) (b1, . . . , bk).

Example 2. For instance Opt
(
x1 + x2;x1,−x1, x2,−x2, x

2
1 − x2

)
(1, 0, 1, 0, 0) =

1 and Opt
(
x1 + x2;x1,−x1, x2,−x2, x

2
1 − x2

)
(1, 0, 1, 0,−2) = −∞.

2.3 Branch and Bound Algorithm

Our goal is to compute an upper bound of the previously defined value (1) within
some accuracy ε. Let us assume we are considering polynomial p under polyno-
mial constraints q1 ≤ 0, . . . , qk ≤ 0 on the unit box [0,1] (this is equivalent to
an arbitrary box [a, b] up to an affine transformation). According to Property 1,
if there exist a qj such that min

{
bqj ,i

∣∣ 0 ≤ i ≤ d
}
> 0 then the constraint

qj ≤ 0 is not satisfiable on the box [0,1], hence the result −∞. Otherwise
bound := max {bp,i | 0 ≤ i ≤ d} is an upper bound of the result. And according
to the second part of Property 1, reached := max

{
bp,i

∣∣ i ∈ Cd,∀j, bqj ,i ≤ 0
}

is
a lower bound. If bound − reached ≤ ε then bound is an upper bound with the
expected accuracy and we are done, otherwise we subdivide the box [0,1] into
two smaller boxes and recursively apply the same criteria on them.

Given the d + 1 Bernstein coefficients bp,i of a single variable polynomial p
of degree d, the de Casteljau’s algorithm computes the Bernstein coefficients of
polynomials pleft and pright such that pleft(x) = p(x

2) and pright(x) = p(x+1
2)

for all x ∈ [0, 1]. That is, the polynomial p on [0, 1] is subdivided into pleft on
[0, 1

2] and pright on [1
2 , 1]. This is performed in Θ(d2) arithmetic operations and

can be done on any variable for a multivariate polynomial. The interested reader
is referred to [20] for more details.

Using this, algorithms 1 and 2 allow to numerically solve the optimization
problem (1) within some accuracy ε4. The convergence of this procedure is known
to be quadratic which means tight bounds can “rapidly” be obtained through
it. This algorithm was already presented in [21] along with heuristics to improve
its performance.

A Polynomial Template Abstract Domain based on Bernstein Polynomials 5

Algorithm 1 Auxiliary function for max under constraints (Algorithm 2).
Polynomial p is the objective function whereas constraints is a set of poly-
nomial constraints. d is the degree of those polynomials. k and s are re-
spectively current and maximum allowed recursion depth while ε is the re-
quired accuracy. Finally reached is a lower bound of final result used to
prune the search tree. The returned value is a pair (r, b) satisfying r ≤
max {p(x) | x ∈ [0,1] ∧ ∀c ∈ constraints, c(x) ≤ 0} ≤ b. multipoly is the type
of multivariate polynomials.

max under constraints rec(p : multipoly, constraints : multipoly set, d : int tuple,
s : int, k : int, ε : real, reached : real)

this reached← max {bp,i | i ∈ Cn, ∀c ∈ constraints, bc,i ≤ 0}
. Invariant: this reached ≤ max {p(x) | x ∈ [0,1] ∧ ∀c ∈ constraints, c(x) ≤ 0}.

if ∃ c ∈ constraints,min {bc,i | 0 ≤ i ≤ d} > 0 then
this bound← −∞ . Constraint c is not satisfiable.

else
this bound← max {bp,i | i ≤ n}

end if
. Invariant: max {p(x) | x ∈ [0,1] ∧ ∀c ∈ constraints, c(x) ≤ 0} ≤ this bound.

if k ≥ s ∨ this bound ≤ this reached+ ε ∨ this bound ≤ reached+ ε then
. If maximum recursion depth or required accuracy is reached or if greater value
. was already reached on a previously explored part of the domain, stop here.
return (this reached, this bound)

end if
j ← varsel(p,d, k) . Function varsel returns the index j of one of the

. n variables xj of polynomials p and constraints.
{ l } , { r } ← subdiv({ p } , j) . Function subdiv(pols, j) applies
cl, cr ← subdiv(constraints, j) . de Casteljau’s algorithm to each

. polynomial in set pols on variable xj .
reached← max(reached, this reached)
rl, bl← max under constraints rec(l, cl,d, s, k + 1, ε, reached)
reached← max(reached, rl)
rr, br ← max under constraints rec(r, cr,d, s, k + 1, ε, reached)
return (max(rl, rr),max(bl, br))

Algorithm 2 max under constraints(p, constraints, lbs,ubs, s, ε) computes an
upper bound of max {p(x) | x ∈ [lbs,ubs] ∧ ∀c ∈ constraints, c(x) ≤ 0}, algo-
rithm stops when either a bound of accuracy ε or recursion depth s is reached.

max under constraints(p : multipoly, constraints : multipoly set, lbs : int tuple,
ubs : int tuple, s : int, ε : real)

p, constraints,d← translate(p, constraints, lbs,ubs)
. Function translate first translates polynomials from box [lbs,ubs] to the
. unit box [0,1] then to Bernstein basis, it also returns their degree d.

, bound← max under constraints rec(p, constraints,d, s, 0, ε,−∞)
return bound

6 Pierre Roux and Pierre-Löıc Garoche

y
0 1

2

rl

rr

max {p(x)− y × q(x) | x ∈ [0,1]}

slope mindslope maxd

rl +mind× rl−rr+maxd/2
maxd−mind

Fig. 2. Illustration of Property 3.

Algorithm 3 Auxiliary function for max relaxation (Algorithm 4). pyq is the
polynomial p − yq with p the objective function and q the constraint. d is the
degree of this polynomial. k and s are respectively current and maximum re-
cursion depth. ε is the accuracy within which upper bounds are computed for
each value of y tested. rl and rr are lower bound of the maximum of pyq for

respective values 0 and 1 of y. mind and maxd are bounds on d(pyq)
dy . The result

is an upper bound of pyq for some value of y ∈ (0, 1).

max relaxation rec(pyq : multipoly, d : int tuple, s : int, k : int, ε : real,
rl : real, rr : real, mind : real, maxd : real)

l, r ← subdiv(pyq, y)
. First get a bound for y = 1

2
.

this reached, this bound← max under constraints rec(r[y ← 0], ∅,d, s, 0, ε,−∞)
. Then look for a smaller bound with y ∈

(
0, 1

2

)
.

if k + 1 < s ∧ rl +mind× rl−this reached+maxd/2
maxd−mind

< bound− ε then
bl← max relaxation rec(l,d, s, k + 1, ε, rl, this reached, mind/2,maxd/2)
if bl < this bound then

this bound← bl
end if

end if
. Finally look for a smaller bound with y ∈

(
1
2
, 1
)
.

if k + 1 < s ∧ rr −maxd× rr−this reached−mind/2
maxd−mind

< bound− ε then
br ← max relaxation rec(r,d, s, k + 1, ε, this reached, rr,mind/2,maxd/2)
if br < this bound then

this bound← br
end if

end if
return this bound

A Polynomial Template Abstract Domain based on Bernstein Polynomials 7

Algorithm 4 max relaxation(p, q, lbs,ubs, s, relaxdomain, ε) computes an up-
per bound of max {p(x) | x ∈ [lbs,ubs] ∧ q(x) ≤ 0}. To do this, it looks for a
non negative real y0 such that the maximum of p−y0×q is the smallest possible.
An upper bound of p − y0 × c is returned. s determines the number of values
tried for y0 (2s + 1 value equally spaced between 0 and relaxdomain, including
0 and relaxdomain) whereas ε determines the precision with which the bound
is computed for each try for y0.

max relaxation(p : multipoly, q : multipoly, lbs : int tuple, ubs : int tuple, s : int,
relaxdomain : real, ε : real)

mind← max under constraints(q, ∅, lbs,ubs, s, ε)
maxd← max under constraints(−q, ∅, lbs,ubs, s, ε)
pyq ← p− y × q . y is a fresh variable
pyq, ,d← translate(pyq, ∅, (0, lbs), (relaxdomain,ubs)) . y ∈ [0, relaxdomain]
rl, bl← max under constraints rec(pyq[y ← 0], ∅,d, s, ε,−∞)
rr, br ← max under constraints rec(pyq[y ← 1], ∅,d, s, ε,−∞)
if bl < br then

bound← bl
else

bound← br
end if
if mind < 0 ∧maxd > 0 then

this bound← max relaxation rec(pyq,d, s, 0, ε, rl, rr,mind,maxd)
end if
return min(bound, this bound)

2.4 Lagrangian Relaxation

Property 2 (Relaxation scheme). For any polynomials p and q, any box [a, b]
and any real c, if there exist a real y ≥ 0 such that:

∀x ∈ [a, b], p(x)− y × q(x) ≤ c
then:

∀x ∈ [a, b], q(x) ≤ 0⇒ p(x) ≤ c.

The reverse direction does not hold but if for some real y we bound the poly-
nomial p−y×q on the box [a, b], this bound also holds for {p(x) | x ∈ [a, b] ∧ q(x) ≤ 0}.
By trying various values for y, we can then obtain a bound on the constrained
problem while only computing bounds of polynomials without constraints.

The following property will allow to safely ignore some intervals while looking
for appropriate values for relaxation variable y.

Property 3. For any polynomials p and q, if there exist mind,maxd, rl, rr ∈ R
such that:

– ∀x ∈ [0,1], mind ≤ −q(x) ≤ maxd;
– max {p(x) | x ∈ [0,1]} ≥ rl and max

{
p(x)− 1

2 × q(x)
∣∣ x ∈ [0,1]

}
≥ rr;

4 Provided a big enough bound s on recursion depth.

8 Pierre Roux and Pierre-Löıc Garoche

then, for all y ∈
[
0, 1

2

]
:

max {p(x)− y × q(x) | x ∈ [0,1]} ≥ rl +mind× rl − rr +maxd/2

maxd−mind
.

Proof. The result follows from the fact that d(p−yq)
dy = −q is bounded by mind

and maxd.

This property, illustrated on Figure 2, allows one to prune branches while
looking for a value of y leading to an interesting bound as done in Algorithms 3
and 4. This can be generalized to more than one constraint by adding as many
relaxation variables y as constraints.

To the extent of authors knowledge, this algorithm is new. It is an alternative
to the one of the previous Section 2.3 which appears to be more efficient in cases
when the objective function is close to the optimal value on a large part of the
edge of the feasible space. Those cases can indeed require a high number of
subdivisions to test the satisfiability of a constraint which can be avoided by the
relaxation. Moreover, they can typically appear when analyzing reactive systems
where a single iteration of the system induces relatively small changes. However,
unlike the previous algorithm, it cannot guarantee the accuracy of the upper
bound it returns.

3 Polynomial Template Abstract Domain

This section presents an abstract domain working on polynomial templates. The
definition of the domain, the abstract operators and possible widenings are rather
standard for template domains [26]. The main interest lies in the possibility to
precisely handle polynomial templates and assignments.

3.1 Lattice Structure

Given a set P = { p1, . . . , pk } of k ∈ N polynomials over n ∈ N variables, the

set TP of tuples b ∈ Rk
forms a complete lattice when ordered by v], the point-

wise extension of the usual order on R = R ∪ {−∞,+∞} (i.e. (b1, . . . , bk) v]

(b′1, . . . , b
′
k) if: ∀i, 1 ≤ i ≤ k ⇒ bi ≤ b′i). The infimums are then> = (+∞, . . . ,+∞)

and ⊥ = (−∞, . . . ,−∞) and the least upper bound t] and greatest lower bound
u] are the pointwise extensions of respectively max and min on R. This com-
plete lattice defines an abstraction of 2R

n

thanks to the concretization function
γ : TP → 2R

n

such that:

γ(b) = {x ∈ Rn | p1(x) ≤ b1 ∧ . . . ∧ pk(x) ≤ bk}.

Example 3. Figure 3 presents an abstract value in TP .

As can be noticed on Figure 3, the concretization of a value in TP is a subset
of Rn that is not necessarily convex. This is an uncommon feature since most
numerical abstract domains are convex (there however exist a few non convex
numerical abstract domains, for instance tropical polyhedra [3] which are convex
in tropical algebra but not in classical algebra).

A Polynomial Template Abstract Domain based on Bernstein Polynomials 9

x ≤ 1.001
−x ≤ 0
y ≤ 0.833
−y ≤ 0

y − 6x3 + 9x2 − 3.2x ≤ 0.5 x

y

0 1.001

0.5

Fig. 3. Example of abstract value (1, 0, 0.833, 0, 0.5) ∈ TP with P =
{x,−x, y,−y, y − 6x3 + 9x2 − 3.2x }. This value is an invariant at loop head for the
program of Figure 1.

3.2 Abstract Operators

To be able to perform abstract interpretation analyses with our new domain on
programs defined in Section 1.1, we now need to define abstract operators for
guards, assignments and random assignments.

Guards We define the abstract semantic of a guard r(x) ≤ 0 on b ∈ TP with r
a n variable polynomial in R[x] as:

Jr(x) ≤ 0K] (b) = b′ with b′i = Opt(pi; p1, . . . , pk, r) (b1, . . . , bk, 0) .

Example 4. Still using set of templates P = {x,−x, y,−y, y − 6x3 + 9x2 − 3.2x },
Jx− 1 ≤ 0K](10, 0, 10, 0, 0.5) = (1, 0, 0.833, 0, 0.5). This is illustrated on (k) and
(l) in Figure 4.

Property 4 (soundness). This abstract operator is sound with respect to the
concrete semantics of guards: for all polynomial r ∈ R[x] and all b ∈ TP ,

Jr ≤ 0K(γ(b)) ⊆ γ
(
Jr ≤ 0K](b)

)
.

Assignments We define the abstract semantic of an assignment xi := r on
b ∈ TP with r a n variable polynomial in R[x] as:

Jxi := rK] (b) = b′ with b′j = Opt(pj [xi ← r(x)]; p1, . . . , pk) (b) .

Example 5. Jy := 0K](1.001,−0.001, 0, 0.002, 0.133) = (1.001,−0.001, 0, 0, 0.133).
This is illustrated on (n) and (o) in Figure 4.

We can notice that this definition can (and in practice will) increase the
degree of objective polynomials of the optimization problems to solve. This has
an impact on the cost of solving those problems. This cost is then dependent on
the composition of degrees of polynomials of the set of templates and polynomials
appearing in the analyzed program.

Property 5 (soundness). This abstract operator is sound with respect to the
concrete semantics of assignments: for all variables xi, for all polynomial r ∈ R[x]

and all b ∈ TP , Jx := rK(γ(b)) ⊆ γ
(
Jx := rK](b)

)
.

10 Pierre Roux and Pierre-Löıc Garoche

Random assignments We define the abstract semantic of a random assign-
ment xi := ?(r1, r2) on b ∈ TP with r1, r2 ∈ R as:

Jxi := ?(r1, r2)K] (b) = ρ(b′) with b′i =

r2 if pi = xi
−r1 if pi = −xi
+∞ otherwise, if xi appears in pi
bi otherwise.

where ρ : TP → TP is defined as: ρ(b) = b′ with b′i = Opt(pi; p1, . . . , pk) (b).

Example 6. Jy := ?(0, 0.5)K](0, 0,+∞,+∞,+∞) = (0, 0, 0.5, 0, 0.5). This is illus-
trated on (b) and (c) in Figure 4.

Property 6 (soundness). This abstract operator is sound with respect to the
concrete semantics of assignments: for all variables xi, for all r1, r2 ∈ R and all

b ∈ TP , Jx := ?(r1, r2)K(γ(b)) ⊆ γ
(
Jx := ?(r1, r2)K](b)

)
.

3.3 Widening

The domain TP has infinite ascending chains. A widening is then required to
enforce termination of the analyses.

Assuming any widening ∇s on lattice R equipped with the usual order, its
pointwise extension gives a widening on TP .

However, since the implementation with Bernstein polynomials definitely
jumps to > as soon as one of the bounds bi with pi of the form xj or −xj
is infinite, a widening not jumping directly to +∞, such as a widening with
thresholds, is actually required to get any practical result.

3.4 Implementation considerations

Optimization problems Opt(p; q1, . . . , qk) (b) can be solved (within some accu-
racy ε) with algorithms of Sections 2.3 or 2.4. However, those algorithms require
each variable xi appearing in polynomials p, q1, . . . , qk to be bounded. That is,
polynomials xi and −xi have to be among q1, . . . , qk and the bounds associated
to them in tuple b must be in R (i.e. neither −∞ nor +∞). In case one of
those bounds is −∞, we just returns −∞ which is the exact result. But in case
+∞, we have to conservatively overapproximate the result either by acting as
the identity function in the case of guards5 or by returning +∞ in the case of
assignments.

Parameter ε unfortunately plays a key role in the trade off between precision
and cost of the analysis. A large value enables a faster analysis but may result in a
far less precise result if for instance we miss a fixpoint whereas a small value leads
to more precise result but induces a more costly analysis. In contrast, parameters
s and relaxdomain of algorithm of Section 2.4, defining the domain in which

5 Since guards do not modify any variable, the identity function is always a sound,
although very coarse, overapproximation.

A Polynomial Template Abstract Domain based on Bernstein Polynomials 11

the relaxation value is looked for, play a less critical role since this domain is
rapidly cut down, preventing a large domain to induce much overhead.

Last but not least the choice of arithmetic for all computations performed by
algorithms of Section 2 is critical for soundness of the analyses and can have an
important impact on performances. Floating point arithmetic is definitely the
fastest but is not an option since it doesn’t guarantee soundness of the result.
Rational arithmetic with arbitrary precision integers is sound but expensive.
A workaround could be to compute potentially unsound results with floating
point and check the final result with a rational implementation. There even
exists such an implementation fully proved in the theorem prover PVS [20]6. But
finally, we found out that a good compromise is to use floating point interval
arithmetic [24]. This is only about two times slower than a pure floating point
– unsound – implementation. Given the good numerical stability properties of
Bernstein polynomials [13, §6], this works very well in practice.

It is also interesting to notice that those branch and bound algorithms should
be rather easy to parallelize.

3.5 Example

Example 7. Figure 4 displays an analysis on the running example (Figure 1),
still with P = {x,−x, y,−y, y − 6x3 + 9x2 − 3.2x } and with a widening with
thresholds { 10, 100, 1000 }. A descending iteration from the fixpoint obtained
then gives the invariant displayed on Figure 3 at loop head.

On this example, the template polynomial y − 6x3 + 9x2 − 3.2x allows one
to bound the variable y by 0.833 while an analysis with the polyhedra domain
yields y ≤ 3.5. This is rather tight since the actual maximal value can be proven
by hand to be between 0.788 and 0.792.

It is interesting to notice that consecutive assignments are considered to-
gether (Figures 4(e) and 4(m)). This is an easy way to improve both the pre-
cision of the analysis (by avoiding intermediate abstraction, hence loss of preci-
sion7) and its cost (by avoiding redundant computations). An alternative solu-
tion would have been to use the mechanism proposed in [26] to compute local
templates in a similar way to a weakest precondition calculus [12], but this offers
only the precision and not the cost improvement of previous solution.

This analysis takes 1.8s with the algorithm of Section 2.3 and 0.2s with
the alternative algorithm of Section 2.4, both implemented with floating point
interval arithmetic and running on an Intel Core2 @ 2.66GHz.

6 The implementation presented in this paper only allows one to check the results of
alternative algorithm of Section 2.4 but, according to personal communication with
the authors, they more recently implemented a more general version of the algorithm
of Section 2.3, allowing to also check the results of this algorithm.

7 See for instance [16] for a more detailed discussion on this point.

12 Pierre Roux and Pierre-Löıc Garoche

(a)
>

x

y

0

(b)
Jx := 0K](a) =

(0, 0,+∞,+∞,+∞)

x

y

0

0.5

(c)
Jy := ?(0, 0.5)K](b) =

(0, 0, 0.5, 0, 0.5)

x

y

0

0.5

(d)
Jx− 1 ≤ 0K](c) =

(0, 0, 0.5, 0, 0.5)

x

y

0
0.003

0.503

0.001

(e) Jy := y +

0.001(18x2 − 18x + 3); x :=

x + 0.001K](d) =

(0.001,−0.001, 0.503,−0.003, 0.5)

(f)
Jy ≤ 0K](e) =

⊥

(g)
Jy := 0K](f) =

⊥

x

y

0
0.003

0.503

0.001

(h) Jy ≥ 0K](e) =

(e)

x

y

0
0.003

0.503

0.001

(i) Jy := yK](h) =

(e)

x

y

0
0.003

0.503

0.001

(j) (g)t] (i) = (e)

x

y

0

0.5

(k) (c)∇ (j) =

(10, 0, 10, 0, 0.5)

x

y

0 1

0.5

(l)
Jx− 1 ≤ 0K](k) =

(1, 0, 0.833, 0, 0.5)

x

y

0.001 1.001

0.5

−0.002

(m) Jy := y + 0.001(18x2 −
18x + 3); x := x + 0.001K](l) =

(1.001,−0.001, 0.833, 0.002, 0.5)

x

y

0.001 1.001

0

−0.002

(n) Jy ≤ 0K](m) =

(1.001,−0.001, 0, 0.002, 0.133)

x

y

0.001 1.001
0

(o) Jy := 0K](n) =

(1.001,−0.001, 0, 0, 0.133)

x

y

0.001 1.001

0.5

0

(p) Jy ≥ 0K](m) =

(1.001,−0.001, 0.833, 0, 0.5)

x

y

0.001 1.001

0.5

0

(q) Jy := yK](p) = (p)

x

y

0.001 1.001

0.5

0

(r) (o) t] (q) = (p)

x

y

0

0.5

(s) (k)∇ (r) = (k) (fixpoint

reached!)

Fig. 4. Example of analysis on the running example (Figure 1).

A Polynomial Template Abstract Domain based on Bernstein Polynomials 13

4 Related Work

Very few works address the analysis of nonlinear properties; and, to the authors’
knowledge, none of them previously addressed the computation of bounds for
nonlinear systems.

The use of numerical optimization procedures in template domains was in-
troduced by Sankaranarayanan, Sipma and Manna [26]. They used linear
programming to implement template polyhedra but already mentioned the pos-
sibility to use semidefinite programming to infer nonlinear invariants.

Feret [14] already generates quadratic invariants but use of semidefinite
programming for general quadratic template domains was developed by Adjé,
Gaubert and Goubault [1] and Gawlitza and Seidl [17]. The use of semidef-
inite programming is definitely more efficient than branch and bound algorithms
with Bernstein polynomials on this common subclass of quadratic invariants.
Moreover, policy iterations techniques [1,17] avoid the loss of precision due to
the widening. However, this technique does not deal with other properties than
quadratic properties for linear systems.

Sankaranarayanan, Sipma and Manna [25] and Rodriguez-Carbonell
and Kapur [22] use Gröbner bases to generate invariant polynomial equalities,
hence a disjoint class of properties compared to the one considered in this pa-
per. Cachera, Jensen, Jobin and Kirchner [5] offer an alternative – more
efficient – algorithm not using Gröbner bases but still targeting equalities.

Bagnara, Rodriguez-Carbonell and Zaffanella [4] generate polyno-
mial invariants. They only applied the technique to quadratic invariants but seem
confident that some improvements could leverage it to at least cubic invariants.
The huge advantage of this work compared to the one presented in this paper is
that it is fully automatic, not requiring polynomial templates to be given prior
to any analysis. However, the techniques are of very different nature and it is
expectable that each one is able to generate invariants which won’t be found by
the other.

This work is not the first one to make use of Bernstein polynomials in the
scope of verification. Clauss and Tchoupaeva [6] already offered to use Bern-
stein polynomials to get linear approximations of polynomials on some interval
for compilation purpose.

Finally Dang and Salinas [9] and Dang and Testylier [10] also used
them for hybrid system analysis. A major difference with the present proposal is
that, since they have to perform a very high number of iterations, they cannot
afford branch and bound algorithms. That is why templates are limited to linear
templates handled with some smart and efficient method.

5 Conclusion and Perspectives

This paper proposed a polynomial template domain relying on Bernstein polyno-
mials. To the best of authors’ knowledge it is the first template abstract domain
able to deal with arbitrary polynomial systems admitting polynomial invariants.

14 Pierre Roux and Pierre-Löıc Garoche

Existing works [1,17,18] already proposed to rely on template domains to
compute polynomial invariants, using a combination of policy iterations with
semidefinite programming, but they were restricted to quadratic invariants on
linear programs.

In the author’s view, the main weakness of the current paper is the need
of templates to perform the analysis. This weakness is however shared by all
existing works (including the ones above) addressing nonlinear properties with
abstract domains. In [23] we proposed a technique to synthesize meaningful
quadratic templates. An identified future work would be to adapt this approach
to general polynomial systems.

On the efficiency/precision issue, it would be very interesting to replace
Kleene iterations by policy iterations. However, this does not look very tractable.
An alternative solution could be to stick to Kleene iterations but to analyze code
“en bloc”. Some specific classes of polynomials could also be handled differently.
For instance in the particular case of convex polynomials, convex optimization
would certainly be more efficient than branch and bound algorithms with Bern-
stein polynomials.

To conclude, this work is a first contribution using Bernstein polynomials
within an abstract domain. Lot of directions are opened to increase the efficiency
of this proposal or ease its application. An exciting future work enabled by this
precise analysis of polynomial systems is the analysis of more general nonlinear
functions that could be abstracted by polynomials through a Taylor or Poisson
expansion. This is our next target.

References

1. Assalé Adjé, Stéphane Gaubert, and Éric Goubault. Coupling policy iteration
with semi-definite relaxation to compute accurate numerical invariants in static
analysis. In ESOP, 2010.

2. United States Air Force Chief Scientist (AF/ST). Report on technology horizons
- a vision for air force science & technology during 2010–2030, af/st-tr-10-01-pr.
Technical report, Air Force, 2010.

3. Xavier Allamigeon, Stephane Gaubert, and Eric Goubault. Inferring min and max
invariants using max-plus polyhedra. In SAS, 2008.

4. Roberto Bagnara, Enric Rodŕıguez-Carbonell, and Enea Zaffanella. Generation of
basic semi-algebraic invariants using convex polyhedra. In SAS, 2005.

5. David Cachera, Thomas P. Jensen, Arnaud Jobin, and Florent Kirchner. Inference
of polynomial invariants for imperative programs: A farewell to Gröbner bases. In
Antoine Miné and David Schmidt, editors, SAS, volume 7460 of Lecture Notes in
Computer Science, pages 58–74. Springer, 2012.

6. Philippe Clauss and Irina Tchoupaeva. A symbolic approach to Bernstein expan-
sion for program analysis and optimization. In CC, 2004.

7. Patrick Cousot, Radhia Cousot, Jérôme Feret, Laurent Mauborgne, Antoine Miné,
and Xavier Rival. Why does Astrée scale up? Formal Methods in System Design,
35(3):229–264, 2009.

8. Pascal Cuoq, Florent Kirchner, Nikolai Kosmatov, Virgile Prevosto, Julien Sig-
noles, and Boris Yakobowski. Frama-C - a software analysis perspective. In SEFM,
2012.

A Polynomial Template Abstract Domain based on Bernstein Polynomials 15

9. Thao Dang and David Salinas. Image computation for polynomial dynamical
systems using the Bernstein expansion. In Ahmed Bouajjani and Oded Maler,
editors, CAV, volume 5643 of Lecture Notes in Computer Science, pages 219–232.
Springer, 2009.

10. Thao Dang and Romain Testylier. Reachability analysis using the Bernstein ex-
pansion over polyhedra. In Numerical Software Verification, 2012.

11. Michael Dierkes. Formal analysis of a triplex sensor voter in an industrial context.
In FMICS, 2011.

12. Edsger W. Dijkstra. Guarded commands, nondeterminacy and formal derivation
of programs. Commun. ACM, 18(8):453–457, 1975.

13. Rida T. Farouki. The Bernstein polynomial basis: A centennial retrospective.
Computer Aided Geometric Design, 29(6):379 – 419, 2012.

14. Jérôme Feret. Static analysis of digital filters. In ESOP, number 2986, 2004.
15. Jürgen Garloff, Christian Jansson, and Andrew P Smith. Lower bound functions

for polynomials. Journal of Computational and Applied Mathematics, 157(1):207
– 225, 2003.

16. Thomas Martin Gawlitza and David Monniaux. Improving strategies via SMT
solving. In ESOP, 2011.

17. Thomas Martin Gawlitza and Helmut Seidl. Computing relaxed abstract semantics
w.r.t. quadratic zones precisely. In SAS, 2010.

18. Thomas Martin Gawlitza, Helmut Seidl, Assalé Adjé, Stéphane Gaubert, and Eric
Goubault. Abstract interpretation meets convex optimization. J. Symb. Comput.,
47(12), 2012.

19. Temesghen Kahsai and Cesare Tinelli. Pkind: A parallel k-induction based model
checker. In PDMC, 2011.

20. César Muñoz and Anthony Narkawicz. Formalization of a representation of Bern-
stein polynomials and applications to global optimization. Journal of Automated
Reasoning, 2012.

21. P.S.V. Nataraj and M. Arounassalame. Constrained global optimization of multi-
variate polynomials using Bernstein branch and prune algorithm. Journal of Global
Optimization, 49:185–212, 2011.

22. Enric Rodŕıguez-Carbonell and Deepak Kapur. Automatic generation of polyno-
mial loop invariants: Algebraic foundations. In Proceedings of the 2004 interna-
tional symposium on Symbolic and algebraic computation, ISSAC, 2004.

23. Pierre Roux, Romain Jobredeaux, Pierre-Löıc Garoche, and Éric Féron. A generic
ellipsoid abstract domain for linear time invariant systems. In HSCC. ACM, 2012.

24. Siegfried M. Rump. Verification methods: rigorous results using floating-point
arithmetic. In Proceedings of the 2010 International Symposium on Symbolic and
Algebraic Computation, ISSAC ’10, pages 3–4, New York, NY, USA, 2010. ACM.

25. Sriram Sankaranarayanan, Henny B. Sipma, and Zohar Manna. Non-linear loop
invariant generation using Gröbner bases. POPL, 2004.

26. Sriram Sankaranarayanan, Henny B. Sipma, and Zohar Manna. Scalable analysis
of linear systems using mathematical programming. In VMCAI, 2005.

27. Jean Souyris, Virginie Wiels, David Delmas, and Hervé Delseny. Formal verification
of avionics software products. In FM, 2009.

	A Polynomial Template Abstract Domain based on Bernstein Polynomials

