Type Isomorphisms for Multiplicative-Additive Linear Logic

Rémi Di Guardia, Olivier Laurent

ENS Lyon (LIP), Labex Milyon, ANR DyVerSe
FSCD 2023, 4 July 2023

Introduction

(Type) Isomorphisms relate types/formulas/objects which are "the same"

Instantiation in λ-calculus, logics,...
Equational theory for $\left\{\begin{array}{l}\lambda \text {-calculus with products and unit type } \\ \text { cartesian closed categories }\end{array}\right.$
[Sol83]

\times	$A \times(B \times C)=(A \times B) \times C$		$A \times B=B \times A$	
\times and \rightarrow	$(A \times B) \rightarrow C=A \rightarrow(B \rightarrow C)$	$A \rightarrow(B \times C)=(A \rightarrow B) \times(A \rightarrow C)$		
1	$A \times 1=A$	$1 \rightarrow A=A$	$A \rightarrow 1=1$	

Introduction

(Type) Isomorphisms relate types/formulas/objects which are "the same"

Instantiation in λ-calculus, logics, ...
Equational theory for $\left\{\begin{array}{l}\text { Multiplicative Linear Logic } \\ \star \text {-autonomous categories }\end{array}\right.$
[BDC99]

Associativity	$A \otimes(B \otimes C)=(A \otimes B) \otimes C$	$A \ngtr(B \ngtr C)=(A \ngtr B) \gamma C$
Commutativity	$A \otimes B=B \otimes A$	$A 8 B=B 8 A$
Neutrality	$A \otimes 1=A$	$A 8 \perp=A$

$$
(A \otimes B) \multimap C=\left(A^{\perp} \gamma B^{\perp}\right) \gamma C=A^{\perp} \gamma\left(B^{\perp} \gamma C\right)=A \multimap(B \multimap C)
$$

Introduction

(Type) Isomorphisms relate types/formulas/objects which are "the same"

Instantiation in λ-calculus, logics, ...
Equational theory for $\left\{\begin{array}{l}\text { Multiplicative-Additive Linear Logic } \\ \star \text {-autonomous categories with finite products }\end{array}\right.$

Associativity	$A \otimes(B \otimes C)=(A \otimes B) \otimes C$		$A 8(B 8 C)=(A 8 B) 8 C$	
	$A \oplus(B \oplus C)=(A \oplus B) \oplus C$		$A \&(B \& C)=(A \& B) \& C$	
Commutativity	$A \otimes B=B \otimes A$	$A 8 B=B 8 A$	$A \oplus B=B \oplus A$	$A \& B=B \& A$
Neutrality	$A \otimes 1=A$	$A \gamma \perp=A$	$A \oplus 0=A$	$A \& T=A$
Distributivity	$A \otimes(B \oplus C)=(A \otimes B) \oplus(A \otimes C)$		$A 8(B \& C)=(A 8 B) \&(A 8 C)$	
Annihilation	$A \otimes 0=0$	$A \gamma$ T $=$ T		

Plan

(1) Definitions

- Multiplicative-Additive Linear Logic
- Type Isomorphisms
- Proof-Nets
(2) Isomorphisms of Multiplicative-Additive Linear Logic
- Simplifications
- Unit-free case
- Full case

Multiplicative-Additive Linear Logic

Formulas

Multiplicative-Additive Linear Logic

Formulas

Rules

$$
\begin{aligned}
& \frac{}{\vdash A^{\perp}, A} a x \quad \frac{\vdash A, \Gamma \quad \vdash A^{\perp}, \Delta}{\vdash \Gamma, \Delta} \text { cut } \\
& \frac{\vdash A, \Gamma \quad \vdash B, \Delta}{\vdash A \otimes B, \Gamma, \Delta} \otimes \frac{\vdash A, B, \Gamma}{\vdash A \varnothing B, \Gamma}>\quad \frac{}{\vdash 1} 1 \quad \frac{\vdash \Gamma}{\vdash \perp, \Gamma} \perp \\
& \frac{\vdash A, \Gamma \quad \vdash B, \Gamma}{\vdash A \& B, \Gamma} \& \quad \frac{\vdash A, \Gamma}{\vdash A \oplus B, \Gamma} \oplus_{1} \quad \frac{\vdash B, \Gamma}{\vdash A \oplus B, \Gamma} \oplus_{2} \quad \frac{\vdash \top, \Gamma}{\vdash}
\end{aligned}
$$

Multiplicative-Additive Linear Logic

Formulas

Rules

$$
\begin{aligned}
& \frac{}{\vdash A^{\perp}, A} a x \quad \frac{\vdash A, \Gamma \quad \vdash A^{\perp}, \Delta}{\vdash \Gamma, \Delta} \text { cut } \\
& \frac{\vdash A, \Gamma \quad \vdash B, \Delta}{\vdash A \otimes B, \Gamma, \Delta} \otimes \frac{\vdash A, B, \Gamma}{\vdash A 8 B, \Gamma}>\quad \frac{}{\vdash 1} 1 \quad \frac{\vdash \Gamma}{\vdash \perp, \Gamma} \perp \\
& \frac{\vdash A, \Gamma \quad \vdash B, \Gamma}{\vdash A \& B, \Gamma} \& \frac{\vdash A, \Gamma}{\vdash A \oplus B, \Gamma} \oplus_{1} \quad \frac{\vdash B, \Gamma}{\vdash A \oplus B, \Gamma} \oplus_{2} \\
& \overline{\vdash T, ~}^{\top}
\end{aligned}
$$

Multiplicative-Additive Linear Logic

Formulas

Rules

$$
\begin{aligned}
& \frac{}{\vdash A^{\perp}, A} \text { ax } \quad \frac{\vdash A, \Gamma \quad \vdash A^{\perp}, \Delta}{\vdash \Gamma, \Delta} \text { cut } \\
& \frac{\vdash A, \Gamma \quad \vdash B, \Delta}{\vdash A \otimes B, \Gamma, \Delta} \otimes \frac{\vdash A, B, \Gamma}{\vdash A \varnothing B, \Gamma}>\quad \frac{}{\vdash 1} 1 \quad \frac{\vdash \Gamma}{\vdash \perp, \Gamma} \perp \\
& \frac{\vdash A, \Gamma \quad \vdash B, \Gamma}{\vdash A \& B, \Gamma} \& \quad \frac{\vdash A, \Gamma}{\vdash A \oplus B, \Gamma} \oplus_{1} \quad \frac{\vdash B, \Gamma}{\vdash A \oplus B, \Gamma} \oplus_{2} \quad \frac{\vdash \top, \Gamma}{\vdash}
\end{aligned}
$$

- slice

Multiplicative-Additive Linear Logic

Formulas

Rules

$$
\frac{\vdash}{\vdash X^{\perp}, X} a x \quad \frac{\vdash A, \Gamma \quad \vdash A^{\perp}, \Delta}{\vdash \Gamma, \Delta} c u t
$$

$$
\frac{\vdash A, \Gamma \quad \vdash B, \Delta}{\vdash A \otimes B, \Gamma, \Delta} \otimes \frac{\vdash A, B, \Gamma}{\vdash A 8 B, \Gamma}>\quad \frac{}{\vdash 1} 1 \quad \frac{\vdash \Gamma}{\vdash \perp, \Gamma} \perp
$$

$\frac{\vdash A, \Gamma \quad \vdash B, \Gamma}{\vdash A \& B, \Gamma} \& \quad \frac{\vdash A, \Gamma}{\vdash A \oplus B, \Gamma} \oplus_{1} \quad \frac{\vdash B, \Gamma}{\vdash A \oplus B, \Gamma} \oplus_{2} \quad \frac{\vdash \top, \Gamma}{\vdash}$

- slice
- axiom-expansion $\xrightarrow{\eta}$

Multiplicative-Additive Linear Logic

Formulas

Rules

$$
\frac{}{\vdash X^{\perp}, X} a x \quad \frac{\vdash A, \Gamma \quad \vdash A^{\perp}, \Delta}{\vdash \Gamma, \Delta} c u t
$$

$$
\frac{\vdash A, \Gamma \quad \vdash B, \Delta}{\vdash A \otimes B, \Gamma, \Delta} \otimes \quad \frac{\vdash A, B, \Gamma}{\vdash A \gamma B, \Gamma}>\quad \frac{}{\vdash 1} 1 \quad \frac{\vdash \Gamma}{\vdash \perp, \Gamma} \perp
$$

$\frac{\vdash A, \Gamma \quad \vdash B, \Gamma}{\vdash A \& B, \Gamma} \& \quad \frac{\vdash A, \Gamma}{\vdash A \oplus B, \Gamma} \oplus_{1} \quad \frac{\vdash B, \Gamma}{\vdash A \oplus B, \Gamma} \oplus_{2} \quad \frac{}{\vdash \top, \Gamma} \top$

- slice
- axiom-expansion $\xrightarrow{\eta}$
- cut-elimination $\xrightarrow{\beta}$

Unit-free Multiplicative-Additive Linear Logic

Formulas

Rules

$$
\frac{}{\vdash X^{\perp}, X} \text { ax } \quad \frac{\vdash A, \Gamma \quad \vdash A^{\perp}, \Delta}{\vdash \Gamma, \Delta} c u t
$$

$$
\begin{equation*}
\frac{\vdash A, \Gamma \quad \vdash B, \Delta}{\vdash A \otimes B, \Gamma, \Delta} \otimes \frac{\vdash A, B, \Gamma}{\vdash A \gamma B, \Gamma}> \tag{1}
\end{equation*}
$$

$\frac{\vdash A, \Gamma \quad \vdash B, \Gamma}{\vdash A \& B, \Gamma} \& \quad \frac{\vdash A, \Gamma}{\vdash A \oplus B, \Gamma} \oplus_{1} \quad \frac{\vdash B, \Gamma}{\vdash A \oplus B, \Gamma} \oplus_{2}$

- slice
- axiom-expansion $\xrightarrow{\eta}$
- cut-elimination $\xrightarrow{\beta}$

Type Isomorphisms

In category theory:

In λ-calculus:

Isomorphism $A \simeq B$

Terms $M: A \rightarrow B$ and $N: B \rightarrow A$ such that

$$
N \circ M={ }_{\beta \eta} \lambda x^{A} \cdot x \quad \text { and } \quad M \circ N={ }_{\beta \eta} \lambda y^{B} \cdot y
$$

Type Isomorphisms

In category theory:

In linear logic:

Isomorphism $A \simeq B$

Proofs $\pi \vdash A^{\perp}, B$ and $\sigma \vdash B^{\perp}, A$ such that

$$
\frac{\frac{\sigma}{\vdash A, B^{\perp}} \frac{\pi}{\vdash A^{\perp}, A}}{\vdash B, A^{\perp}} \text { cut }={ }_{\beta \eta} \frac{}{\vdash A^{\perp}, A} \text { ax } \text { and } \frac{\frac{\pi}{\vdash B, A^{\perp}} \frac{\sigma}{\vdash B^{\perp}, B} B^{\perp}}{} \text { cut }=\beta_{\eta} \frac{B^{\perp}, B}{\vdash B^{\prime}} \text { ax }
$$

Proof-Nets of Hughes \& Van Glabbeek [HvG05]

$(X \&(Y \oplus X)) \otimes Y \quad Y^{\perp} \gamma\left(X \gamma\left(X^{\perp} \otimes X^{\perp}\right)\right)$

Proof-Nets of Hughes \& Van Glabbeek [HvG05]

$(X \&(Y \oplus X)) \otimes Y \quad Y^{\perp} 8\left(X \gamma\left(X^{\perp} \otimes X^{\perp}\right)\right)$

Proof-Nets of Hughes \& Van Glabbeek [HvG05]

$(X \&(Y \oplus X)) \otimes Y \quad Y^{\perp} 8\left(X>\left(X^{\perp} \otimes X^{\perp}\right)\right)$

Proof-Nets of Hughes \& Van Glabbeek [HvG05]

$$
(X \&(Y \oplus X)) \otimes Y \quad Y^{\perp} \gamma\left(X>\left(X^{\perp} \otimes X^{\perp}\right)\right)
$$

with a complex correctness criterion, forbidding some kind of cycles

Properties of Proof-Nets

Pros: identify proofs up to rule commutations [HvG16], thus up to $={ }_{\beta \eta}$

$$
\frac{\frac{\pi}{\vdash A_{1}, A_{2}, B_{1}, B_{2}, \Gamma}}{\frac{\vdash A_{1} \ngtr A_{2}, B_{1}, B_{2}, \Gamma}{\vdash A_{1} \gamma A_{2}, B_{1} \gamma B_{2}, \Gamma} \gamma}=c \quad \frac{\frac{\pi}{\vdash A_{1}, A_{2}, B_{1}, B_{2}, \Gamma}}{\frac{\vdash A_{1}, A_{2}, B_{1} \gamma B_{2}, \Gamma}{\vdash A_{1} \ngtr A_{2}, B_{1} \gamma B_{2}, \Gamma}>}
$$

Properties of Proof-Nets

Pros: identify proofs up to rule commutations [HvG16], thus up to $={ }_{\beta \eta}$

$$
\frac{\frac{\pi}{\vdash A_{1}, A_{2}, B_{1}, B_{2}, \Gamma}}{\frac{\vdash A_{1} \gamma A_{2}, B_{1}, B_{2}, \Gamma}{\vdash A_{1} \gamma A_{2}, B_{1} \ngtr B_{2}, \Gamma} \gamma}=c \quad \frac{\pi}{\frac{\vdash A_{1}, A_{2}, B_{1}, B_{2}, \Gamma}{\vdash A_{1}, A_{2}, B_{1} \gamma B_{2}, \Gamma}} \gg
$$

Cons: does not work with

- non-expanded axioms
- units

Plan

(1) Definitions
 - Multiplicative-Additive Linear Logic
 - Type Isomorphisms
 - Proof-Nets

(2) Isomorphisms of Multiplicative-Additive Linear Logic

- Simplifications
- Unit-free case
- Full case

Associativity	$A \otimes(B \otimes C)=(A \otimes B) \otimes C$		$A 8(B \gamma C)=(A 8 B) 8 C$	
	$A \oplus(B \oplus C)=(A \oplus B) \oplus C$		$A \&(B \& C)=(A \& B) \& C$	
Commutativity	$A \otimes B=B \otimes A$	$A 8 B=B 8 A$	$A \oplus B=B \oplus A$	$A \& B=B \& A$
Neutrality	$A \otimes 1=A$	$A \gamma \perp=A$	$A \oplus 0=A$	$A \& T=A$
Distributivity	$A \otimes(B \oplus C)=(A \otimes B) \oplus(A \otimes C)$		$A \gamma(B \& C)=(A 8 B) \&(A 8 C)$	
Annihilation	$A \otimes 0=0$	$A \gamma T=\top$		

Axiom-expanded proofs

Reduction to axiom-expanded proofs

$$
\begin{aligned}
& \pi=\left.\beta \eta \stackrel{\rightharpoonup}{*}^{\downarrow}\right|_{*} ^{\downarrow} \\
& \pi^{\prime}=\beta \sigma^{\prime}
\end{aligned}
$$

with in $\pi^{\prime}={ }_{\beta} \sigma^{\prime}$ only axiom-expanded proofs

Proof.

Simple study of axiom-expansion $\xrightarrow{\eta}$ and cut-elimination $\xrightarrow{\beta}$.

Remove one obstacle to the use of proof-nets!

Distributivity

Distributed Formula

$\begin{aligned} & A \otimes(B \oplus C) \\ & (A \oplus B) \otimes C \end{aligned}$			$(A \otimes B) \oplus(A \otimes C)$			$\begin{aligned} & (C \& B) \gamma A \\ & C \gamma(B \& A) \end{aligned}$			$\begin{aligned} & \rightarrow \\ & \rightarrow \end{aligned}$	$(C \gamma A) \&(B \gamma A)$			
			$(A \otimes C$						(C8B)				
$A \otimes 1$	\rightarrow	A	$1 \otimes A$	\rightarrow	A	A8 \perp	\rightarrow	A			$\perp 8 \mathrm{~A}$	\rightarrow	A
$A \oplus 0$	\rightarrow	A	$0 \oplus A$	\rightarrow	A	A\& ${ }^{\text {T }}$	\rightarrow	A		$T \& A$	\rightarrow	A	
$A \otimes 0$	\rightarrow	0	$0 \otimes A$	\rightarrow	0	A8T	\rightarrow	T		TヌA	\rightarrow	T	

Distributivity

Distributed Formula

$\begin{aligned} & A \otimes(B \oplus C) \\ & (A \oplus B) \otimes C \end{aligned}$				$(A \otimes B) \oplus(A \otimes C)$		$\begin{aligned} & (C \& B) \gamma A \\ & C 8(B \& A) \end{aligned}$			$\begin{aligned} & \rightarrow \\ & \rightarrow \end{aligned}$	$(C \gamma A) \&(B \gamma A)$				
			$(A \otimes C) \oplus($	$\otimes C)$	$(C 8 B)$				\&	8 A)				
$A \otimes 1$	\rightarrow	A			$1 \otimes A \rightarrow$	A	A8 1	\rightarrow		A		\perp ¢	\rightarrow	A
$A \oplus 0$	\rightarrow	A		$0 \oplus A \rightarrow$	A	$A \& T$	\rightarrow	A		$T \& A$	\rightarrow	A		
$A \otimes 0$	\rightarrow	0		$0 \otimes A \rightarrow$	0	A 8 T	\rightarrow	T		丁ァA	\rightarrow	\top		

Proposition

If \mathcal{E} is complete for distributed formulas, then $\mathcal{E}+$ neutrality + distributivity + annihilation is complete for arbitrary formulas.

Associativity	$A \otimes(B \otimes C)=(A \otimes B) \otimes C$		$A 8(B 8 C)=(A 8 B) 8 C$	
	$A \oplus(B \oplus C)=(A \oplus B) \oplus C$		$A \&(B \& C)=(A \& B) \& C$	
Commutativity	$A \otimes B=B \otimes A$	$A 8 B=B 8 A$	$A \oplus B=B \oplus A$	$A \& B=B \& A$
Neutrality	$A \otimes 1=A$	$A \gtrdot \perp=A$	$A \oplus 0=A$	$A \& \top=A$
Distributivity	$A \otimes(B \oplus C)=(A \otimes B) \oplus(A \otimes C)$		$A \gamma(B \& C)=(A \gamma B) \&(A \gamma C)$	
Annihilation	$A \otimes 0=0$	$A \gamma T=T$		

Shape of distributed isomorphisms

Forbidden configurations in distributed isomorphisms:

Shape of distributed isomorphisms

Forbidden configurations in distributed isomorphisms:

General shape:

Shape of distributed isomorphisms

Forbidden configurations in distributed isomorphisms:

General shape:

Why this shape?

$A \otimes(B \oplus C) \simeq(A \otimes B) \oplus(A \otimes C)$ not of this shape
Correctness criterion to get this "local" shape from "global" distributivity

(1) Forbidden configuration

Why this shape?

$A \otimes(B \oplus C) \simeq(A \otimes B) \oplus(A \otimes C)$ not of this shape
Correctness criterion to get this "local" shape from "global" distributivity

(1) Forbidden configuration
(2) Dependence on a \&

Why this shape?

$A \otimes(B \oplus C) \simeq(A \otimes B) \oplus(A \otimes C)$ not of this shape
Correctness criterion to get this "local" shape from "global" distributivity

(1) Forbidden configuration
(2) Dependence on a \&
(3) 8 below

Why this shape?

$A \otimes(B \oplus C) \simeq(A \otimes B) \oplus(A \otimes C)$ not of this shape
Correctness criterion to get this "local" shape from "global" distributivity

(1) Forbidden configuration
(9) Distributivity
(2) Dependence on a \&
(3) 8 below

Why this shape?

$A \otimes(B \oplus C) \simeq(A \otimes B) \oplus(A \otimes C)$ not of this shape
Correctness criterion to get this "local" shape from "global" distributivity

(1) Forbidden configuration
(2) Dependence on a \&
(3) 8 below

Where are we?

Equations

Syntax

Where are we?

Equations

Syntax

Confluence in sequent caculus

Confluence

up to rule commutations

$$
\begin{array}{ll}
\pi={ }_{\beta} & \sigma \\
\varpi_{*} & \\
\pi^{\prime}={ }_{c}^{*} & \sigma^{\prime}
\end{array}
$$

Confluence in sequent caculus

Confluence

up to rule commutations

$$
\begin{aligned}
& \pi=\beta \\
& \downarrow_{*}^{\infty} \\
& \pi^{\prime}=_{c}^{*} \downarrow^{\infty} \\
& \sigma^{\prime}
\end{aligned}
$$

Handling the Units $0, T, 1, \perp$

In isomorphisms of distributed formulas:

$$
\begin{aligned}
& \text { (a) } \overline{\vdash T, 0}^{\top} \\
& \begin{array}{c}
\overline{\vdash 1} 1 \\
\overline{\bar{\vdash}=} \oplus_{i} \\
\stackrel{\perp}{\vdash \perp, F} \perp
\end{array}
\end{aligned}
$$

Handling the Units $0, T, 1, \perp$

In isomorphisms of distributed formulas:

$$
\begin{aligned}
& \text { (a) } \overline{\vdash T, 0}^{\top} \\
& \begin{array}{c}
\overline{\vdash 1} 1 \\
\overline{\bar{\vdash}=} \oplus_{i} \\
\stackrel{\perp}{\vdash}+\digamma
\end{array} \\
& \begin{array}{l}
\frac{\overline{\vdash 1}^{1}}{\vdash \perp, 1} \perp \\
\bar{\vdash}=\overline{=}=\overline{=} \oplus_{i} \\
\vdash \perp, \bar{F}
\end{array}
\end{aligned}
$$

Handling the Units $0, \top, 1, \perp$

In isomorphisms of distributed formulas:
(a) $\overline{\vdash T, 0}^{\top}$

$$
\begin{gathered}
\overline{\vdash 1} 1 \\
\overline{\bar{\vdash}=}=\oplus_{i} \\
\stackrel{F}{\vdash \perp, F} \perp
\end{gathered}
$$

$$
\begin{gathered}
\frac{\downarrow}{\vdash 1} 1 \\
\frac{\vdash \perp, 1}{\vdash} \perp \\
\bar{\vdash}=\overline{=} \overline{\bar{F}}
\end{gathered} \oplus_{i}
$$

(C) $\vdash X_{0}^{\perp}, X_{0} a x$

$$
\begin{aligned}
& \vdash X_{1}^{\perp}, X_{1} a x \\
= & ======= \\
\vdash= & ==\Theta_{i}^{\perp}, F\left[X_{1} / 1\right]
\end{aligned}
$$

Results

Theorem

Isomorphisms of Multiplicative-Additive Linear Logic:

Associativity	$A \otimes(B \otimes C)=(A \otimes B) \otimes C$		$A 8(B \gamma C)=(A 8 B) 8 C$	
	$A \oplus(B \oplus C)=(A \oplus B) \oplus C$		$A \&(B \& C)=(A \& B) \& C$	
Commutativity	$A \otimes B=B \otimes A$	$A \gamma B=B \gamma A$	$A \oplus B=B \oplus A$	$A \& B=B \& A$
Neutrality	$A \otimes 1=A$	$A \gamma \perp=A$	$A \oplus 0=A$	$A \& T=A$
Distributivity	$A \otimes(B \oplus C)=(A \otimes B) \oplus(A \otimes C)$		$A 8(B \& C)=(A 8 B) \&(A 8 C)$	
Annihilation	$A \otimes 0=0$	$A 8 \mathrm{~T}=\mathrm{T}$		

Results

Theorem

Isomorphisms of \star-autonomous categories with finite products:

Associativity	$A \otimes(B \otimes C)=(A \otimes B) \otimes C$		$A \gamma(B \gamma C)=(A 8 B) \gamma C$	
	$A \oplus(B \oplus C)=(A \oplus B) \oplus C$		$A \&(B \& C)=(A \& B) \& C$	
Commutativity	$A \otimes B=B \otimes A$	$A 8 B=B 8 A$	$A \oplus B=B \oplus A$	$A \& B=B \& A$
Neutrality	$A \otimes 1=A$	$A 8 \perp=A$	$A \oplus 0=A$	$A \& T=A$
Distributivity	$A \otimes(B \oplus C)=(A \otimes B) \oplus(A \otimes C)$		$A \gamma(B \& C)=(A 8 B) \&(A 8 C)$	
Annihilation	$A \otimes 0=0$	$A \gamma T=\top$		
De Morgan	$A \multimap B=A^{\perp} 8 B$	$X^{\perp \perp}=X$		
	$(A \otimes B)^{\perp}=B^{\perp} 8 A^{\perp}$	$(A 8 B)^{\perp}=B^{\perp} \otimes A^{\perp}$	$(A \oplus B)^{\perp}=B^{\perp} \& A^{\perp}$	$(A \& B)^{\perp}=B^{\perp} \oplus A^{\perp}$
	$1^{\perp}=\perp$	$\perp^{\perp}=1$	$0^{\perp}=\mathrm{T}$	$\mathrm{T}^{\perp}=0$

Results

Theorem

Isomorphisms of \star-autonomous categories with finite products:

Associativity	$A \otimes(B \otimes C)=(A \otimes B) \otimes C$		$A 8(B \gamma C)=(A 8 B) \gamma C$	
	$A \oplus(B \oplus C)=(A \oplus B) \oplus C$		$A \&(B \& C)=(A \& B) \& C$	
Commutativity	$A \otimes B=B \otimes A$	$A 8 B=B 8 A$	$A \oplus B=B \oplus A$	$A \& B=B \& A$
Neutrality	$A \otimes 1=A$	$A \gamma \perp=A$	$A \oplus 0=A$	$A \& T=A$
Distributivity	$A \otimes(B \oplus C)=(A \otimes B) \oplus(A \otimes C)$		$A \gamma(B \& C)=(A$ ® $B) \&(A \gamma C)$	
Annihilation	$A \otimes 0=0$	$A 8 \mathrm{~T}=\mathrm{T}$		
De Morgan	$A \multimap B=A^{\perp} 8 B$	$X^{\perp \perp}=X$		
	$(A \otimes B)^{\perp}=B^{\perp} 8 A^{\perp}$	$(A \gamma B)^{\perp}=B^{\perp} \otimes A^{\perp}$	$(A \oplus B)^{\perp}=B^{\perp} \& A^{\perp}$	$(A \& B)^{\perp}=B^{\perp} \oplus A^{\perp}$
	$1^{\perp}=\perp$	$\perp^{\perp}=1$	$0^{\perp}=\mathrm{T}$	$\mathrm{T}^{\perp}=0$

Confluence up to rule commutations in sequent calculus

$$
\begin{aligned}
\sigma \xrightarrow{\sigma} \begin{array}{r}
\eta^{*} \\
={ }_{\beta \eta} \\
\\
\\
\\
\pi \xrightarrow{\eta^{*}} \xrightarrow{\beta^{*}} \\
\sigma^{\prime} \\
{ }^{\prime} \\
{ }_{c}^{*}
\end{array} \\
\pi^{\prime}
\end{aligned}
$$

Ongoing and future work

- State of the art: [BDC99]

Ongoing and future work

- State of the art: [BDC99], [this talk]

	E	5
	A	$\stackrel{\sim}{\sim}$
\square	M	on

Ongoing and future work

- State of the art: [BDC99], [this talk], [Lau05]

Ongoing and future work

- State of the art: [BDC99], [this talk], [Lau05]
- Isomorphisms for MELL

Ongoing and future work

- State of the art: [BDC99], [this talk], [Lau05]
- Isomorphisms for MELL
- Isomorphisms for MALL with quantifiers

$$
\begin{aligned}
& \forall x, \forall y, A \simeq \forall y, \forall x, A \\
& \forall x, A \& B \simeq(\forall x, A) \&(\forall x, B) \\
& \forall x, A \ngtr B \simeq(\forall x, A) \ngtr B \text { if } x \notin B \\
& \text { (and the dual versions) }
\end{aligned}
$$

Ongoing and future work

- State of the art: [BDC99], [this talk], [Lau05]
- Isomorphisms for MELL
- Isomorphisms for MALL with quantifiers

$$
\begin{aligned}
& \forall x, \forall y, A \simeq \forall y, \forall x, A \\
& \forall x, A \& B \simeq(\forall x, A) \&(\forall x, B) \\
& \forall x, A \ngtr B \simeq(\forall x, A) \ngtr B \text { if } x \notin B \\
& \text { (and the dual versions) }
\end{aligned}
$$

- Retractions in MLL (subtyping)

Thank you!

References I

围 Vincent Balat and Roberto Di Cosmo.
A linear logical view of linear type isomorphisms.
In Jörg Flum and Mario Rodríguez-Artalejo, editors, Computer Science Logic, volume 1683 of Lecture Notes in Computer Science, pages 250-265. Springer, 1999.
固 Dominic Hughes and Rob van Glabbeek.
Proof nets for unit-free multiplicative-additive linear logic.
ACM Transactions on Computational Logic, 6(4):784-842, 2005.
Rominic Hughes and Rob van Glabbeek.
MALL proof nets identify proofs modulo rule commutation, 2016.
https://arxiv.org/abs/1609.04693.

References II

葍 Olivier Laurent.
Classical isomorphisms of types.
Mathematical Structures in Computer Science, 15(5):969-1004, October 2005.
目 Sergei Soloviev.
The category of finite sets and cartesian closed categories. Journal of Soviet Mathematics, 22(3):1387-1400, 1983.

