Proof theory and linear logic

Rémi Di Guardia

PhD Seminar, 27 June 2023

1/10

Introduction

In Mathematics / Theoretical computer science:

- pose definitions
- write proofs

- pose definitions
- write proofs

Richard paradox

? the smallest positive integer not definable except if you wrote at least sixty letters [86 letters]

- pose definitions
- write proofs

Richard paradox

- ? the smallest positive integer not definable except if you wrote at least sixty letters [86 letters]
- ? the smallest positive integer not definable in under sixty letters [57 letters]

- pose definitions
- write proofs

Richard paradox

- X the smallest positive integer not definable except if you wrote at least sixty letters [86 letters]
- X the smallest positive integer not definable in under sixty letters [57 letters]

- pose definitions
- write proofs

Richard paradox

- X the smallest positive integer not definable except if you wrote at least sixty letters [86 letters]
- X the smallest positive integer not definable in under sixty letters [57 letters]
- ? the smallest positive integer not definable in under twenty letters [58 letters]

- pose definitions
- write proofs

Richard paradox

- X the smallest positive integer not definable except if you wrote at least sixty letters [86 letters]
- X the smallest positive integer not definable in under sixty letters [57 letters]
- ? the smallest positive integer not definable in under twenty letters [58 letters]

Proof theory: study proofs and their properties

An absolutely true result

$$-1 = 1$$

Proof.

$$-1 = (-1)^{\frac{2}{2}} = ((-1)^2)^{\frac{1}{2}} = 1^{\frac{1}{2}} = 1$$

An absolutely true result

$$-1 = 1$$

Proof.

$$-1 = (-1)^{\frac{2}{2}} = ((-1)^2)^{\frac{1}{2}} = 1^{\frac{1}{2}} = 1$$

Continuum hypothesis

There is no set whose cardinal is strictly between that of the integers and the real numbers.

An absolutely true result

$$-1 = 1$$

Proof.

$$-1 = (-1)^{\frac{2}{2}} = ((-1)^2)^{\frac{1}{2}} = 1^{\frac{1}{2}} = 1$$

Continuum hypothesis

There is no set whose cardinal is strictly between that of the integers and the real numbers.

This hypothesis is not provable.

An absolutely true result

$$-1 = 1$$

Proof.

$$-1 = (-1)^{\frac{2}{2}} = ((-1)^2)^{\frac{1}{2}} = 1^{\frac{1}{2}} = 1$$

Continuum hypothesis

There is no set whose cardinal is strictly between that of the integers and the real numbers.

This hypothesis is not provable. But its negation neither is!

Rémi Di Guardia

3/10

Lemma

For all integer n, there exists an integer k such that n is equal to k + 1.

Proof.

Any *n* is equal to (n-1) + 1.

Lemma

$$\forall n \in \mathbb{Z}, \exists k \in \mathbb{Z}, n = k + 1$$

Proof.

Any *n* is equal to (n-1) + 1.

Lemma

$$\forall n \in \mathbb{Z}, \exists k \in \mathbb{Z}, n = k + 1$$

Proof.

We prove $\forall n \in \mathbb{Z}, \exists k \in \mathbb{Z}, n = k + 1$. It suffices to prove $\exists k \in \mathbb{Z}, n = k + 1$ for arbitrary $n \in \mathbb{Z}$. Instanciate $k = n - 1 \in \mathbb{Z}$. It holds that n = (n - 1) + 1.

Lemma

$$\forall n \in \mathbb{Z}, \exists k \in \mathbb{Z}, n = k + 1$$

Proof.

$$\frac{\overline{n = (n-1)+1}}{\exists k \in \mathbb{Z}, n = k+1} \stackrel{(eq)}{(\exists)}}{\forall n \in \mathbb{Z}, \exists k \in \mathbb{Z}, n = k+1} (\forall)$$

Rémi Di Guardia

$$\frac{\Gamma \vdash \mathcal{A}[y/x], \Sigma}{\Gamma \vdash \exists x \ \mathcal{A}, \Sigma} \ (\exists) \qquad \frac{\Gamma \vdash \mathcal{A}, \Sigma}{\Gamma \vdash \forall x \ \mathcal{A}, \Sigma} \ (\forall)$$

$$\frac{\Gamma \vdash A[y/x], \Sigma}{\Gamma \vdash \exists x \ A, \Sigma} (\exists) \qquad \frac{\Gamma \vdash A, \Sigma}{\Gamma \vdash \forall x \ A, \Sigma} (\forall)$$
$$\frac{\Gamma \vdash A, \Sigma}{\Gamma \vdash A \land B, \Sigma} (\land) \qquad \frac{\Gamma \vdash A, \Sigma}{\Gamma \vdash A \lor B, \Sigma} (\lor) \qquad \frac{\Gamma \vdash B, \Sigma}{\Gamma \vdash A \lor B, \Sigma} (\lor)$$

$$\frac{\Gamma \vdash A[y/x], \Sigma}{\Gamma \vdash \exists x \ A, \Sigma} (\exists) \qquad \frac{\Gamma \vdash A, \Sigma}{\Gamma \vdash \forall x \ A, \Sigma} (\forall)$$

$$\frac{\Gamma \vdash A, \Sigma}{\Gamma \vdash A \land B, \Sigma} (\land) \qquad \frac{\Gamma \vdash A, \Sigma}{\Gamma \vdash A \lor B, \Sigma} (\lor) \qquad \frac{\Gamma \vdash B, \Sigma}{\Gamma \vdash A \lor B, \Sigma} (\lor)$$

$$\frac{\Gamma \vdash A, \Sigma}{\Gamma, \Delta \vdash A \land B, \Sigma, \Theta} (\land) \qquad \frac{\Gamma \vdash A, B, \Sigma}{\Gamma \vdash A \lor B, \Sigma} (\lor)$$

$$(and more rules)$$

$$\frac{\Gamma \vdash A[y/x], \Sigma}{\Gamma \vdash \exists x \ A, \Sigma} (\exists) \qquad \frac{\Gamma \vdash A, \Sigma}{\Gamma \vdash \forall x \ A, \Sigma} (\forall)$$
$$\frac{\Gamma \vdash A, \Sigma}{\Gamma \vdash A \land B, \Sigma} (\land) \qquad \frac{\Gamma \vdash A, \Sigma}{\Gamma \vdash A \lor B, \Sigma} (\lor) \qquad \frac{\Gamma \vdash B, \Sigma}{\Gamma \vdash A \lor B, \Sigma} (\lor)$$
$$\frac{\Gamma \vdash A, \Sigma}{\Gamma, \Delta \vdash A \land B, \Sigma, \Theta} (\land) \qquad \frac{\Gamma \vdash A, B, \Sigma}{\Gamma \vdash A \lor B, \Sigma} (\lor)$$
$$(and more rules)$$

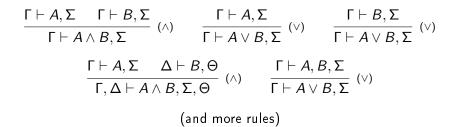
Very symmetric but bad properties: many trees for the same "proof"

Cauchy-Lipschitz theorem: unique solution to some differential problems. Engineer point of view: still no answer :(**Cauchy-Lipschitz theorem:** unique solution to some differential problems. Engineer point of view: still no answer :(

Intuitionistic Logic by changing the rules from Classical Logic Constructive: from a proof of $\exists x \ A$ can recover an algorithm computing x **Cauchy-Lipschitz theorem:** unique solution to some differential problems. Engineer point of view: still no answer :(

Intuitionistic Logic by changing the rules from Classical Logic Constructive: from a proof of $\exists x \ A$ can recover an algorithm computing x

But *weaker* logic (no excluded middle)



$\frac{\Gamma \vdash A, \Sigma \quad \Gamma \vdash B, \Sigma}{\Gamma \vdash A \& B, \Sigma} (\&) \qquad \frac{\Gamma \vdash A, \Sigma}{\Gamma \vdash A \oplus B, \Sigma} (\oplus) \qquad \frac{\Gamma \vdash B, \Sigma}{\Gamma \vdash A \oplus B, \Sigma} (\oplus)$ $\frac{\Gamma \vdash A, \Sigma \quad \Delta \vdash B, \Theta}{\Gamma, \Delta \vdash A \otimes B, \Sigma, \Theta} (\otimes) \qquad \frac{\Gamma \vdash A, B, \Sigma}{\Gamma \vdash A \Im B, \Sigma} (\Im)$ (and even more rules)

$$\frac{\Gamma \vdash A, \Sigma \quad \Gamma \vdash B, \Sigma}{\Gamma \vdash A \& B, \Sigma} (\&) \quad \frac{\Gamma \vdash A, \Sigma}{\Gamma \vdash A \oplus B, \Sigma} (\oplus) \quad \frac{\Gamma \vdash B, \Sigma}{\Gamma \vdash A \oplus B, \Sigma} (\oplus)$$
$$\frac{\Gamma \vdash A, \Sigma \quad \Delta \vdash B, \Theta}{\Gamma, \Delta \vdash A \otimes B, \Sigma, \Theta} (\otimes) \quad \frac{\Gamma \vdash A, B, \Sigma}{\Gamma \vdash A \Im B, \Sigma} (\Im)$$
$$(and even more rules)$$

- Good properties
- Generalizes both classical and intuitionistic logics
- Linear use of hypotheses: A implies B means A consumed to prove B

Menu	35€
Entree	Quiche or Salmon
Plat	Pasta or Duck
Dessert	Fruit (Banana or Apple according to season) or
	Cake (Flan or Chocolate according to Chief's mood)
Sides	Water at will

Menu	35€
Entree	Quiche or Salmon
Plat	Pasta or Duck
Dessert	
	Cake (Flan or Chocolate according to Chief's mood)
Sides	Water at will

35€ —

 $-\infty$ linear implication, consume its premise (or as $A \implies B = \neg A \lor B$)

Menu	35€
Entree	Quiche or Salmon
Plat	Pasta or Duck
Dessert	Fruit (Banana or Apple according to season) or
	Cake (Flan or Chocolate according to Chief's mood)
Sides	Water at will

 $35 \in - \circ [(Q \& S)]$

→ linear implication, consume its premise (or as $A \implies B = \neg A \lor B$) & and where we (the client) choose between two options

Menu	35€
Entree	Quiche or Salmon
Plat	Pasta or Duck
Dessert	Fruit (Banana or Apple according to season) or
	Cake (Flan or Chocolate according to Chief's mood)
Sides	Water at will

 $35 \in \multimap [(Q \& S) \otimes (P \& D)]$

 \multimap linear implication, consume its premise (or as $A \implies B = \neg A \lor B$)

- & and where we (the client) choose between two options
- ⊗ <u>and</u> where we get both options

Menu	35€
Entree	Quiche or Salmon
Plat	Pasta or Duck
Dessert	Fruit (Banana or Apple according to season) or
	Cake (Flan or Chocolate according to Chief's mood)
Sides	Water at will

$$35 \in \multimap [(Q \& S) \otimes (P \& D) \otimes ((B \oplus A) \& (F \oplus C))]$$

- \multimap linear implication, consume its premise (or as $A \implies B = \neg A \lor B$)
- & and where we (the client) choose between two options
- ⊗ <u>and</u> where we get both options
- ① <u>or</u> where we (the client) do not choose between two options

8/10

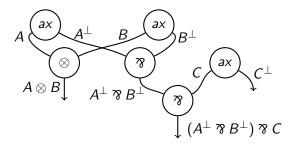
Menu	35€
Entree	Quiche or Salmon
Plat	Pasta or Duck
Dessert	Fruit (Banana or Apple according to season) or
	Cake (Flan or Chocolate according to Chief's mood)
Sides	Water at will

$$35 \in - \circ [(Q \& S) \otimes (P \& D) \otimes ((B \oplus A) \& (F \oplus C)) \otimes !W]$$

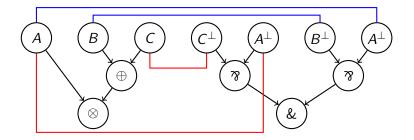
- \multimap linear implication, consume its premise (or as $A \implies B = \neg A \lor B$)
- & and where we (the client) choose between two options
- ⊗ <u>and</u> where we get both options
- \oplus <u>or</u> where we (the client) do not choose between two options
- ! unlimited resource

Rémi Di Guardia

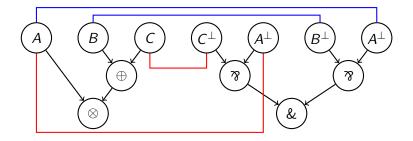
Proof Nets: graphs as proofs



Proof Nets: graphs as proofs

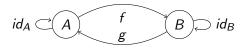


Proof Nets: graphs as proofs



Even better properties: one graph for one "proof"! But does not work for the full logic.

• Use proof nets to find results, e.g. isomorphisms

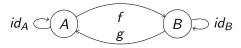


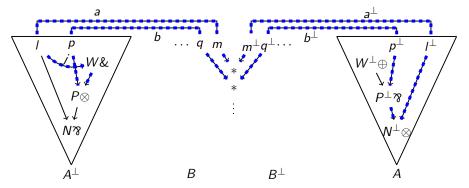
 $(A \times B) \rightarrow C \simeq A \rightarrow (B \rightarrow C)$

Associativity	$A \otimes (B \otimes C) = (A \otimes B) \otimes C$		$A \mathfrak{F} (B \mathfrak{F} C) = (A \mathfrak{F} B) \mathfrak{F} C$	
Associativity	$A \oplus (B \oplus C) =$	$= (A \oplus B) \oplus C$	A&(B&C) = (A&B)&C	
Commutativity	$A \otimes B = B \otimes A$	$A \ \mathcal{B} B = B \ \mathcal{B} A$	$A \oplus B = B \oplus A$	A&B = B&A
Neutrality	$A \otimes 1 = A$	A % $\perp = A$	$A \oplus 0 = A$	$A \& \top = A$
Distributivity	$A\otimes (B\oplus C)=($	$A \otimes B) \oplus (A \otimes C)$	$A \Im (B \& C) = (A \Im B) \& (A \Im C)$	
Annihilation	$A \otimes 0 = 0$	A % $\top = \top$		

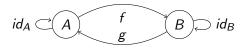
10/10

• Use proof nets to find results, e.g. isomorphisms





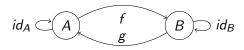
• Use proof nets to find results, e.g. isomorphisms



 $(A \times B) \rightarrow C \simeq A \rightarrow (B \rightarrow C)$

• Proof nets on more parts of the logic

• Use proof nets to find results, e.g. isomorphisms



 $(A \times B) \rightarrow C \simeq A \rightarrow (B \rightarrow C)$

- Proof nets on more parts of the logic
- Formalization in Coq 🥍

Thank you!