
Retractions for Multiplicative Linear Logic

Rémi Di Guardia

ENS Lyon (LIP), France

Bath 2024, 1 March

Rémi Di Guardia Retractions for MLL Bath 2024, 1 March 1 / 38



Isomorphisms

Isomorphisms relate types/formulas/objects A and B which are �the
same�

A ≃ B

A Bf
g

idA idB

Instantiation in λ-calculus, logics,. . .
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Isomorphisms

Isomorphisms relate types/formulas/objects A and B which are �the
same�

A ≃ B

A Bf
g

idA idB

Equational theory for λ-calculus with products and unit / cartesian closed
categories [Sol83]

× A× (B × C ) ≃ (A× B)× C A× B ≃ B × A

× and → (A× B) → C ≃ A → (B → C ) A → (B × C ) ≃ (A → B)× (A → C )

1 A× 1 ≃ A 1 → A ≃ A A → 1 ≃ 1
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Isomorphisms

Isomorphisms relate types/formulas/objects A and B which are �the
same�

A ≃ B

A Bf
g

idA idB

Equational theory for Multiplicative Linear Logic / ⋆-autonomous
categories [BDC99]

Associativity A⊗ (B ⊗ C ) ≃ (A⊗ B)⊗ C A ` (B ` C ) ≃ (A ` B) ` C

Commutativity A⊗ B ≃ B ⊗ A A ` B ≃ B ` A

Neutrality A⊗ 1 ≃ A A `⊥ ≃ A

(A⊗ B) ⊸ C = (A⊥ ` B⊥) ` C ≃ A⊥ ` (B⊥ ` C ) = A ⊸ (B ⊸ C )
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Isomorphisms

Isomorphisms relate types/formulas/objects A and B which are �the
same�

A ≃ B

A Bf
g

idA idB

Equational theory for Multiplicative-Additive Linear Logic /
⋆-autonomous categories with �nite products [DGL23]

Associativity
A⊗ (B ⊗ C ) ≃ (A⊗ B)⊗ C A ` (B ` C ) ≃ (A ` B) ` C
A⊕ (B ⊕ C ) ≃ (A⊕ B)⊕ C A& (B & C ) ≃ (A& B) & C

Commutativity A⊗ B ≃ B ⊗ A A ` B ≃ B ` A A⊕ B ≃ B ⊕ A A& B ≃ B & A

Neutrality A⊗ 1 ≃ A A `⊥ ≃ A A⊕ 0 ≃ A A&⊤ ≃ A

Distributivity A⊗ (B ⊕ C ) ≃ (A⊗ B)⊕ (A⊗ C ) A ` (B & C ) ≃ (A ` B) & (A ` C )

Annihilation A⊗ 0 ≃ 0 A `⊤ ≃ ⊤
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Retractions

Retractions relate A and B when A is a �sub-type� of B

A � B

A Bf
g

idA idB

Instantiation in λ-calculus, logics,. . .

bool � nat with f (false) = 0, f (true) = 1 and g(n) = n is equal to 1

De�nition

Cantor-Bernstein property: if A � B and B � A then A ≃ B .
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Retractions

Retractions relate A and B when A is a �sub-type� of B

A � B

A Bf
g

idA idB

Equational theory for simply typed a�ne λ-calculus [RU02]

≃ A → B → C ≃ B → A → C

� (= � \ ≃)
A � B → A

A � (A → X ) → X if A is Y1 → Y2 → · · · → X
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Retractions

Retractions relate A and B when A is a �sub-type� of B

A � B

A Bf
g

idA idB

Equational theory for Multiplicative Linear Logic [UNKNOWN]

≃ associativity and commutativity of ⊗ and `, neutrality of 1 and ⊥
� (= � \ ≃) ???
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Plan

1 Retractions in (fragments of) Linear Logic

2 De�nitions
Proof Net
Retraction

3 Good properties of retractions in MLL � or why it should be easy

4 Retractions of the shape X � · (universal super-types)
Looking for a pattern
Quasi-Be�ara
Be�ara X � X ⊗ (X⊥ ` X )

5 Di�culties for A � B
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Linear Logic

Formulas

A,B := | X | X⊥ (atom)

| A ` B | A⊗ B | ⊥ | 1 (multiplicative)

| A& B | A⊕ B | ⊤ | 0 (additive)

| ?A | !A (exponential)

Fragment = subset of formulas keeping atoms and the :

additive → Additive Linear Logic (ALL);

multiplicative and exponential → Multiplicative Exponential Linear
Logic (MELL);

. . .
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Retractions and Provability

Fact

!X � !X ⊗ !(X ⊗ A) ⇐⇒ A is provable

X � X & (X ⊗ A) ⇐⇒ A is provable

A � A⊕ B ⇐⇒ B ⊢ A is provable

Fragment Provability

LL Undecidable /
MELL TOWER-hard /

(decidability is open)
MALL PSPACE-complete /
ALL P-complete

(an overview of these results can be found in [Lin95])

No example found for Multiplicative Linear Logic, which is often the
simpler fragment ,
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Plan

1 Retractions in (fragments of) Linear Logic
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Proof Net
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Formula & Sequent

Formulas

A,B ::= X |
not

X⊥ | A
and
⊗ B | A

or` B

Duality

(X⊥)⊥ = X

(A⊗ B)⊥ = B⊥ ` A⊥

(A ` B)⊥ = B⊥ ⊗ A⊥

Examples

X

`
X⊥

⊗

Z⊥

,

X⊥

⊗

X

`

Z

Sequent

⊢ A1, . . . ,An

Example

X

`
X⊥

⊗

Z⊥

X⊥

⊗

X

`

ZZ

⊗

Y

X
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What about the units?

Result from [BDC99]

Let A and B be two formulas without sub-formulas of the shape −⊗ 1,
1⊗−, ⊥ `− nor − `⊥. Take π and π′ cut-free proofs respectively of

⊢ A⊥,B and ⊢ B⊥,A. Then all 1 and ⊥-rules in π and π′ belongs to the

following pattern:
(1)

⊢ 1
(⊥)

⊢ ⊥, 1

So can replace the units by atoms, up to isomorphism.

(Also easy to check the mix-rules do not matter, for the identity has none.)
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Proof Structure

Proof Structure

Sequent with edges between dual leaves (some X and X⊥), these edges
partitioning the leaves of the sequent.

Examples

X

⊗

Z

`
X⊥

X

`
X⊥

⊗

Z⊥

X

⊗

Z

`
X⊥

X

`
X⊥

⊗

Z⊥
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Correctness & Proof Net

Correctness Graph

In a proof structure, keep only one premise of each `-node.
Danos-Regnier Correctness Criterion

A proof structure is correct, and called a proof net, if all its correctness
graphs are acyclic and connected (i.e. are trees).

Toy examples

X

⊗

X⊥ X

`
X⊥
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Identity proof net

Identity proof structure of A

In the sequent ⊢ A⊥,A, link each leaf in A to the dual one in A⊥.

Example: A = Y ⊗ (X⊥ ` X⊥)

X

⊗

X

`
Y⊥

X⊥

`
X⊥

⊗

Y

Lemma

An identity proof structure is correct.
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Composition by cut

Composition

Putting side by side a proof structure on ⊢ Γ,A and one on ⊢ A⊥,∆, then
adding a ∗-node between the roots of A and A⊥.

Example

X⊥

X

`

X⊥

⊗

X

X⊥

⊗

X

`
X⊥

X

∗
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Cut elimination

Cut elimination

X⊥ XX X⊥

∗
β−→

X⊥ X

⊗ `

∗

β−→

∗

∗

Lemma

Cut elimination preserves correction, is con�uent and strongly normalizing.
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Example of cut elimination

` ⊗

∗

X⊥ X

X

X⊥

⊗

X

X⊥

X

`
X⊥
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Example of cut elimination
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X⊥ X

X

X⊥

⊗

X

X⊥

X

`
X⊥
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Example of cut elimination

⊗ `

∗X⊥ X

X

X⊥ X

X⊥

XX⊥

∗
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Example of cut elimination
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∗X⊥ X

X
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XX⊥
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Example of cut elimination

X X⊥

∗

X⊥ X

X

X⊥

X⊥

X

∗

∗
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Example of cut elimination

X X⊥

∗

X⊥ X

X

X⊥

X⊥

X

∗

∗
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Example of cut elimination

X⊥ X

∗X⊥ X

X X⊥

∗
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Example of cut elimination

X⊥ X

∗X⊥ X

X X⊥

∗
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Example of cut elimination
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∗
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Example of cut elimination
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Example of cut elimination

X⊥ X

∗

X⊥ X
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Retraction

In category theory A � B

A Bf
g

idA

In λ-calculus

Retraction A � B

Terms M : A → B and N : B → A such that

N ◦M =βη λxA.x

In multiplicative linear logic

Retraction A � B

Proof nets R of ⊢ A⊥,B and S of ⊢ B⊥,A whose composition by cut over
B yields, after cut elimination, the identity proof net of A.

A � B ⇐⇒ A⊥ � B⊥
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Be�ara's retraction

Be�ara's retraction

X � X ` (X⊥ ⊗ X ) or dualy X � X ⊗ (X⊥ ` X )

X⊥

X

`

X⊥

⊗

X

X⊥

⊗

X

`
X⊥

X

X ` (X⊥ ⊗ X ) (X⊥ ` X )⊗ X⊥

Can also be seen as X � (X ⊸ X ) ⊸ X
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Plan

1 Retractions in (fragments of) Linear Logic

2 De�nitions
Proof Net
Retraction

3 Good properties of retractions in MLL � or why it should be easy

4 Retractions of the shape X � · (universal super-types)
Looking for a pattern
Quasi-Be�ara
Be�ara X � X ⊗ (X⊥ ` X )

5 Di�culties for A � B
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Half-Bipartiteness

De�nition

A proof-net on ⊢ A, Γ is half-bipartite in A if there is no link between leaves
of A.

Example

X X⊥

`

X

⊗

`

X ⊗

X⊥ X⊥

X ` X⊥ X ⊗ (X ` (X⊥ ⊗ X⊥))

Half-bipartite in
X ` X⊥ but not in
X⊗(X `(X⊥⊗X⊥)).
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Half-Bipartiteness in retractions

Lemma

Proof nets of A � B are half-bipartite in A⊥ and A respectively.

Proof.

A link between leaves of A⊥ or A would survive cut elimination, and
appears in the resulting identity proof net: contradiction.

A⊥ B B⊥ A

∗
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Consequences of Half-Bipartiteness

Corollary

Up to renaming leaves, in A � B one can assume leaves of A to be distinct

atoms X ,Y ,Z , . . . without any X⊥,Y⊥,Z⊥, . . . in A.

Proof.

Can rename leaves of A to respect this; no clash by half-bipartiteness.
A renaming preserves correction and steps of cut elimination.

In this setting:

Retraction A � B

Proof nets R of ⊢ A⊥,B and S of ⊢ B⊥,A whose composition by cut over
B yields, after cut elimination, the identity proof net of A.

Rémi Di Guardia Retractions for MLL Bath 2024, 1 March 21 / 38



Consequences of Half-Bipartiteness

Corollary

Up to renaming leaves, in A � B one can assume leaves of A to be distinct

atoms X ,Y ,Z , . . . without any X⊥,Y⊥,Z⊥, . . . in A.

Proof.

Can rename leaves of A to respect this; no clash by half-bipartiteness.
A renaming preserves correction and steps of cut elimination.

In this setting:

Retraction A � B

Proof nets R of ⊢ A⊥,B and S of ⊢ B⊥,A whose composition by cut over
B yields, after cut elimination, the identity proof net of A.

Rémi Di Guardia Retractions for MLL Bath 2024, 1 March 21 / 38



Property on sizes

Theorem

Let A and B be unit-free MLL formulas such that A � B .

Then s(B) = s(A) + 2× n, with n = 0 i� A ≃ B .

Proof.

A⊥ B B⊥ A

Corollary

Cantor-Bernstein holds for unit-free MLL, and then for MLL.

X ⊗ Y ̸� X ` Y , X ⊗ (Y ` Z ) ̸� Y ` (X ⊗ Z ), . . .
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Plan

1 Retractions in (fragments of) Linear Logic

2 De�nitions
Proof Net
Retraction

3 Good properties of retractions in MLL � or why it should be easy

4 Retractions of the shape X � · (universal super-types)
Looking for a pattern
Quasi-Be�ara
Be�ara X � X ⊗ (X⊥ ` X )

5 Di�culties for A � B
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Key Result

Lemma

In X � B one of the two proof nets contains:

X⊥ X

`

Proof.

We build a sequence (GOI path) �nding such a pattern.

Invariant: every X of B is above a ⊗, and every X⊥ above a `.

X⊥
1 X1

X2

⊗

X⊥
2

`

X3

⊗

X⊥
3

`

X4

⊗
. . . ∞ . . .

︸ ︷︷ ︸
B

︸ ︷︷ ︸
B⊥

Rémi Di Guardia Retractions for MLL Bath 2024, 1 March 24 / 38



Key Result

Lemma

In X � B one of the two proof nets contains:

X⊥ X

`

Proof.

We build a sequence (GOI path) �nding such a pattern.

Invariant: every X of B is above a ⊗, and every X⊥ above a `.

X⊥
1 X1X2

⊗

X⊥
2

`

X3

⊗

X⊥
3

`

X4

⊗
. . . ∞ . . .

︸ ︷︷ ︸
B

︸ ︷︷ ︸
B⊥

Rémi Di Guardia Retractions for MLL Bath 2024, 1 March 24 / 38



Key Result

Lemma

In X � B one of the two proof nets contains:

X⊥ X

`

Proof.

We build a sequence (GOI path) �nding such a pattern.

Invariant: every X of B is above a ⊗, and every X⊥ above a `.

X⊥
1 X1X2

`

X⊥
2

`

X3

⊗

X⊥
3

`

X4

⊗
. . . ∞ . . .

︸ ︷︷ ︸
B

︸ ︷︷ ︸
B⊥

Rémi Di Guardia Retractions for MLL Bath 2024, 1 March 24 / 38



Key Result

Lemma

In X � B one of the two proof nets contains:

X⊥ X

`

Proof.

We build a sequence (GOI path) �nding such a pattern.

Invariant: every X of B is above a ⊗, and every X⊥ above a `.

X⊥
1 X1X2

`

X⊥
2

`

X3

⊗

X⊥
3

`

X4

⊗
. . . ∞ . . .

︸ ︷︷ ︸
B

︸ ︷︷ ︸
B⊥

Rémi Di Guardia Retractions for MLL Bath 2024, 1 March 24 / 38



Key Result

Lemma

In X � B one of the two proof nets contains:

X⊥ X

`

Proof.

We build a sequence (GOI path) �nding such a pattern.

Invariant: every X of B is above a ⊗, and every X⊥ above a `.

X⊥
1 X1X2

⊗

X⊥
2

`

X3

⊗

X⊥
3

`

X4

⊗
. . . ∞ . . .

︸ ︷︷ ︸
B

︸ ︷︷ ︸
B⊥

Rémi Di Guardia Retractions for MLL Bath 2024, 1 March 24 / 38



Key Result

Lemma

In X � B one of the two proof nets contains:

X⊥ X

`

Proof.

We build a sequence (GOI path) �nding such a pattern.

Invariant: every X of B is above a ⊗, and every X⊥ above a `.

X⊥
1 X1X2

⊗

X⊥
2

`

X3

⊗

X⊥
3

`

X4

⊗
. . . ∞ . . .

︸ ︷︷ ︸
B

︸ ︷︷ ︸
B⊥

Rémi Di Guardia Retractions for MLL Bath 2024, 1 March 24 / 38



Key Result

Lemma

In X � B one of the two proof nets contains:

X⊥ X

`

Proof.

We build a sequence (GOI path) �nding such a pattern.

Invariant: every X of B is above a ⊗, and every X⊥ above a `.

X⊥
1 X1X2

⊗

X⊥
2

`

X3

⊗

X⊥
3

`

X4

⊗
. . . ∞ . . .

︸ ︷︷ ︸
B

︸ ︷︷ ︸
B⊥

Rémi Di Guardia Retractions for MLL Bath 2024, 1 March 24 / 38



Key Result

Lemma

In X � B one of the two proof nets contains:

X⊥ X

`

Proof.

We build a sequence (GOI path) �nding such a pattern.

Invariant: every X of B is above a ⊗, and every X⊥ above a `.

X⊥
1 X1X2

⊗

X⊥
2

`

X3

⊗

X⊥
3

`

X4

⊗
. . . ∞ . . .

︸ ︷︷ ︸
B

︸ ︷︷ ︸
B⊥

Rémi Di Guardia Retractions for MLL Bath 2024, 1 March 24 / 38



Key Result

Lemma

In X � B one of the two proof nets contains:

X⊥ X

`

Proof.

We build a sequence (GOI path) �nding such a pattern.

Invariant: every X of B is above a ⊗, and every X⊥ above a `.

X⊥
1 X1X2

⊗

X⊥
2

`

X3

`

X⊥
3

`

X4

⊗
. . . ∞ . . .

︸ ︷︷ ︸
B

︸ ︷︷ ︸
B⊥

Rémi Di Guardia Retractions for MLL Bath 2024, 1 March 24 / 38



Key Result

Lemma

In X � B one of the two proof nets contains:

X⊥ X

`

Proof.

We build a sequence (GOI path) �nding such a pattern.

Invariant: every X of B is above a ⊗, and every X⊥ above a `.

X⊥
1 X1X2

⊗

X⊥
2

`

X3

`

X⊥
3

`

X4

⊗
. . . ∞ . . .

︸ ︷︷ ︸
B

︸ ︷︷ ︸
B⊥

Rémi Di Guardia Retractions for MLL Bath 2024, 1 March 24 / 38



Key Result

Lemma

In X � B one of the two proof nets contains:

X⊥ X

`

Proof.

We build a sequence (GOI path) �nding such a pattern.

Invariant: every X of B is above a ⊗, and every X⊥ above a `.

X⊥
1 X1X2

⊗

X⊥
2

`

X3

`

X⊥
3

`

X4

⊗
. . . ∞ . . .

︸ ︷︷ ︸
B

︸ ︷︷ ︸
B⊥

Rémi Di Guardia Retractions for MLL Bath 2024, 1 March 24 / 38



Key Result

Lemma

In X � B one of the two proof nets contains:

X⊥ X

`

Proof.

We build a sequence (GOI path) �nding such a pattern.
Invariant: every X of B is above a ⊗, and every X⊥ above a `.

X⊥
1 X1X2

⊗

X⊥
2

`

X3

⊗

X⊥
3

`

X4

⊗
. . . ∞ . . .

︸ ︷︷ ︸
B

︸ ︷︷ ︸
B⊥

Rémi Di Guardia Retractions for MLL Bath 2024, 1 March 24 / 38



Key Result

Lemma

In X � B one of the two proof nets contains:

X⊥ X

`

Proof.

We build a sequence (GOI path) �nding such a pattern.
Invariant: every X of B is above a ⊗, and every X⊥ above a `.

X⊥
1 X1X2

⊗

X⊥
2

`

X3

⊗

X⊥
3

`

X4

⊗
. . . ∞ . . .

︸ ︷︷ ︸
B

︸ ︷︷ ︸
B⊥

Rémi Di Guardia Retractions for MLL Bath 2024, 1 March 24 / 38



Key Result

Lemma

In X � B one of the two proof nets contains:

X⊥ X

`

Proof.

We build a sequence (GOI path) �nding such a pattern.
Invariant: every X of B is above a ⊗, and every X⊥ above a `.

X⊥
1 X1X2

⊗

X⊥
2

`

X3

⊗

X⊥
3

`

X4

⊗

. . . ∞ . . .

︸ ︷︷ ︸
B

︸ ︷︷ ︸
B⊥

Rémi Di Guardia Retractions for MLL Bath 2024, 1 March 24 / 38



Key Result

Lemma

In X � B one of the two proof nets contains:

X⊥ X

`

Proof.

We build a sequence (GOI path) �nding such a pattern.
Invariant: every X of B is above a ⊗, and every X⊥ above a `.

X⊥
1 X1X2

⊗

X⊥
2

`

X3

⊗

X⊥
3

`

X4

⊗
. . . ∞ . . .

︸ ︷︷ ︸
B

︸ ︷︷ ︸
B⊥

Rémi Di Guardia Retractions for MLL Bath 2024, 1 March 24 / 38



Extended pattern

Lemma

If

X⊥ X

`
has a node below it, then this is a

X⊥ X

`

⊗

.

Proof.

The connector below the
pattern cannot be a ` by
connectivity:

X⊥ X

`

`
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Quasi-Be�ara

De�nition

Quasi-Be�ara is this local transformation on proofs of a retraction A � B :

X⊥ X

`

⊗

︸ ︷︷ ︸
B

α β
XX⊥

⊗

`

︸ ︷︷ ︸
B⊥

qBe�ara

−−−−→

︸ ︷︷ ︸
B ′

α β

︸ ︷︷ ︸
B ′⊥

By extension, this de�nes two transformations on a formula B (by duality):

X⊥ X

`

⊗

︸ ︷︷ ︸
B

qBe�ara

−−−−→

︸ ︷︷ ︸
B ′
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Coherence of Quasi-Be�ara

Lemma

If (R,S) are proofs of A � B and (R,S)
qBe�ara

−−−−→ (R′,S ′), then (R′,S ′)

are proofs of A � B ′ with B
qBe�ara

−−−−→ B ′.

Proof.

Quasi-Be�ara preserves:

being a proof structure

acyclicity of correctness graphs

the number |V |+ | ` | − |E | of cc. of any correctness graph

X⊥ X

`

⊗

α β
XX⊥

⊗

`

qBe�ara

−−−−→

α β
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Coherence of Quasi-Be�ara

Lemma

If (R,S) are proofs of A � B and (R,S)
qBe�ara

−−−−→ (R′,S ′), then (R′,S ′)

are proofs of A � B ′ with B
qBe�ara

−−−−→ B ′.

Proof.

Quasi-Be�ara preserves:

being a proof structure

acyclicity of correctness graphs

the number |V |+ | ` | − |E | of cc. of any correctness graph

(normal form for cut elimination)

X⊥ X

`

⊗

α β
XX⊥

⊗

`

qBe�ara

−−−−→

α β
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Completeness of Quasi-Be�ara

Proposition

If X � B then B
qBe�ara

−−−−→∗ X .

Proof.

By induction on the size of B . Trivial if B = X .
Else, by previous results:

1 we �nd some

X⊥ X

`

2 which is a

X⊥ X

`

⊗

3 B
qBe�ara

−−−−→ B ′, X � B ′ and B ′ of strictly smaller size
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Quasi-Be�ara & Be�ara (statement)

Remember Be�ara's retraction:

X � X ⊗ (X⊥ ` X ) X � X ` (X⊥ ⊗ X )

Corresponding transformations inside a formula:

X ⊗ (X⊥ ` X )
Be�ara

−−−−→ X X ` (X⊥ ⊗ X )
Be�ara

−−−−→ X

Proposition

If B
qBe�ara

−−−−→∗ X , then B
Be�ara

−−−−→∗ X up to isomorphism

(associativity and commutativity of ` and ⊗)
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Quasi-Be�ara & Be�ara (proof)

By induction on the size of B .
Base cases: B ∈ {X ;X ` (X⊥ ⊗ X );X ⊗ (X⊥ ` X )}

Inductive case: B
qBe�ara

−−−−→ B1

Be�ara

−−−−→ B2

Be�ara

−−−−→∗ X by induction hypothesis.

B
qBe�ara

−−−−→ B1 is

X⊥ X

`

⊗

qBe�ara

−−−−→
e1 or

X⊥ X

⊗

`
qBe�ara

−−−−→
e1

B1

Be�ara

−−−−→ B2 is

X⊥ X

`

⊗

X

a
3 a 4

a 2
a
1

e2

Be�ara

−−−−→
X

e2
(up to duality)

e1 /∈ {a1; a2; a3; a4} (including e1 = e2)
√
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1

e2

Be�ara

−−−−→
X

e2
(up to duality)

e1 /∈ {a1; a2; a3; a4} (including e1 = e2)

The rewritings commute: B
Be�ara

−−−−→ B ′
1

qBe�ara

−−−−→ B2

Be�ara

−−−−→∗ X , so by

induction B
Be�ara

−−−−→ B ′
1

Be�ara

−−−−→∗ X
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(up to duality)
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√

e1 = a2
Up to isomorphism e1 = a1 or e1 = a4
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e1 = a2
√

e1 ∈ {a1; a3; a4}

B
qBe�ara

−−−−→ B1 is also a B
Be�ara

−−−−→ B1
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Characterization of X � B

Theorem

The followings are equivalent:

1 X � B

2 B
qBe�ara

−−−−→∗ X

3 B
Be�ara

−−−−→∗ X (up to iso)

4 B ∈ P (up to iso)

P ::= X | P ⊗ (N ` P) | P ` (N ⊗ P)
N ::= X⊥ | N ⊗ (P `N) | N ` (P ⊗N)

. . . but this is when looking at formulas! Looking at proofs, this is messier:

Pairs of

Proof Structures

X⊥, · and ·⊥,X

Proof Nets

X � ·

·
qBe�ara

−−−−→∗ X

·
Be�ara

−−−−→∗ X

(some proof structures where · is)

(X ⊗ X⊥) ` ((X ` X⊥)⊗ X⊥)

((X ⊗ (X ` X⊥)) ` X⊥)⊗ X

X ` (X⊥ ⊗ X )
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−−−−→∗ X

·
Be�ara

−−−−→∗ X

(some proof structures where · is)

(X ⊗ X⊥) ` ((X ` X⊥)⊗ X⊥)

((X ⊗ (X ` X⊥)) ` X⊥)⊗ X

X ` (X⊥ ⊗ X )
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Retraction not generated by Be�ara

Proof of X � (X ⊗ X⊥) ` ((X ` X⊥)⊗ X⊥)

X⊥

X

`

X

⊗

X⊥

⊗

X

`
X⊥ X⊥

⊗

X⊥

`

X

`

X⊥

⊗

X

X

Not generated by Be�ara as no

X⊥ X

`

⊗

X

in either proof nets
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Incorrect retraction generated by Quasi-Be�ara

Not-Proof of X � ((X ⊗ (X ` X⊥)) ` X⊥)⊗ X

X⊥

X

⊗

X⊥

`

`

X

X⊥

⊗

X

X⊥

`

X

⊗

⊗

X⊥

X

`
X⊥

X

X⊥ X

`

⊗

X⊥

⊗

`
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Incorrect retraction generated by Quasi-Be�ara

Not-Proof of X � ((X ⊗ (X ` X⊥)) ` X⊥)⊗ X

X⊥

X

⊗

X⊥

`

`

X

X⊥

⊗

X

X⊥

`

X

⊗

⊗

X⊥

X

`
X⊥

X

X⊥ X

`

⊗

X⊥

⊗

`

Incorrect
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Incorrect retraction generated by Quasi-Be�ara

Not-Proof of X � ((X ⊗ (X ` X⊥)) ` X⊥)⊗ X

X⊥

X

⊗

X⊥

`

`

X

X⊥

⊗

X

X⊥

`

X

⊗

⊗

X⊥

X

`
X⊥

X

X⊥ X

`

⊗

X⊥

⊗

`

Can apply one step of Quasi-Be�ara
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Incorrect retraction generated by Quasi-Be�ara

Not-Proof of X � ((X ⊗ (X ` X⊥)) ` X⊥)⊗ X

X⊥

X

`
X⊥

⊗

X

X⊥

⊗

X

`
X⊥

X

This is Be�ara, attainable from X by one step of Quasi-Be�ara
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Formula not generated by Be�ara without iso

X � X ⊗ ((X⊥ ` X ) ` (X⊥ ⊗ X ))

X

⊗

`

`
X⊥ X

⊗

X⊥ X

Generated by Be�ara only up to isomorphism!
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Plan

1 Retractions in (fragments of) Linear Logic

2 De�nitions
Proof Net
Retraction

3 Good properties of retractions in MLL � or why it should be easy

4 Retractions of the shape X � · (universal super-types)
Looking for a pattern
Quasi-Be�ara
Be�ara X � X ⊗ (X⊥ ` X )

5 Di�culties for A � B
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Di�culties for A � B

Not only

X⊥ X

`
as a pattern, also

X⊥

⊗

`

X

(and others?)

Example: X ⊗ Y � X ⊗ (X⊥ ` (X ⊗ Y ))

Y⊥

`
X⊥ X

⊗

X⊥

`

⊗

X Y

X⊥

`

X

⊗

`
X⊥Y⊥

Y

⊗

X

May not be �nitely axiomatisable (on formulas)?
{⊗Xi} � {⊗Xi} ` (X1 ⊗ (X⊥

1 ` (. . . (Xn−1 ⊗ (X⊥
n−1 ` (Xn ⊗ X⊥

n )) . . . )))
And (A⊗ X ) ` B ̸� (A⊗ X ) ` (X ⊗ (X⊥ ` B))
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What about the other �simple� fragments?

For exponential formulas, there are new retractions:

?A � ??A ?!A � ?!?!A

Look like the only �basic� ones?

For additive formulas, only one �basic� retraction (with units too):

A � A& B ⇐⇒ ⊢ A⊥,B or A � A⊕ B ⇐⇒ ⊢ A,B⊥

Retraction of an atom manageable.
But generally composition is bad due to the side condition:

X ⊕ Y � ((X ⊕ Z ) & (X ⊕ Y ))⊕ Y

comes from X ⊕ Y � (X ⊕ Y )⊕ Y without ⊢ X ⊕ Z , (X ⊕ Y )⊥

Cantor-Bernstein holds in ALL. More complicated in MALL. . .
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Conclusion

X � B ⇐⇒ B
Be�ara

−−−−→∗ X up to isomorphism
with some subtilities on the proof morphisms

good properties: Cantor-Bernstein, result on sizes, only provability of a
particular shape no consider, . . .

still the problem may be di�cult?!

Thank you

for your attention!
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