Retractions for Multiplicative Linear Logic

Rémi Di Guardia, Olivier Laurent

> ENS Lyon (LIP)

SCALP 2023, 29 November

Introduction

Isomorphisms relate types/formulas/objects A and B which are "the same"

$$
A \simeq B
$$

Instantiation in λ-calculus, logics,...
Equational theory for λ-calculus with products and unit type

\times	$A \times(B \times C) \simeq(A \times B) \times C$		$A \times B \simeq B \times A$
\times and \rightarrow	$(A \times B) \rightarrow C \simeq A \rightarrow(B \rightarrow C)$	$A \rightarrow(B \times C) \simeq(A \rightarrow B) \times(A \rightarrow C)$	
1	$A \times 1 \simeq A$	$1 \rightarrow A \simeq A$	$A \rightarrow 1 \simeq 1$

Introduction

Isomorphisms relate types/formulas/objects A and B which are "the same"

$$
A \simeq B
$$

Instantiation in λ-calculus, logics, ...
Equational theory for Multiplicative Linear Logic
[BDC99]

Associativity	$A \otimes(B \otimes C) \simeq(A \otimes B) \otimes C$	$A \gamma(B \gamma C) \simeq(A \gamma B) \gamma C$
Commutativity	$A \otimes B \simeq B \otimes A$	$A \gamma B \simeq B \gamma A$
Neutrality	$A \otimes 1 \simeq A$	$A \gamma \perp \simeq A$

$$
(A \otimes B) \multimap C=\left(A^{\perp} \gamma B^{\perp}\right) \gamma C \simeq A^{\perp} \gamma\left(B^{\perp} \gamma C\right)=A \multimap(B \multimap C)
$$

Introduction

Retractions relate A and B when A is a "subtype" of B

$$
A \unlhd B
$$

Instantiation in λ-calculus, logics,...
Equational theory for simply typed affine λ-calculus
[RU02]

\simeq	$A \rightarrow B \rightarrow C \simeq B \rightarrow A \rightarrow C$
$\triangleleft(=\unlhd \backslash \simeq)$	$A \triangleleft B \rightarrow A$
	$A \triangleleft(A \rightarrow X) \rightarrow X$ if A is $Y_{1} \rightarrow Y_{2} \rightarrow \cdots \rightarrow X$

Introduction

Retractions relate A and B when A is a "subtype" of B

$$
A \unlhd B
$$

Instantiation in λ-calculus, logics, ...
Equational theory for Multiplicative Linear Logic

\simeq	associativity and commutativity of \otimes and 8, neutrality of 1 and \perp
$\triangleleft(=\unlhd \backslash \simeq)$	$? ? ?$

Plan

(1) Definitions

- Proof Net
- Retraction
(2) Retractions of the shape $X \unlhd$.
- Looking for a pattern
- Quasi-Beffara
- Beffara
(3) Difficulties for $A \unlhd B$ \& Other fragments

Formula \& Sequent

Formulas

$A, B::=X\left|X^{\text {not }}\right| A \stackrel{\text { and }}{\otimes} B \mid A \stackrel{\text { or }}{\gamma} B$

Duality

$$
\begin{gathered}
\left(X^{\perp}\right)^{\perp}=X \\
(A \otimes B)^{\perp}=B^{\perp} \ngtr A^{\perp} \\
(A \gtrdot B)^{\perp}=B^{\perp} \otimes A^{\perp}
\end{gathered}
$$

Examples

Formula \& Sequent

Formulas

$A, B::=X\left|X^{\text {not }}\right| A \stackrel{\text { and }}{\otimes} B \mid A \stackrel{\text { or }}{8} B$

Duality

$$
\begin{gathered}
\left(X^{\perp}\right)^{\perp}=X \\
(A \otimes B)^{\perp}=B^{\perp} \ngtr A^{\perp} \\
(A \gtrdot B)^{\perp}=B^{\perp} \otimes A^{\perp}
\end{gathered}
$$

Examples

Example

Sequent

$$
\vdash A_{1}, \ldots, A_{n}
$$

Proof Structure

Proof Structure

Sequent with edges between dual leaves (some X and X^{\perp}), these edges partitioning the leaves of the sequent.

Examples

Correctness \& Proof Net

Correctness Graph

In a proof structure, keep only one premise of each $>$-node.

Danos-Regnier Correctness Criterion

A proof structure is correct, and called a proof net, if all its correctness graphs are acyclic and connected (i.e. are trees).

Examples

Correctness \& Proof Net

Correctness Graph

In a proof structure, keep only one premise of each $>$-node.

Danos-Regnier Correctness Criterion

A proof structure is correct, and called a proof net, if all its correctness graphs are acyclic and connected (i.e. are trees).

Examples

Acyclic and connected

SCALP 2023, 29 November
$6 / 20$

Correctness \& Proof Net

Correctness Graph

In a proof structure, keep only one premise of each $>$-node.

Danos-Regnier Correctness Criterion

A proof structure is correct, and called a proof net, if all its correctness graphs are acyclic and connected (i.e. are trees).

Examples

Not acyclic nor connected INCORRECT

Correctness \& Proof Net

Correctness Graph

In a proof structure, keep only one premise of each 8 -node.

Danos-Regnier Correctness Criterion

A proof structure is correct, and called a proof net, if all its correctness graphs are acyclic and connected (i.e. are trees).

Examples

Not acyclic nor connected INCORRECT

Acyclic and connected

Correctness \& Proof Net

Correctness Graph

In a proof structure, keep only one premise of each 8 -node.

Danos-Regnier Correctness Criterion

A proof structure is correct, and called a proof net, if all its correctness graphs are acyclic and connected (i.e. are trees).

Examples

Not acyclic nor connected INCORRECT

Acyclic and connected

Correctness \& Proof Net

Correctness Graph

In a proof structure, keep only one premise of each 8 -node.

Danos-Regnier Correctness Criterion

A proof structure is correct, and called a proof net, if all its correctness graphs are acyclic and connected (i.e. are trees).

Examples

Not acyclic nor connected INCORRECT

Acyclic and connected

Correctness \& Proof Net

Correctness Graph

In a proof structure, keep only one premise of each 8 -node.

Danos-Regnier Correctness Criterion

A proof structure is correct, and called a proof net, if all its correctness graphs are acyclic and connected (i.e. are trees).

Examples

Not acyclic nor connected INCORRECT

Acyclic and connected CORRECT

Retraction

In category theory

In λ-calculus
Retraction $A \unlhd B$
Terms $M: A \rightarrow B$ and $N: B \rightarrow A$ such that

$$
N \circ M={ }_{\beta \eta} \lambda x^{A} \cdot x
$$

Retraction

In category theory

In λ-calculus

Retraction $A \unlhd B$
Terms $M: A \rightarrow B$ and $N: B \rightarrow A$ such that

$$
N \circ M={ }_{\beta \eta} \lambda x^{A} \cdot x
$$

In multiplicative linear logic

Retraction $A \unlhd B$

Proof nets $\mathcal{R} \vdash A^{\perp}, B$ and $\mathcal{S} \vdash B^{\perp}, A$ whose composition by cut over B yields, after cut elimination, the identity proof net of A.

Retraction

In category theory

In λ-calculus

Retraction $A \unlhd B$

Terms $M: A \rightarrow B$ and $N: B \rightarrow A$ such that

$$
N \circ M={ }_{\beta \eta} \lambda x^{A} \cdot x
$$

In multiplicative linear logic
reducing to the case where A has at most one occurrence of each atom

Retraction $A \unlhd B$

Proof nets $\mathcal{R} \vdash A^{\perp}, B$ and $\mathcal{S} \vdash B^{\perp}, A$ whose composition by cut over B yields, after cut elimination, the identity proof net of A.

Retraction

In category theory

In λ-calculus

Retraction $A \unlhd B$

Terms $M: A \rightarrow B$ and $N: B \rightarrow A$ such that

$$
N \circ M={ }_{\beta \eta} \lambda x^{A} \cdot x
$$

In multiplicative linear logic
reducing to the case where A has at most one occurrence of each atom

Retraction $A \unlhd B$

Proof nets $\mathcal{R} \vdash A^{\perp}, B$ and $\mathcal{S} \vdash B^{\perp}, A$ whose composition by cut over B yields, after cut elimination, the identity proof net of A.

$$
A \unlhd B \Longleftrightarrow A^{\perp} \unlhd B^{\perp}
$$

Beffara's retraction

Beffara's retraction

$$
X \triangleleft X \gamma\left(X^{\perp} \otimes X\right) \quad \text { or dualy } \quad X \triangleleft X \otimes\left(X^{\perp} 8 X\right)
$$

$$
X>\left(X^{\perp} \otimes X\right)
$$

$\left(X^{\perp} 8 X\right) \otimes X^{\perp}$

Plan

(1) Definitions

- Proof Net
- Retraction
(2) Retractions of the shape $X \unlhd$.
- Looking for a pattern
- Quasi-Beffara
- Beffara

(3) Difficulties for $A \unlhd B$ \& Other fragments

Key Result

Lemma

In $X \triangleleft B$ one of the two proof nets contains:

Proof.

We build a sequence finding such a pattern.

Key Result

Lemma

In $X \triangleleft B$ one of the two proof nets contains:

Proof.

We build a sequence finding such a pattern.

Key Result

Lemma

In $X \triangleleft B$ one of the two proof nets contains:

Proof.

We build a sequence finding such a pattern.

Key Result

Lemma

In $X \triangleleft B$ one of the two proof nets contains:

Proof.

We build a sequence finding such a pattern.

Key Result

Lemma

In $X \triangleleft B$ one of the two proof nets contains:

Proof.

We build a sequence finding such a pattern.

Key Result

Lemma

In $X \triangleleft B$ one of the two proof nets contains:

Proof.

We build a sequence finding such a pattern.

Key Result

Lemma

In $X \triangleleft B$ one of the two proof nets contains:

Proof.

We build a sequence finding such a pattern.

Key Result

Lemma

In $X \triangleleft B$ one of the two proof nets contains:

Proof.

We build a sequence finding such a pattern.

Key Result

Lemma

Proof.

We build a sequence finding such a pattern.

Key Result

Lemma

In $X \triangleleft B$ one of the two proof nets contains:

Proof.

We build a sequence finding such a pattern.

Key Result

Lemma

In $X \triangleleft B$ one of the two proof nets contains:

Proof.

We build a sequence finding such a pattern.

Key Result

Lemma

Proof.

We build a sequence finding such a pattern. Invariant: every X of B is above a \otimes, and every X^{\perp} above a γ.

Key Result

Lemma

Proof.

We build a sequence finding such a pattern. Invariant: every X of B is above a \otimes, and every X^{\perp} above a γ.

Key Result

Lemma

In $X \triangleleft B$ one of the two proof nets contains:

Proof.

We build a sequence finding such a pattern. Invariant: every X of B is above a \otimes, and every X^{\perp} above a γ.

Key Result

Lemma

In $X \triangleleft B$ one of the two proof nets contains:

Proof.

We build a sequence finding such a pattern. Invariant: every X of B is above a \otimes, and every X^{\perp} above a γ.

Extended pattern

Lemma

has a node below it, then this is a

Proof.

The connector below the pattern cannot be a 8 by connectivity:

Quasi-Beffara

Definition

Quasi-Beffara is this local transformation on proofs of a retraction $A \unlhd B$:

By extension, this defines two transformations on a formula B (by duality):

Coherence of Quasi-Beffara

Lemma

If $(\mathcal{R}, \mathcal{S})$ are proofs of $A \unlhd B$ and $(\mathcal{R}, \mathcal{S}) \xrightarrow{\text { qBeffara }}\left(\mathcal{R}^{\prime}, \mathcal{S}^{\prime}\right)$, then $\left(\mathcal{R}^{\prime}, \mathcal{S}^{\prime}\right)$ are proofs of $A \unlhd B^{\prime}$ with $B \xrightarrow{\text { qBeffara }} B^{\prime}$.

Proof.

Quasi-Beffara preserves:

- being a proof structure

Coherence of Quasi-Beffara

Lemma

If $(\mathcal{R}, \mathcal{S})$ are proofs of $A \unlhd B$ and $(\mathcal{R}, \mathcal{S}) \xrightarrow{\text { qBeffara }}\left(\mathcal{R}^{\prime}, \mathcal{S}^{\prime}\right)$, then $\left(\mathcal{R}^{\prime}, \mathcal{S}^{\prime}\right)$ are proofs of $A \unlhd B^{\prime}$ with $B \xrightarrow{\text { qBeffara }} B^{\prime}$.

Proof.

Quasi-Beffara preserves:

- being a proof structure
- acyclicity of correctness graphs

Coherence of Quasi-Beffara

Lemma

If $(\mathcal{R}, \mathcal{S})$ are proofs of $A \unlhd B$ and $(\mathcal{R}, \mathcal{S}) \xrightarrow{\text { qBeffara }}\left(\mathcal{R}^{\prime}, \mathcal{S}^{\prime}\right)$, then $\left(\mathcal{R}^{\prime}, \mathcal{S}^{\prime}\right)$ are proofs of $A \unlhd B^{\prime}$ with $B \xrightarrow{\text { qBeffara }} B^{\prime}$.

Proof.

Quasi-Beffara preserves:

- being a proof structure
- acyclicity of correctness graphs
- the number $|V|+|\varnothing|-|E|$ of cc. of any correctness graph: it removes 4 vertices, including $1 \mathcal{\gamma}$, and 5 edges

Coherence of Quasi-Beffara

Lemma

If $(\mathcal{R}, \mathcal{S})$ are proofs of $A \unlhd B$ and $(\mathcal{R}, \mathcal{S}) \xrightarrow{\text { qBeffara }}\left(\mathcal{R}^{\prime}, \mathcal{S}^{\prime}\right)$, then $\left(\mathcal{R}^{\prime}, \mathcal{S}^{\prime}\right)$ are proofs of $A \unlhd B^{\prime}$ with $B \xrightarrow{\text { aBemara }} B^{\prime}$.

Proof.

Quasi-Beffara preserves:

- being a proof structure
- acyclicity of correctness graphs
- the number $|V|+|8|-|E|$ of cc. of any correctness graph
- (normal form for cut elimination)

Completeness of Quasi-Beffara

Proposition

If $X \unlhd B$ then $B \xrightarrow{\text { qBeffara }} * X$.

Proof.

By induction on the size of B. Trivial if $B=X$.
Else, by previous results:
(1) we find some

(2) which is a

(3) $B \xrightarrow{\text { qBeffara }} B^{\prime}, X \unlhd B^{\prime}$ and B^{\prime} of strictly smaller size

Quasi-Beffara \& Beffara (statement)

- Remember Beffara's retraction:

$$
X \triangleleft X \otimes\left(X^{\perp} \gamma X\right) \quad X \triangleleft X \gamma\left(X^{\perp} \otimes X\right)
$$

- Corresponding transformations inside a formula:

$$
X \otimes\left(X^{\perp} 8 X\right) \xrightarrow{\text { Beffara }} X \quad X 8\left(X^{\perp} \otimes X\right) \xrightarrow{\text { Beffara }} X
$$

Quasi-Beffara \& Beffara (statement)

- Remember Beffara's retraction:

$$
X \triangleleft X \otimes\left(X^{\perp} 8 X\right) \quad X \triangleleft X 8\left(X^{\perp} \otimes X\right)
$$

- Corresponding transformations inside a formula:

$$
X \otimes\left(X^{\perp} 8 X\right) \xrightarrow{\text { Beffara }} X \quad X 8\left(X^{\perp} \otimes X\right) \xrightarrow{\text { Beffara }} X
$$

Proposition


```
(associativity and commutativity of }8\mathrm{ and }\otimes\mathrm{ )
```


Quasi-Beffara \& Beffara (proof)

By induction on the size of B. Base cases: $B \in\left\{X ; X \ngtr\left(X^{\perp} \otimes X\right) ; X \otimes\left(X^{\perp} \ngtr X\right)\right\}$ Inductive case: $B \xrightarrow{\text { qBeffara }} B_{1} \xrightarrow{\text { Beffara }} B_{2} \xrightarrow{\text { Beffara }} * X$ by induction hypothesis.

Quasi-Beffara \& Beffara (proof)

By induction on the size of B.
Base cases: $B \in\left\{X ; X \ngtr\left(X^{\perp} \otimes X\right) ; X \otimes\left(X^{\perp} \ngtr X\right)\right\}$
Inductive case: $B \xrightarrow{\text { qBeffara }} B_{1} \xrightarrow{\text { Beffara }} B_{2} \xrightarrow{\text { Beffara }} * X$ by induction hypothesis.
$B \xrightarrow{\text { qBeffara }} B_{1}$ is

$B_{1} \xrightarrow{\text { Beffara }} B_{2}$ is

Quasi-Beffara \& Beffara (proof)

By induction on the size of B.
Base cases: $B \in\left\{X ; X \ngtr\left(X^{\perp} \otimes X\right) ; X \otimes\left(X^{\perp} \ngtr X\right)\right\}$
$\xrightarrow{\text { Inductive case: }} B \xrightarrow{\text { qBeffarara }} B_{1}$ is $B_{1} \xrightarrow{\text { Beffara }} B_{2} \xrightarrow{\text { Beffara }} * X$ by induction hypothesis.
$B_{1} \xrightarrow{\text { Beffara }} B_{2}$ is ${ }^{\text {Per }}$ (up to duality)

- $e_{1} \notin\left\{a_{1} ; a_{2} ; a_{3} ; a_{4}\right\}$ (including $e_{1}=e_{2}$)

The rewritings commute: $B \xrightarrow{\text { Beffara }} B_{1}^{\prime} \xrightarrow{\text { qBeffara }} B_{2} \xrightarrow{\text { Beffara }} * X$, so by induction $B \xrightarrow{\text { Beffara }} B_{1}^{\prime} \xrightarrow{\text { Beffara }}{ }^{*} X$

Quasi-Beffara \& Beffara (proof)

By induction on the size of B.
Base cases: $B \in\left\{X ; X \ngtr\left(X^{\perp} \otimes X\right) ; X \otimes\left(X^{\perp} \ngtr X\right)\right\}$
$\xrightarrow{\text { Inductive case: }} B \xrightarrow{\text { qBeffara }} B_{1}$ is $A_{1}^{\text {qBeffara }} B_{1} \xrightarrow{\text { Beffara }} B_{2} \xrightarrow{\text { Beffara }} * X$ by induction hypothesis.
$B_{1} \xrightarrow{\text { Beffara }} B_{2}$ is ${ }^{\text {Per }}$ (up to duality)

- $e_{1} \notin\left\{a_{1} ; a_{2} ; a_{3} ; a_{4}\right\}$ (including $e_{1}=e_{2}$)
- $e_{1}=a_{2}$

Up to isomorphism $e_{1}=a_{1}$ or $e_{1}=a_{4}$

Quasi-Beffara \& Beffara (proof)

By induction on the size of B.
Base cases: $B \in\left\{X ; X \ngtr\left(X^{\perp} \otimes X\right) ; X \otimes\left(X^{\perp} \ngtr X\right)\right\}$
$\xrightarrow{\text { Inductive case: }} B \xrightarrow{\text { qBeffara }} B_{1}$ is $\overbrace{8}^{\text {qBeffara }} B_{1} \xrightarrow{\text { Beffara }} B_{2} \xrightarrow{\text { Beffara }} * X$ by induction hypothesis.
$B_{1} \xrightarrow{\text { Beffara }} B_{2}$ is

(up to duality)

- $e_{1} \notin\left\{a_{1} ; a_{2} ; a_{3} ; a_{4}\right\}$ (including $e_{1}=e_{2}$)
- $e_{1}=a_{2}$
- $e_{1} \in\left\{a_{1} ; a_{3} ; a_{4}\right\}$
$B \xrightarrow{\text { qBeffara }} B_{1}$ is also a $B \xrightarrow{\text { Beffara }} B_{1}$

Characterization of $X \unlhd B$

Theorem

The followings are equivalent:
(1) $X \unlhd B$
(2) $B \xrightarrow[\text { Beffara }]{\text { qBeffara }} * X$
(3) $B \longrightarrow$ \longrightarrow (up to iso)

Characterization of $X \unlhd B$

Theorem

The followings are equivalent:
(1) $X \unlhd B$
(2) $B \xrightarrow[\text { Beffara }]{\text { qBeffara }} * X$
(1) $B \in P$ (up to iso)
$P::=X|P \otimes(N 8 P)| P \gamma(N \otimes P)$
$N::=X^{\perp}|N \otimes(P \gamma N)| N 8(P \otimes N)$

Characterization of $X \unlhd B$

Theorem

The followings are equivalent:
(1) $X \unlhd B$
(2) $B \xrightarrow{\text { qBeffara }} * X$
(3) $B \xrightarrow{\text { Beffara }} * X$ (up to iso)
(a) $B \in P$ (up to iso)
$P::=X|P \otimes(N \gamma P)| P \gamma(N \otimes P)$
$N::=X^{\perp}|N \otimes(P \ngtr N)| N \ngtr(P \otimes N)$
... but this is when looking at formulas! Looking at proofs, this is messier:

Plan

(1) Definitions

- Proof Net
- Retraction
(2) Retractions of the shape $X \unlhd$.
- Looking for a pattern
- Quasi-Beffara
- Beffara
(3) Difficulties for $A \unlhd B$ \& Other fragments

Difficulties for $A \unlhd B$

Example: $X \otimes Y \unlhd X \otimes\left(X^{\perp} \gamma(X \otimes Y)\right)$

Difficulties for $A \unlhd B$

as a proof pattern, also

(and others?)
Example: $X \otimes Y \unlhd X \otimes\left(X^{\perp} \ngtr(X \otimes Y)\right)$

May not be finitely axiomatisable (on formulas)?
$\left\{\otimes X_{i}\right\} \triangleleft\left\{\otimes X_{i}\right\} \ngtr\left(X_{1} \otimes\left(X_{1}^{\perp}>\left(\ldots\left(X_{n-1} \otimes\left(X_{n-1}^{\perp} \ngtr\left(X_{n} \otimes X_{n}^{\perp}\right)\right) \ldots\right)\right)\right)\right.$
And $(A \otimes X) \not \subset B \notin(A \otimes X) \gamma\left(X \otimes\left(X^{\perp}>B\right)\right)$

What about other fragments?

- Adding exponentials gives new retractions

$$
? A \unlhd ? ? A \quad ?!A \unlhd ?!?!A
$$

What about other fragments?

- Adding exponentials gives new retractions

$$
? A \unlhd ? ? A \quad ?!A \unlhd ?!?!A
$$

- In ALL retractions seems easier

$$
A \unlhd A \& B \Longleftrightarrow \vdash A^{\perp}, B
$$

Generates all (unit-free?) retraction proofs? (proof to be checked)

What about other fragments?

- Adding exponentials gives new retractions

$$
? A \unlhd ? ? A \quad ?!A \unlhd ?!?!A
$$

- In ALL retractions seems easier

$$
A \unlhd A \& B \Longleftrightarrow \vdash A^{\perp}, B
$$

Generates all (unit-free?) retraction proofs? (proof to be checked)

- In ALL, MELL, MALL and LL finding if a pair of formulas is a retraction is at least harder than provability:

$$
\begin{aligned}
!X \unlhd!X \otimes!(X \otimes A) & \Longleftrightarrow A \text { is provable } \\
X \unlhd X \&(X \otimes A) & \Longleftrightarrow A \text { is provable }
\end{aligned}
$$

Thus PSPACE-hard in MALL and undecidable in LL!

Thank you

for your attention!

References

围 Vincent Balat and Roberto Di Cosmo．
A linear logical view of linear type isomorphisms．
In Jörg Flum and Mario Rodríguez－Artalejo，editors，Computer Science Logic，volume 1683 of Lecture Notes in Computer Science，pages 250－265．Springer， 1999.
目 Laurent Regnier and Pawel Urzyczyn．
Retractions of types with many atoms， 2002.
http：／／arxiv．org／abs／cs／0212005．
國 Sergei Soloviev．
The category of finite sets and cartesian closed categories． Journal of Soviet Mathematics，22（3）：1387－1400， 1983.

Retraction not generated by Beffara

$$
\text { Proof of } X \triangleleft\left(X \otimes X^{\perp}\right)>\left(\left(X>X^{\perp}\right) \otimes X^{\perp}\right)
$$

Incorrect retraction generated by Quasi-Beffara

$$
\text { Not-Proof of } X \triangleleft\left(\left(X \otimes\left(X>X^{\perp}\right)\right)>X^{\perp}\right) \otimes X
$$

Incorrect retraction generated by Quasi-Beffara

Not-Proof of $X \triangleleft\left(\left(X \otimes\left(X>X^{\perp}\right)\right)>X^{\perp}\right) \otimes X$

Incorrect

Incorrect retraction generated by Quasi-Beffara

$$
\text { Not-Proof of } X \triangleleft\left(\left(X \otimes\left(X>X^{\perp}\right)\right)>X^{\perp}\right) \otimes X
$$

Can apply one step of Quasi-Beffara

Incorrect retraction generated by Quasi-Beffara

$$
\text { Not-Proof of } X \triangleleft\left(\left(X \otimes\left(X>X^{\perp}\right)\right)>X^{\perp}\right) \otimes X
$$

This is Beffara, attainable from X by one step of Quasi-Beffara

Formula not generated by Beffara without iso

Multiplicative Linear Logic - Cut \& Sequent

Cut

$$
C::=A * A^{\perp}
$$

Sequent

$$
\vdash A_{1}, \ldots, A_{n}, C_{1}, \ldots, C_{k}
$$

Example

Identity proof net

Identity proof structure of A

In the sequent $\vdash A^{\perp}, A$, link each leaf in A to the dual one in A^{\perp}.

Example: $A=Y \otimes\left(X^{\perp} 8 X^{\perp}\right)$

Lemma

An identity proof structure is correct.

Composition by cut

Composition

Putting side by side a proof structure on $\vdash \Gamma, A$ and one on $\vdash A^{\perp}, \Delta$, then adding a $*$-node between the roots of A and A^{\perp}, yields a proof structure on $\vdash \Gamma, A * A^{\perp}, \Delta$.

Example

Composition by cut

Composition

Putting side by side a proof structure on $\vdash \Gamma, A$ and one on $\vdash A^{\perp}, \Delta$, then adding a $*$-node between the roots of A and A^{\perp}, yields a proof structure on $\vdash \Gamma, A * A^{\perp}, \Delta$.

Example

Composition by cut

Composition

Putting side by side a proof structure on $\vdash \Gamma, A$ and one on $\vdash A^{\perp}, \Delta$, then adding a $*$-node between the roots of A and A^{\perp}, yields a proof structure on $\vdash \Gamma, A * A^{\perp}, \Delta$.

Example

Lemma

The composition of two correct proof structures is correct.

Cut elimination

Cut elimination

Lemma
Cut elimination preserves correction, is confluent and strongly normalizing.

Example of cut elimination

