Approches algorithmiques pour la statistique :

Romain Azaïs Soutenance d'habilitation à diriger des recherches

2 décembre 2022

Sujet : comprendre les enjeux statistiques d'un modèle stochastique

Modèle stochastique

Sujet : comprendre les enjeux statistiques d'un modèle stochastique

Modèle stochastique

Instance du modèle 🔶 Données

Sujet : comprendre les enjeux statistiques d'un modèle stochastique

Approche : construction d'algorithmes d'extraction de l'information adaptés au modèle dans sa généralité et théoriquement fondés

Sujet : comprendre les enjeux statistiques d'un modèle stochastique

Approche : construction d'algorithmes d'extraction de l'information adaptés au modèle dans sa généralité et théoriquement fondés

Intérêt de l'implémentation :

- donner des idées
- illustrer et/ou valider le comportement de l'algorithme
- aller vers l'applicabilité

.

.

• Introduits dans les années 80 par Davis

- The class is "wide enough to include as special cases virtually all the non-diffusion models of applied probability"
- MC, CT-MC, M/G/1 queue, G/G/1 queue \subset PDMP

- Introduits dans les années 80 par Davis
- The class is "wide enough to include as special cases virtually all the non-diffusion models of applied probability"
- MC, CT-MC, M/G/1 queue, G/G/1 queue \subset PDMP

- Introduits dans les années 80 par Davis
- The class is "wide enough to include as special cases virtually all the non-diffusion models of applied probability"
- MC, CT-MC, M/G/1 queue, G/G/1 queue \subset PDMP

Condition initiale : X₀ = x

- Introduits dans les années 80 par Davis
- The class is "wide enough to include as special cases virtually all the non-diffusion models of applied probability"
- MC, CT-MC, M/G/1 queue, G/G/1 queue \subset PDMP

- Condition initiale : X₀ = x
- Promenade déterministe :
 ∀ 0 ≤ t < T₁, X_t = Φ(t|x)

- Introduits dans les années 80 par Davis
- The class is "wide enough to include as special cases virtually all the non-diffusion models of applied probability"
- MC, CT-MC, M/G/1 queue, G/G/1 queue \subset PDMP

- Condition initiale : $X_0 = x$
- Promenade déterministe :
 ∀0 ≤ t < T₁, X_t = Φ(t|x)
- Durée aléatoire :

$$\mathbb{P}(T_1 > t) = \exp\left(-\int_0^t \lambda\left(\Phi(s|x)\right) \mathrm{d}s\right) \mathbb{1}_{\{0 \le t < t^+(x)\}}$$

- Introduits dans les années 80 par Davis
- The class is "wide enough to include as special cases virtually all the non-diffusion models of applied probability"
- MC, CT-MC, M/G/1 queue, G/G/1 queue \subset PDMP

- Condition initiale : $X_0 = x$
- Promenade déterministe : ∀0 ≤ t < T₁, X_t = Φ(t|x)
- Durée aléatoire :

$$\mathbb{P}(T_1 > t) = \exp\left(-\int_0^t \lambda\left(\Phi(s|x)\right) \mathrm{d}s\right) \mathbb{1}_{\{0 \le t < t^+(x)\}}$$

• Perturbation aléatoire :

$$\mathbb{E}\left[\varphi(X_{T_1}) \,|\, \Phi(T_1|x)\right] = \int \varphi(u) Q(\mathrm{d}u |\Phi(T_1|x))$$

- Introduits dans les années 80 par Davis
- The class is "wide enough to include as special cases virtually all the non-diffusion models of applied probability"
- MC, CT-MC, M/G/1 queue, G/G/1 queue \subset PDMP

- Introduits dans les années 80 par Davis
- The class is "wide enough to include as special cases virtually all the non-diffusion models of applied probability"
- MC, CT-MC, M/G/1 queue, G/G/1 queue \subset PDMP

- $X_{T_1} = x$
- Promenade déterministe : $\forall 0 \le t < S_2, \ X_{T_1+t} = \Phi(t|x)$

- Introduits dans les années 80 par Davis
- The class is "wide enough to include as special cases virtually all the non-diffusion models of applied probability"
- MC, CT-MC, M/G/1 queue, G/G/1 queue \subset PDMP

- $X_{T_1} = x$
- Promenade déterministe : $\forall 0 \le t < S_2, \ X_{T_1+t} = \Phi(t|x)$
- Durée aléatoire :

$$\mathbb{P}(S_2 > t) = \exp\left(-\int_0^t \lambda\left(\Phi(s|x)\right) \mathrm{d}s\right) \mathbb{1}_{\{0 \le t < t^+(x)\}}$$

- Introduits dans les années 80 par Davis
- The class is "wide enough to include as special cases virtually all the non-diffusion models of applied probability"
- MC, CT-MC, M/G/1 queue, G/G/1 queue \subset PDMP

- $X_{T_1} = x$
- Promenade déterministe : $\forall 0 \le t < S_2, \ X_{T_1+t} = \Phi(t|x)$
- Durée aléatoire :

$$\mathbb{P}(S_2 > t) = \exp\left(-\int_0^t \lambda\left(\Phi(s|x)\right) \mathrm{d}s\right) \mathbb{1}_{\{0 \le t < t^+(x)\}}$$

• Perturbation aléatoire :

$$\mathbb{E}\left[\varphi(X_{T_2}) \,|\, \Phi(S_2|x)\right] = \int \varphi(u) Q(\mathrm{d}u |\Phi(S_2|x))$$

• Reconstruction des trajectoires (\simeq estimation de Φ)

• Estimation des caractéristiques probabilistes (λ et Q)

Estimation de fonctionnelles

- Reconstruction des trajectoires (≃ estimation de Φ)
 Méthodes heuristiques pour des problèmes appliqués
 JRR '16, thèse de Florine Greciet
- Estimation des caractéristiques probabilistes (λ et Q)

Estimation de fonctionnelles

- Reconstruction des trajectoires (≃ estimation de Φ)
 Méthodes heuristiques pour des problèmes appliqués
 JRR '16, thèse de Florine Greciet
- Estimation des caractéristiques probabilistes (λ et Q)

Statistique non-paramétrique dans un cadre général ESAIM:PS '13, SJS '14 , EJS '16 , Comm in Stat '18

thèse

Estimation de fonctionnelles

- Reconstruction des trajectoires (≃ estimation de Φ)
 Méthodes heuristiques pour des problèmes appliqués
 JRR '16, thèse de Florine Greciet
- Estimation des caractéristiques probabilistes (λ et Q)

Statistique non-paramétrique dans un cadre général ESAIM:PS '13, SJS '14 , EJS '16 , Comm in Stat '18

thèse

 Estimation de fonctionnelles liées à des croisements TEST '15, JSPI '19

• Reconstruction des trajectoires (\simeq estimation de Φ) Méthodes heuristiques pour des problèmes appliqués

JRR '16, thèse de Florine Greciet

• Estimation des caractéristiques probabilistes (λ et Q)

Statistique non-paramétrique dans un cadre général ESAIM:PS '13, SJS '14, EJS '16, Comm in Stat '18 thèse

 Estimation de fonctionnelles liées à des croisements TEST '15, JSPI '19

Estimation du taux de saut λ : cadre de travail (1/2)

Observation parfaite ($\simeq \Phi$ connu) d'une seule trajectoire en temps long

- La loi conditionnelle est directement observée
- Absence de données i.i.d.
- Statistique asymptotique

Estimation du taux de saut λ : cadre de travail (1/2)

Observation parfaite ($\simeq \Phi$ connu) d'une seule trajectoire en temps long

- La loi conditionnelle est directement observée
- Absence de données i.i.d.
- Statistique asymptotique

Hypothèses sur le modèle :

- La forme du modèle n'est pas spécifiée
- Hypothèse d'ergodicité pour garantir la qualité de l'estimation
- Espace d'état général

Espace d'état typique : $E = \bigcup_{m \in M} \{m\} \times E_m$, avec $M \subset \mathbb{N}$ et $E_m \subset \mathbb{R}^{d_m}$

Estimation du taux de saut λ : cadre de travail (2/2)

.

Estimation du taux de saut λ : cadre de travail (2/2)

$$\mathbb{P}(S_{n+1} > t | X_{T_n} = x) = \exp\left(-\int_0^t \lambda(\Phi(s|x)) \mathrm{d}s\right) \mathbb{1}_{\{0 \le t < t^+(x)\}}$$

.
Estimation du taux de saut λ : cadre de travail (2/2)

$$\mathbb{P}(S_{n+1} > t | X_{T_n} = x) = \underbrace{\exp\left(-\int_0^t \lambda(\Phi(s|x)) \mathrm{d}s\right)}_{G(t|x)} \mathbb{1}_{\{0 \le t < t^+(x)\}}$$

• Densité :
$$f(t|x) = -\frac{\partial G}{\partial t}(t|x)$$

• Taux :
$$\lambda \circ \Phi(t|x) = \frac{f(t|x)}{G(t|x)}$$

.

8 / 41

Stratégie 1

Appliquer le modèle à intensité multiplicative SJS '14 et Comm in Stat '18

- Estimation directe d'un taux de saut (via lissage à noyau)
- Technique adaptée aux données censurées

.

- Estimation directe d'un taux de saut (via lissage à noyau)
- Technique adaptée aux données censurées

.

• Hypothèse : modèle à intensité multiplicative

- Estimation directe d'un taux de saut (via lissage à noyau)
- Technique adaptée aux données censurées
- Hypothèse : modèle à intensité multiplicative

Théorème (SJS '14)

• La plupart des PDMPs ne vérifient pas l'hypothèse d'intensité multiplicative

- Estimation directe d'un taux de saut (via lissage à noyau)
- Technique adaptée aux données censurées
- Hypothèse : modèle à intensité multiplicative

Théorème (SJS '14)

- La plupart des PDMPs ne vérifient pas l'hypothèse d'intensité multiplicative
- On peut estimer le taux d'un processus auxiliaire bien choisi :

$$\widetilde{\lambda}(t|x,y) = f(t|x)Q(y|\Phi(t|x))/H(y,t|x)$$

avec

$$H(y,t|x) = \int_{t}^{t^{+}(x)} f(t|x)Q(y|\Phi(t|x)) + G(t^{+}(x)|x)Q(y|\Phi(t^{+}(x)|x))$$

Retour au processus d'intérêt

• SJS'14 : $f(t|x) = \int_E \widetilde{\lambda}(t|x,y) H(y,t|x) \mathrm{d}y$

Retour au processus d'intérêt

• SJS'14 : $f(t|x) = \int_E \widetilde{\lambda}(t|x,y) H(y,t|x) \mathrm{d}y$

• Comm in Stat '18 :

$$\lambda(x) = \int_E \widetilde{\lambda}(0|x,y) R(y|x) \mathrm{d}y$$

où R est le noyau de (X_{T_n})

- Décomposition de $\widetilde{\lambda}(\cdot t^+(x)|x,y)$ sur une base de $\mathbb{L}^2_{[0,1]}$
- - Estimation dans le cas discret : supp $Q(\mathrm{d} y|x)$ supposé fini et indépendant de x

$\begin{array}{c} \textbf{Stratégie 2} \\ \textbf{Estimer } \lambda(\Phi(t|x)) \text{ comme } f(t|x)/G(t|x) \\ \textbf{EJS '16} \end{array}$

Estimateurs à noyau : définition

$$\begin{aligned} \widehat{\mathcal{F}}_n(x,t) &= \frac{1}{n} \sum_{i=0}^{n-1} \frac{1}{v_i^d w_i} \mathbb{K}_d \left(\frac{X_{T_i} - x}{v_i} \right) \mathbb{K}_1 \left(\frac{S_{i+1} - t}{w_i} \right) \\ \widehat{\mathcal{G}}_n(x,t) &= \frac{1}{n} \sum_{i=0}^{n-1} \frac{1}{v_i^d} \mathbb{K}_d \left(\frac{X_{T_i} - x}{v_i} \right) \mathbb{1}_{\{S_{i+1} > t\}} \\ \widehat{\pi}_{\infty,n}(x) &= \frac{1}{n} \sum_{i=0}^{n-1} \frac{1}{v_i^d} \mathbb{K}_d \left(\frac{X_{T_i} - x}{v_i} \right) \end{aligned}$$

Fenêtres : $v_k = v_0(k+1)^{-\alpha}$ et $w_k = w_0(k+1)^{-\beta}$ avec $\alpha, \beta > 0$ \mathbb{K}_p est un noyau sur \mathbb{R}^p , $p \in \{1, d\}$

______ 13 / 41

Estimateurs à noyau : convergence

$$\begin{array}{l} \hline \textbf{Théorème (EJS'16)} \\ \hline \textbf{Pour } x \in E \text{ et } 0 \leq t < t^+(x), \\ & \left[\begin{array}{c} \widehat{\mathcal{F}}_n(x,t) \\ \widehat{\mathcal{G}}_n(x,t) \\ \widehat{\pi}_{\infty,n}(x) \end{array} \right] \stackrel{\textbf{p.s.}}{\longrightarrow} \left[\begin{array}{c} \pi_{\infty}(x)f(t|x) \\ \pi_{\infty}(x)G(t|x) \\ \pi_{\infty}(x) \end{array} \right] \\ \textbf{et} \\ n^{\frac{1-\alpha d-\beta}{2}} \left(\left[\begin{array}{c} \widehat{\mathcal{F}}_n(x,t) \\ \widehat{\mathcal{G}}_n(x,t) \\ \widehat{\pi}_{\infty,n}(x) \end{array} \right] - \left[\begin{array}{c} \pi_{\infty}(x)f(t|x) \\ \pi_{\infty}(x)G(t|x) \\ \pi_{\infty}(x) \end{array} \right] \right) \stackrel{\mathcal{L}}{\longrightarrow} \mathcal{N}(0_3, \Sigma(x,t,\alpha,\beta)), \\ \textbf{où la matrice de covariance } \Sigma(x,t,\alpha,\beta) \text{ est dégénérée avec un seul terme non nul en position (1,1)} \end{array} \right. \end{array}$$

Estimation de la composée $\lambda\circ\Phi$

$$\widehat{\lambda \circ \Phi}_n(t|x) = \frac{\widehat{\mathcal{F}}_n(x,t)}{\widehat{\mathcal{G}}_n(x,t)}$$

$$\begin{array}{l} \textbf{Corollaire (EJS '16)} \\ \textbf{Pour } x \in E \text{ et } 0 < t < t^{+}(x), \\ & \widehat{\lambda \circ \Phi_{n}}(t|x) \xrightarrow{\textbf{p.s.}} \lambda \circ \Phi(t|x) \\ \textbf{et} \\ n^{\frac{1-\alpha d-\beta}{2}} \left(\widehat{\lambda \circ \Phi_{n}}(t|x) - \lambda \circ \Phi(t|x) \right) \xrightarrow{\mathcal{L}} \mathcal{N} \left(0, \frac{\tau_{1}^{2} \tau_{d}^{2} \lambda \circ \Phi(t|x)}{(1+\alpha d+\beta)\pi_{\infty}(x)G(t|x)} \right) \end{array}$$

 $\mathsf{Cible}:\,\lambda(x)\;\mathsf{pour}\;x\in E\;\mathsf{fixe}$

Cible : $\lambda(x)$ pour $x \in E$ fixé

 $\mathcal{C}_x = \{ \Phi(-t|x) : t \ge 0 \} \cap E$ $\forall \xi \in \mathcal{C}_x, \exists ! \tau_x(\xi), \ \Phi(\tau_x(\xi)|\xi) = x$

Cible : $\lambda(x)$ pour $x \in E$ fixé

 $\mathcal{C}_x = \{ \Phi(-t|x) : t \ge 0 \} \cap E$ $\forall \xi \in \mathcal{C}_x, \exists ! \tau_x(\xi), \ \Phi(\tau_x(\xi)|\xi) = x$

$$\lambda \circ \Phi(\tau_x(\xi)|\xi) = \lambda(x)$$

Cible : $\lambda(x)$ pour $x \in E$ fixé

 $\mathcal{C}_x = \{\Phi(-t|x) : t \ge 0\} \cap E$ $\forall \xi \in \mathcal{C}_x, \exists ! \tau_x(\xi), \ \Phi(\tau_x(\xi)|\xi) = x$

$$\lambda \circ \Phi(\tau_x(\xi)|\xi) = \lambda(x)$$

Pour tout
$$\xi \in \mathcal{C}_x$$
, $\left| \widehat{\lambda}_{\xi,n}(x) = \widehat{\lambda \circ \Phi}_n(\tau_x(\xi) | \xi) \right|$ estime $\lambda(x)$

Estimateur de variance asymptotique minimale :

$$\frac{\tau_1^2 \tau_d^2 \lambda \circ \Phi(\tau_x(\xi)|\xi)}{(1+\alpha d+\beta)\pi_\infty(\xi)G(t|\xi)} \propto (\pi_\infty(\xi)G(\tau_x(\xi)|\xi))^{-1}$$

$$\widehat{\lambda}_n(x) = \widehat{\lambda}_{\xi^\star, n}(x) \qquad \text{où} \quad \xi^\star = \operatorname*{arg\,max}_{\xi \in \mathcal{C}_x} \pi_\infty(\xi) G(\tau_x(\xi) | \xi)$$

Estimateur de variance asymptotique minimale :

$$\frac{\tau_1^2 \tau_d^2 \lambda \circ \Phi(\tau_x(\xi)|\xi)}{(1+\alpha d+\beta)\pi_\infty(\xi)G(t|\xi)} \propto (\pi_\infty(\xi)G(\tau_x(\xi)|\xi))^{-1}$$

$$\widehat{\lambda}_n(x) = \widehat{\lambda}_{\xi^\star, n}(x) \qquad \text{où} \quad \xi^\star = \underset{\xi \in \mathcal{C}_x}{\arg \max} \pi_\infty(\xi) G(\tau_x(\xi) | \xi)$$

$$\widehat{\widehat{\lambda}}_n(x) = \widehat{\lambda}_{\xi^\star,n}(x) \qquad \text{où} \quad \xi^\star = \operatorname*{arg\,max}_{\xi \in \mathcal{C}_x} \widehat{\mathcal{G}}_n(\xi,\tau_x(\xi))$$

Critère ISE le long de \mathcal{C}_x :

$$\mathsf{ISE}_n(\alpha) = \int_{\mathcal{C}_x} \widehat{\mathcal{G}}_n(\xi, \tau_x(\xi))^2 \mathrm{d}\xi - 2 \int_{\mathcal{C}_x} \widehat{\mathcal{G}}_n(\xi, \tau_x(\xi)) \, \pi_\infty(\xi) G(\tau_x(\xi)|\xi) \, \mathrm{d}\xi$$

Critère ISE le long de C_x :

$$\mathsf{ISE}_n(\alpha) = \int_{\mathcal{C}_x} \widehat{\mathcal{G}}_n(\xi, \tau_x(\xi))^2 \mathrm{d}\xi - 2 \int_{\mathcal{C}_x} \widehat{\mathcal{G}}_n(\xi, \tau_x(\xi)) \, \pi_\infty(\xi) G(\tau_x(\xi)|\xi) \, \mathrm{d}\xi$$

Validation-croisée en dimension d = 1

$$\frac{\frac{1}{n}\sum_{k=0}^{\overline{n}-1}\widehat{\mathcal{G}}_n(\overline{X}_{T_k},\tau_x(\overline{X}_{T_k}))}{\xrightarrow{\mathbf{p.s.}}\int \widehat{\mathcal{G}}_n(\xi,\tau_x(\xi))\,\pi_\infty(\xi)} d\xi,$$

où $(\overline{X}_{T_k}, \overline{S}_{k+1})$ est la chaîne immergée d'un autre PDMP, indépendant du premier, et généré selon les mêmes paramètres

Critère ISE le long de C_x :

$$\mathsf{ISE}_n(\alpha) = \int_{\mathcal{C}_x} \widehat{\mathcal{G}}_n(\xi, \tau_x(\xi))^2 \mathrm{d}\xi - 2 \int_{\mathcal{C}_x} \widehat{\mathcal{G}}_n(\xi, \tau_x(\xi)) \, \pi_\infty(\xi) G(\tau_x(\xi)|\xi) \, \mathrm{d}\xi$$

Validation-croisée en dimension d = 1

$$\begin{split} \frac{1}{n} \sum_{k=0}^{\overline{n}-1} \widehat{\mathcal{G}}_n(\overline{X}_{T_k}, \tau_x(\overline{X}_{T_k})) \mathbb{1}_{\mathcal{C}_x}(\overline{X}_{T_k}) \\ \xrightarrow{\mathbf{p.s.}} \int_{\mathcal{C}_x} \widehat{\mathcal{G}}_n(\xi, \tau_x(\xi)) \, \pi_\infty(\xi) \qquad \mathrm{d}\xi, \end{split}$$

où $(\overline{X}_{T_k}, \overline{S}_{k+1})$ est la chaîne immergée d'un autre PDMP, indépendant du premier, et généré selon les mêmes paramètres

Critère ISE le long de C_x :

$$\mathsf{ISE}_n(\alpha) = \int_{\mathcal{C}_x} \widehat{\mathcal{G}}_n(\xi, \tau_x(\xi))^2 \mathrm{d}\xi - 2 \int_{\mathcal{C}_x} \widehat{\mathcal{G}}_n(\xi, \tau_x(\xi)) \,\pi_\infty(\xi) G(\tau_x(\xi)|\xi) \,\mathrm{d}\xi$$

Validation-croisée en dimension d = 1

$$\frac{\frac{1}{\overline{n}}\sum_{k=0}^{\overline{n}-1}\widehat{\mathcal{G}}_n(\overline{X}_{T_k},\tau_x(\overline{X}_{T_k}))\mathbb{1}_{\mathcal{C}_x}(\overline{X}_{T_k})\mathbb{1}_{(\tau_x(\overline{X}_{T_k}),\infty)}(\overline{S}_{k+1})}{\xrightarrow{\mathbf{p.s.}}\int_{\mathcal{C}_x}\widehat{\mathcal{G}}_n(\xi,\tau_x(\xi))\,\pi_\infty(\xi)G(\tau_x(\xi)|\xi)\,\mathrm{d}\xi},$$

où $(\overline{X}_{T_k}, \overline{S}_{k+1})$ est la chaîne immergée d'un autre PDMP, indépendant du premier, et généré selon les mêmes paramètres

Validation-croisée en dimension d > 1

•
$$\mathbb{H}_x = \left\{ y \in \mathbb{R}^d : y - x \perp \frac{\partial \Phi}{\partial t}(0|x) \right\}$$

• $\mathbb{D}_{x,\rho} = B_d(x,\rho) \cap \mathbb{H}_x$
• $\mathbb{T}_{x,\rho} = -\frac{1}{2} \int_{-\infty}^{\infty} C_x$

•
$$\mathbb{T}_{x,\rho} = \bigcup_{y \in \mathbb{D}_{x,\rho}} \mathcal{C}_y$$

Validation-croisée en dimension d > 1

•
$$\mathbb{H}_x = \left\{ y \in \mathbb{R}^d : y - x \perp \frac{\partial \Phi}{\partial t}(0|x) \right\}$$

• $\mathbb{D}_{x,\rho} = B_d(x,\rho) \cap \mathbb{H}_x$

•
$$\mathbb{T}_{x,\rho} = \bigcup_{y \in \mathbb{D}_{x,\rho}} \mathcal{C}_y$$

Approximation du critère ISE :

$$\begin{split} \widehat{\mathsf{ISE}}_{n,\overline{n}}(\alpha) &= \int_{\mathcal{C}_x} \widehat{\mathcal{G}}_n(\xi,\tau_x(\xi))^2 \mathrm{d}\xi \\ &- \frac{2\Gamma\left(\frac{d-1}{2}+1\right)}{\overline{n}\pi^{\frac{d-1}{2}}\rho^{d-1}} \sum_{k=0}^{\overline{n}-1} \widehat{\mathcal{G}}_n(\overline{X}_{T_k},\tau_x(\overline{X}_{T_k})) \mathbb{1}_{\mathbb{T}_{x,\rho}}(\overline{X}_{T_k}) \mathbb{1}_{(\tau_x(\overline{X}_{T_k}),\infty)}(\overline{S}_{k+1}) \end{split}$$

Proposition (EJS'16)

Conditionnellement à l'observation de (X_t) , quand $\overline{n} \to \infty$ et $\rho \to 0$,

$$\widehat{\mathsf{ISE}}_{n,\overline{n}}(\alpha) \xrightarrow{\mathsf{p.s.}} \mathsf{ISE}_n(\alpha)$$

Estimation du taux de saut λ : perspectives (1/2)

Application du modèle à intensité multiplicative

Problème principal : revenir au processus d'intérêt, i.e. inverser

$$\widetilde{\lambda}(t|x,y) = f(t|x)Q(y|\Phi(t|x))/H(y,t|x)$$

Estimation du taux de saut λ : perspectives (1/2)

Application du modèle à intensité multiplicative

Problème principal : revenir au processus d'intérêt, i.e. inverser

$$\lambda(t|x,y) = f(t|x)Q(y|\Phi(t|x))/H(y,t|x)$$

- Comm in Stat '18 : supp Q(dy|x) supposé fini et indépendant de x
 → Quantifier la loi invariante π∞ (ou quantifier R ?)
- Estimer $\widetilde{f}(t|x,y)$ (Kaplan-Meier) plutôt que $\widetilde{\lambda}(t|x,y)$ puis utiliser $\widetilde{f}(t|x,y) \propto f(t|x)Q(y|\Phi(t|x))$

Estimation du taux de saut λ : perspectives (1/2)

Application du modèle à intensité multiplicative

Problème principal : revenir au processus d'intérêt, i.e. inverser

$$\lambda(t|x,y) = f(t|x)Q(y|\Phi(t|x))/H(y,t|x)$$

- Comm in Stat '18 : supp Q(dy|x) supposé fini et indépendant de x
 → Quantifier la loi invariante π∞ (ou quantifier R ?)
- Estimer $\widetilde{f}(t|x,y)$ (Kaplan-Meier) plutôt que $\widetilde{\lambda}(t|x,y)$ puis utiliser $\widetilde{f}(t|x,y) \propto f(t|x)Q(y|\Phi(t|x))$

• Lissage spatial (uniquement en x ?) pour faciliter la comparaison avec l'estimateur quotient

Estimation du taux de saut λ : perspectives (2/2) Estimateur quotient

- Convergence de $\widehat{\widehat{\lambda}}_n(x)$
- Procédure d'estimation ponctuelle \rightarrow procédure d'estimation globale ?
- Aggrégation d'estimateurs :

$$\widehat{\lambda}_n(x) = \int_{\mathcal{C}_x} \alpha(\xi) \widehat{\lambda}_{\xi,n}(x) \mathrm{d} \xi \qquad \text{où} \ \int_{\mathcal{C}_x} \alpha(\xi) \mathrm{d} \xi = 1$$

 \rightarrow Étude des corrélations des $\widehat{\lambda}_{\xi,n}(x)$

Arbres enracinés non-ordonnés

graphe

arbre

arbre enraciné

arbre enraciné étiqueté

Arbres enracinés non-ordonnés

graphe

arbre

arbre enraciné

arbre enraciné étiqueté

crédit photo : Benoît Henry

Arbres enracinés non-ordonnés

Modélisation de

- structures aériennes de plantes
- lignées cellulaires
- fichiers XML

 $\mathsf{s\acute{e}quences} \subset \mathsf{arbres} \subset \mathsf{graphes}$

crédit photo : Benoît Henry

• Modèle stochastique génératif

• Étude de la distribution via la détection de motifs

• Modèle stochastique génératif

Processus de Galton-Watson ALEA '19, Preprint

• Étude de la distribution via la détection de motifs

Modèle stochastique génératif

Processus de Galton-Watson ALEA '19, Preprint

• Étude de la distribution via la détection de motifs de type sous-arbre :

- Motifs exacts et noyaux de convolution JMLR '20, TCS '22, thèse de Florian Ingels
- Motifs approchés

Modèle stochastique génératif

Processus de Galton-Watson ALEA '19, Preprint

• Étude de la distribution via la détection de motifs de type sous-arbre :

- Motifs exacts et noyaux de convolution JMLR '20, TCS '22, thèse de Florian Ingels
- Motifs approchés :
 - Approximation topologique Algorithms '19, ALENEX '19
 - Approximation des étiquettes IWOCA '21
 - Approximation topologique et des étiquettes FSPM '23
Statistique des données arborescentes

Modèle stochastique génératif

Processus de Galton-Watson ALEA '19, Preprint

- Étude de la distribution via la détection de motifs de type sous-arbre :
 - Motifs exacts et noyaux de convolution
 JMLR '20 , TCS '22 , thèse de Florian Ingels
 - Motifs approchés :
 - Approximation topologique Algorithms '19, ALENEX '19
 - Approximation des étiquettes IWOCA '21
 - Approximation topologique et des étiquettes FSPM '23

Autour du noyau des sous-arbres JMLR '20 et TCS '22

Noyaux

• $K: \mathcal{X}^2 \to \mathbb{R}$ est un noyau sur \mathcal{X} si les matrices $[K(X_i, X_j)]_{i,j}$ sont symétriques semi-définies positives

- Moore-Aronszajn : $K(x,y) = \langle \psi(x), \psi(y) \rangle_{\mathcal{H}}$
- Interface avec des algorithmes efficaces, e.g. SVM, ACP, NN

Noyaux

- K: X² → ℝ est un noyau sur X si les matrices [K(X_i, X_j)]_{i,j} sont symétriques semi-définies positives
- Moore-Aronszajn : $K(x,y) = \langle \psi(x), \psi(y) \rangle_{\mathcal{H}}$
- Interface avec des algorithmes efficaces, e.g. SVM, ACP, NN

Noyaux sur des structures combinatoires : convolution (Haussler '99)

$$K(x,y) = \sum_{s \in \mathcal{S}_{\mathcal{X}}} \omega_s \varphi(\mathsf{num}_s(x),\mathsf{num}_s(y)),$$

où

- $\mathcal{S}_{\mathcal{X}}$ désigne un ensemble de sous-structures des éléments de \mathcal{X}
- $\operatorname{num}_s(x)$ est le nombre d'occurences de s dans x
- ω_s est le poids associé à s
- φ est un noyau sur $\mathbb N$ ou sur $\mathbb R$

Noyaux

- K: X² → ℝ est un noyau sur X si les matrices [K(X_i, X_j)]_{i,j} sont symétriques semi-définies positives
- Moore-Aronszajn : $K(x,y) = \langle \psi(x), \psi(y) \rangle_{\mathcal{H}}$
- Interface avec des algorithmes efficaces, e.g. SVM, ACP, NN

Noyaux sur des structures combinatoires : convolution (Haussler '99)

$$K(x,y) = \sum_{s \in \mathcal{S}_x \cap \mathcal{S}_y} \omega_s \operatorname{num}_s(x) \operatorname{num}_s(y) \,,$$

où

- $\mathcal{S}_{\mathcal{X}}$ désigne un ensemble de sous-structures des éléments de \mathcal{X}
- $\operatorname{num}_s(x)$ est le nombre d'occurences de s dans x
- ω_s est le poids associé à s
- $\varphi(x,y) = xy$

Sélection de l'ensemble de sous-structures

Ensemble de sous-structures riche, e.g. sous-graphes pour les graphes

- + Comparaison pertinente
- Complexité temporelle mauvaise

Ensemble de sous-structures pauvre, e.g. lettres pour les séquences

- Comparaison naïve
- + Complexité temporelle rapide

Sélection de l'ensemble de sous-structures

Ensemble de sous-structures riche, e.g. sous-graphes pour les graphes

- + Comparaison pertinente
- Complexité temporelle mauvaise

Ensemble de sous-structures pauvre, e.g. lettres pour les séquences

- Comparaison naïve
- + Complexité temporelle rapide

Évaluation de la matrice de Gram $[K(X_i, X_j)]_{i,j}$

- Évaluation directe de $\operatorname{num}_s(X_i)$ et $\operatorname{num}_s(X_j)$ pour $s \in \mathcal{S}_{X_i} \cap \mathcal{S}_{X_j}$
- Énumération préliminaire de $igcup_{1\leq i\leq n}\mathcal{S}_{X_i}$

$$K(x,y) = \sum_{s \in \mathcal{S}_x \cap \mathcal{S}_y} \omega_s \operatorname{num}_s(x) \operatorname{num}_s(y)$$

 $K(T_1, T_2) =$

$$K(x,y) = \sum_{s \in \mathcal{S}_x \cap \mathcal{S}_y} \omega_s \operatorname{num}_s(x) \operatorname{num}_s(y)$$

 $K(T_1, T_2) = \omega_{\bullet} \times 5 \times 6$

$$K(x,y) = \sum_{s \in \mathcal{S}_x \cap \mathcal{S}_y} \omega_s \operatorname{num}_s(x) \operatorname{num}_s(y)$$

 T_2

 $K(T_1, T_2) = \omega_{\bullet} \times 5 \times 6 + \omega_{\bullet} \times 2 \times 2$

$$K(x,y) = \sum_{s \in \mathcal{S}_x \cap \mathcal{S}_y} \omega_s \operatorname{num}_s(x) \operatorname{num}_s(y)$$

 T_2

 $K(T_1, T_2) = \omega_{\bullet} \times 5 \times 6 + \omega_{\bullet} \times 2 \times 2 + \omega_{\bullet} \times 1 \times 1$

$$K(x,y) = \sum_{s \in \mathcal{S}_x \cap \mathcal{S}_y} \omega_s \operatorname{num}_s(x) \operatorname{num}_s(y)$$

 $K(T_1, T_2) = \omega_{\bullet} \times 5 \times 6 + \omega_{\bullet} \times 2 \times 2 + \omega_{\bullet} \times 1 \times 1$

$$K(x,y) = \sum_{s \in \mathcal{S}_x \cap \mathcal{S}_y} \omega_s \operatorname{num}_s(x) \operatorname{num}_s(y)$$

 $K(T_1, T_2) = \omega_{\bullet} \times 5 \times 6 + \omega_{\bullet} \times 2 \times 2 + \omega_{\bullet} \times 1 \times 1$

Algorithme : formule récursive pour $K(T_1, T_2)$ en $O(\#T_1 + \#T_2)$ Hypothèse : $\omega_s = \lambda^{\#s}$ où $\lambda^{\mathsf{height}(s)}$, $0 < \lambda \leq 1$

Tentative d'étude théorique du noyau des sous-arbres (1/2)

- Modèle stochastique à 2 classes
- ρ : paramètre de dissimilarité des classes
- Classifieur : $T \mapsto \underset{k}{\operatorname{arg\,max}} \operatorname{mean} \{K(T, t) : \operatorname{class}(t) = k\}$

Tentative d'étude théorique du noyau des sous-arbres (1/2)

- Modèle stochastique à 2 classes
- ρ : paramètre de dissimilarité des classes
- Classifieur : $T \mapsto \underset{k}{\operatorname{arg\,max}} \operatorname{mean} \{K(T,t) : \operatorname{class}(t) = k\}$

Proposition (JMLR '20)

Un jeu de données d'apprentissage de taille

$$\frac{2\max_k K(T_k, T_k)^2}{\min_k C_{k,h}^2} \frac{\exp(2\rho)}{H^2} \log\left(\frac{2}{\delta}\right)$$

est suffisant pour que, avec probabilité au moins $1-\delta,$ le classifieur induise une erreur d'au plus $1-F_\rho(h)+\delta$

$$\bullet \ \ C_{k,h} = \frac{K(T_k,T_k) - \max_{\{u \in T_k : \mathsf{height}(T_k[u]) = h\}} K(T_k[u],T_k[u])}{\#\mathsf{leaves}(T_k)}$$

• $F_{
ho}(h)$: fonction de répartition de la loi binomiale de paramètre (H,
ho/H)

Tentative d'étude théorique du noyau des sous-arbres (2/2)

Corollaire (JMLR '20)

Le nombre de données d'apprentissage susmentionné est minimal lorsque $\omega_{\mathrm{leaf}}=0$

Tentative d'étude théorique du noyau des sous-arbres (2/2)

Corollaire (JMLR '20)

Le nombre de données d'apprentissage susmentionné est minimal lorsque $\omega_{\rm leaf}=0$

Limite du calcul récursif :

- Avec $\omega_s = \lambda^{\#s}$ ou $\lambda^{\mathsf{height}(s)},$ le poids des feuilles est maximal
- Le poids devrait dépendre des fréquences d'apparition des sous-structures dans les classes

Énumération des sous-arbres : algorithme

- Énumération préliminaire de $\bigcup_{1 \le i \le n} S_{T_i}$ en temps quadratique \uparrow tous les sous-arbres des données
- Évaluation de $K(T_i, T_j)$ en $O(\min(\#T_i, \#T_j))$

Énumération des sous-arbres : algorithme

- Énumération préliminaire de $\bigcup_{1 \le i \le n} S_{T_i}$ en temps quadratique \uparrow tous les sous-arbres des données
- Évaluation de $K(T_i, T_j)$ en $O(\min(\#T_i, \#T_j))$

Adapté à :

 Des évaluations répétées de la matrice de Gram, e.g. pour tester différentes valeurs de λ

.

• Apprendre la fonction de poids à partir des données

Énumération des sous-arbres : fonction de poids

 $\rho_s(k) = {\rm fréquence}~{\rm de}$ la sous-structure s dans la classe k

Conjecture
Si
$$\rho_s$$
 est proche de $1_k = (0, \dots, 1, \dots, 0)$ ou de $\overline{1}_k = (1, \dots, 0, \dots, 1)$,
 \uparrow_k
alors *s* aide à discriminer la classe *k*

Énumération des sous-arbres : fonction de poids

 $\rho_s(k) = {\rm fréquence}~{\rm de}$ la sous-structure s dans la classe k

Conjecture
Si
$$\rho_s$$
 est proche de $1_k = (0, \dots, 1, \dots, 0)$ ou de $\overline{1}_k = (1, \dots, 0, \dots, 1)$,
 \uparrow_k
alors *s* aide à discriminer la classe *k*

- ω_s : fonction décroissante de la distance minimale aux 1_k 's et aux $\overline{1}_k$'s
 - si la distance est petite, alors s est pertinente et ω_s est grand
 - si la distance est grande, alors s n'est pas pertinente et ω_s est petit

Noyau des sous-arbres feat. SVM

→ 33 / 41

Noyau des sous-arbres feat. SVM

→ 33 / 41

Noyau des sous-arbres feat. SVM

Limite du noyau des sous-arbres

Noyau des sous-arbres inefficace sur cet exemple

Limite du noyau des sous-arbres

Noyau des sous-arbres inefficace sur cet exemple

- \rightarrow Énumération des sous-forêts
 - \subset Énumération des forêts
- \rightarrow Même procédure d'apprentissage

34 / 41

 (T_1, \ldots, T_n) est une forêt nonredondante si, pour tout couple (i, j), T_i n'est pas un sous-arbre de T_j

```
(T_1, \ldots, T_n) est une forêt non-
redondante si, pour tout couple
(i, j), T_i n'est pas un sous-arbre
de T_i
```

Algorithme de recherche inversée sous forme compressée

Théorème (TCS '22)

L'algorithme construit un arbre d'énumération des forêts nonredondantes

 (T_1, \ldots, T_n) est une forêt nonredondante si, pour tout couple (i, j), T_i n'est pas un sous-arbre de T_i

Algorithme de recherche inversée sous forme compressée

Théorème (TCS '22)

L'algorithme construit un arbre d'énumération des forêts nonredondantes

.

Contrôle de l'arbre d'énumération

Théorème (TCS '22)

- $\bullet~$ Nombre de successeurs d'une forêt $\Delta~{\rm est}~\Theta(\#\Delta)$
- Construction (incrémentale) en temps $O(\#\Delta \deg(\Delta))$

Contrôle de l'arbre d'énumération

Théorème (TCS'22)

- $\bullet~$ Nombre de successeurs d'une forêt $\Delta~{\rm est}~\Theta(\#\Delta)$
- Construction (incrémentale) en temps $O(\#\Delta \deg(\Delta))$

• E_K : forêts à profondeur K dans l'arbre d'énumération

•
$$E_{\leq K} = \bigcup_{0 \leq k \leq K} E_k$$

36 / 41

Contrôle de l'arbre d'énumération

Théorème (TCS '22)

- $\bullet~$ Nombre de successeurs d'une forêt $\Delta~{\rm est}~\Theta(\#\Delta)$
- Construction (incrémentale) en temps $O(\#\Delta \deg(\Delta))$
- Énumérer $E_{\leq K+1}$ se fait en temps $O(K^2 \# E_{\leq K})$

• E_K : forêts à profondeur K dans l'arbre d'énumération

•
$$E_{\leq K} = \bigcup_{0 \leq k \leq K} E_k$$

36 / 41

Contrôle de l'arbre d'énumération

Théorème (TCS '22)

- $\bullet~$ Nombre de successeurs d'une forêt $\Delta~{\rm est}~\Theta(\#\Delta)$
- Construction (incrémentale) en temps $O(\#\Delta \deg(\Delta))$
- Énumérer $E_{\leq K+1}$ se fait en temps $O(K^2 \# E_{\leq K})$
- Quand $K \to \infty$,

$$E_K = K! \left(\frac{12}{\pi^2}\right)^K \left(\frac{6\sqrt{2}}{\pi^2} \exp\left(\frac{\pi^2}{24}\right) + O\left(\frac{1}{K}\right)\right)$$

• E_K : forêts à profondeur K dans l'arbre d'énumération

•
$$E_{\leq K} = \bigcup_{0 \leq k \leq K} E_k$$

- 36 / 41

Autour du noyau des sous-arbres : perspectives (1/3)

• Propriétés de la fonction de poids :

• Problème à 2 classes

Poids des feuilles nul

 \rightarrow Poids des sous-structures communes nul

• Problème multi-classes

 \rightarrow Poids des sous-structures présentes ou absentes dans plusieurs classes nul

 \rightarrow Poids fonction de la distance à ces cas extrêmes

+ 37 / 41

Autour du noyau des sous-arbres : perspectives (1/3)

Propriétés de la fonction de poids :

• Problème à 2 classes

Poids des feuilles nul

 \rightarrow Poids des sous-structures communes nul

Problème multi-classes

 \rightarrow Poids des sous-structures présentes ou absentes dans plusieurs classes nul

 \rightarrow Poids fonction de la distance à ces cas extrêmes

- Noyau des sous-forêts :
 - Temps de calcul \rightarrow restriction aux sous-forêts fréquentes
 - Compensation : méthode de Nyström ?

+ 37 / 41
Autour du noyau des sous-arbres : perspectives (2/3)

- Sous-arbres avec distribution commune des étiquettes :
 - Décider si deux arbres isomorphes partagent la même distribution des étiquettes : GI-complet
 - Heuristique proposée dans IWOCA '21
 - Détection des sous-structures fréquentes :

Autour du noyau des sous-arbres : perspectives (3/3)

- Approximation topologique et géométrique des sous-arbres :
 - Clustering en distance d'édition
 - Clusters vs antichaînes
 - Suppression du bruit et visualisation condensée de l'arbre :

Élaboration d'un nouveau projet

Alternatives aux MCMC pour la simulation de modèles sur réseau

Mesure de Gibbs : $\mu_{\beta}(\sigma) \propto \exp(-\beta \mathcal{H}(\sigma))$

avec
$$\mathcal{H}(\sigma) = \sum_{\{i,j\} \in \mathcal{E}} \sigma_i \sigma_j - h \sum_{i \in \mathcal{V}} \sigma_i$$

Simulation : MCMC

⊣ 40 / 41

Élaboration d'un nouveau projet

Alternatives aux MCMC pour la simulation de modèles sur réseau

Mesure de Gibbs : $\mu_{\beta}(\sigma) \propto \exp(-\beta \mathcal{H}(\sigma))$

avec
$$\mathcal{H}(\sigma) = \sum_{\{i,j\} \in \mathcal{E}} \sigma_i \sigma_j - h \sum_{i \in \mathcal{V}} \sigma_i$$

Simulation : MCMC vs nouvelles techniques

- Pirogov-Sinai algorithmique (Helmuth et al., PTRF '20)
- Méthodes variationnelles (Koehler et al., PMLR '22)
- Réseaux de neurones (Morningstar et Melko, JMLR '18)

+ 40 / 41

Élaboration d'un nouveau projet

Alternatives aux MCMC pour la simulation de modèles sur réseau

Mesure de Gibbs : $\mu_{\beta}(\sigma) \propto \exp(-\beta \mathcal{H}(\sigma))$

avec
$$\mathcal{H}(\sigma) = \sum_{\{i,j\} \in \mathcal{E}} \sigma_i \sigma_j - h \sum_{i \in \mathcal{V}} \sigma_i$$

Simulation : MCMC vs nouvelles techniques

- Pirogov-Sinai algorithmique (Helmuth et al., PTRF '20)
- Méthodes variationnelles (Koehler et al., PMLR '22)
- Réseaux de neurones (Morningstar et Melko, JMLR '18)

$$\mathcal{H}(\sigma) = J \sum_{\{i,j\} \in \mathcal{E}} (1 - \delta_{\sigma_i,\sigma_j}) + B \sum_{q \in \mathcal{Q}} \frac{(A_q - A_q^*)^2}{2A_q^*}$$

+ 40 / 41

Merci de votre attention !

Merci de votre attention !

41 / 41