Part II: Multi-class AdaBoost

We want to address the K-class supervised classification problem. We observe n independent replicates $(X^{(i)}, Y^{(i)})_{1 \leq i \leq n}$ of (X, Y), where $X \in \mathbb{R}^d$ and $Y \in \mathcal{Y} = \{1, \dots, K\}$. The goal is to construct a classifier $g : \mathbb{R}^d \to \mathcal{Y}$ that predicts Y accurately via g(X). In what follows,

$$\forall x \in \mathbb{R}^d, \ \forall k \in \mathcal{Y}, \ \pi_k(x) = \mathbb{P}(Y = k | X = x).$$

Q1: Derive the classifier g^* that minimizes $R(g) = \mathbb{P}(g(X) \neq Y)$.

The class Y can be encoded as a vector $Z=(Z_1,\ldots,Z_K)$ of \mathbb{R}^K : Y=k if and only if $Z_k=1$ and $Z_j=\frac{-1}{K-1}$ for $j\neq k$. Let \mathcal{Z} denote the set of possible values of Z.

For any $z \in \mathcal{Z}$ and $f \in \mathbb{R}^K$, consider the function

$$L(z, f) = \exp\left(-\frac{1}{K} \sum_{k=1}^{K} z_k f_k\right).$$

Q2: Let $x \in \mathbb{R}^d$. Show that the vector $f^*(x) = (f_1^*(x), \dots, f_K^*(x))$ minimizing the function $f \mapsto \mathbb{E}[L(Z,f)|X=x]$ under the constraint $f_1 + \dots + f_K = 0$ is given by

$$\forall 1 \le k \le K, \ f_k^{\star}(x) = (K - 1) \left[\ln \pi_k(x) - \frac{1}{K} \sum_{j=1}^K \ln \pi_j(x) \right].$$

Q3: Deduce that $\pi_k(x) \propto \exp(f_k^*(x)/(K-1))$, and express g^* in terms of the components of f^* . From now on, let \mathcal{H} denote a finite set of functions from \mathbb{R}^d to \mathcal{Z} .

Q4: For any positive weights $(\omega^{(i)})_{1 \le i \le n}$, show that the pair (β^*, h^*) minimizing

$$(\beta, h) \mapsto \sum_{i=1}^{n} \omega^{(i)} L(Z^{(i)}, \beta h(X^{(i)}))$$

under the constraints $\beta > 0$ and $h \in \mathcal{H}$, is given by

$$\begin{cases} h^* &= \underset{h \in \mathcal{H}}{\operatorname{arg\,min}} \sum_{i=1}^n \omega^{(i)} \mathbb{I}_{\{h(X^{(i)}) \neq Z^{(i)}\}}, \\ \beta^* &= \frac{(K-1)^2}{K} \alpha^*, \end{cases}$$

with

$$\alpha^{\star} = \ln\left(\frac{1 - \epsilon^{\star}}{\epsilon^{\star}}\right) + \ln(K - 1) \quad \text{and} \quad \epsilon^{\star} = \frac{\sum_{i=1}^{n} \omega^{(i)} \mathbb{I}_{\{h^{\star}(X^{(i)}) \neq Z^{(i)}\}}}{\sum_{i=1}^{n} \omega^{(i)}}.$$

Our aim is to approximate f^* as a linear combination of functions in \mathcal{H} . Specifically, we consider

$$f_M = \sum_{m=1}^{M} \beta_m h_m,$$

where $\beta_m > 0$ and $h_m \in \mathcal{H}$ for all m.

Q5: Show that

$$\sum_{i=1}^{n} L(Z^{(i)}, f_M(X^{(i)})) = \sum_{i=1}^{n} \omega_M^{(i)} L(Z^{(i)}, \beta_M h_M(X^{(i)})),$$

where $(\omega_m)_{1 \leq m \leq M}$ satisfies a recurrence relation to be determined.

Q6: Using the results of Q4 and Q5, propose an algorithm to estimate f^* (as defined in Q2).

Q7: Show that the classifier $G: \mathbb{R}^d \to \mathcal{Y}$ derived from Q3 and Q6 is given by

$$G(x) = \underset{k \in \mathcal{Y}}{\operatorname{arg\,max}} \sum_{m=1}^{M} \alpha_m \mathbb{I}_{\{g_m(x)=k\}},$$

where $(\alpha_m)_{1 \leq m \leq M}$ and $(g_m)_{1 \leq m \leq M}$ are to be specified.

Q8: Identify where the non-trivial generalization lies compared to AdaBoost.