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1 Introduction

There are many ways to measure the complexity of a class of discrete structures. From an
algorithmic standpoint, a class can be considered simple if computations are easier on this
class. From a structural perspective, a class where all elements can be constructed with few
natural operations starting from a small set of basic elements can be considered simple. From
a counting viewpoint, a class can be considered simple if it only contains a small number
of elements of each fixed size, for some natural definition of size. Complexity parameters
that capture several such aspects are often of prime importance in discrete mathematics
and computer science. Examples of such parameters include tree-width, clique-width and
VC-dimension.

In [6], Bonnet, Kim, Thomassé and Watrigant introduced twin-width as a new parameter.
Graphs of bounded twin-width exhibit desirable properties in terms of computational com-
plexity (first-order model checking can be done in linear time), model theory (they are closed
under first-order interpretations), enumerative combinatorics (they form small classes [4]),
and structural decomposition (they generalize classes of bounded clique-width, and proper
minor-closed classes).

When examining a class of graphs, another way to assess its complexity is to consider
the chromatic number of the graphs in the class, and especially how it compares to their
clique number. Indeed, while for every graph G we have ω(G) ≤ χ(G), early constructions by
Blanche Descartes [11], Zykov [19] and Mycielski [16] show that there are triangle-free graphs
with arbitrarily large chromatic number.

A hereditary class of graphs C (i.e. closed under induced subgraphs) is χ-bounded if there
exists a function f such that χ(G) ≤ f(ω(G)) for every G ∈ C. When f can be chosen as
a polynomial, the class C is polynomially χ-bounded. With the exception of VC-dimension,
classes of graphs with bounded complexity parameter are usually χ-bounded. This is the case
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for bounded tree-width, as it implies bounded degeneracy, but also the case for rank-width,
as shown in [12]. Building on this result, Bonamy and Pilipczuk [1] showed that graphs with
bounded clique-width are polynomially χ-bounded. It was shown in [5] that graphs with
bounded twin-width are χ-bounded. In the same paper, a polynomial bound was posed as an
open problem, which would extend the polynomial χ-boundedness of graphs with bounded
clique-width.

A natural step when trying to achieve polynomial bounds is to first look for quasi-
polynomial ones, which was done by Pilipczuk and Soko lowski in [17].

1.1 Overview of my internship

The initial objective of my internship with Stéphan Thomassé was to extend the result of
[17] to prove the polynomial χ-boundedness of graphs of bounded twin-width. To do so, we
thoroughly studied [17] and [9]. Building on these two papers, we devised two new operations,
the delayed decomposition and the right module partition. Using them, we proved that graphs
of bounded twin-width are polynomially χ-bounded [7]. We then focused on a question from
[9], asking whether the closure of a χ-bounded class under substitution and gluing along small
subsets of vertices is χ-bounded. To prove that this was indeed the case, we considered a
simplified version of this problem, but we still did not manage to prove anything. With the
help of Nicolas Trotignon, we thought we had found a proof, but there was a subtle mistake
in that proof. We then asked Édouard Bonnet, Julien Duron and Colin Geniet to join us
to try to find a counterexample, which we eventually did. This led to a new construction
of a hereditary class of triangle-free graphs with unbounded chromatic number, the twincut
graphs [3]. These graphs have a strinkingly low structural complexity, as their twin-width
is almost as small as possible for triangle-free graphs of high chromatic number (up to an
additive constant of 1). Furthermore, each of these graphs has a pair of non-adjacent twins
or an edgeless cutset of size at most 2. With Édouard Bonnet, Colin Geniet and Stéphan
Thomassé, we then started working on generalizing delayed decompositions to other discrete
structures than graphs, such as permutations, which are known to behave well with respect
to twin-width. With that, we showed that every strict class of permutations is contained in
a bounded power of the class of separable permutations.

During my internship, I also had the opportunity to travel and present our results. I
went to the 1st Workshop on Twin-Width in Aussois, where I presented our result on the
polynomial χ-boundedness of bounded twin-width graphs. Then, I attended the Fifth ANR
Digraph meeting in Sète. Finally, I travelled to Bergen for the FPT Fest in the honour of
Mike Fellows, where I also presented our result on the polynomial χ-boundedness of bounded
twin-width graphs.

1.2 Organization of the report

In Section 2, I introduce some notations, as well as the concepts of twin-width and χ-
boundedness, which will be central in this report. In Section 3, I present several operations
on graph classes that preserve χ-boundedness, including the delayed decomposition and the
right module partition, which we defined during my internship. In Section 4, I present the
main part of the proof that graphs of bounded twin-width are polynomially χ-bounded. In
Section 5, I define the twincut graphs and show some of their properties. Finally, in Section
6, I give a brief overview of the factorization result for permutations of bounded twin-width.
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2 Preliminaries

2.1 Notations and conventions

If n is an integer, we denote by [n] the set {1, 2, . . . , n}.
In this report, all graphs are undirected and simple (no multiple edges, no self loop). When
talking about a class of graphs, we mean a hereditary class of graphs, i.e. closed under
induced subgraphs. If G is a graph, we denote by V (G) its vertex set and E(G) its edge set.
If S ⊆ V (G), we denote by N(S) the set of neighbours of S, deprived of S, and by N [S] the
set N(S) ∪ S. If v is a vertex, we write N(v) for N({v}) and N [v] for N [{v}]. The degree of
a vertex v is its number of neighbours, i.e. the size of N(v). Two distinct vertices u, v such
that N(u) = N(v) are called false twins, and true twins if N [u] = N [v]. Note that false twins
are not adjacent while true twins are adjacent. Two vertices are called twins if they are true
twins or false twins. If X is a subset of vertices of G, we denote by G[X] the graph induced
by G on X. If u is a vertex of G, we denote by G−u the graph G[V (G) \ {u}]. We denote by
ω(G) the size of the largest clique in G. A proper k-coloring of G is a function c : V (G)→ [k]
such that for every edge uv, we have c(u) ̸= c(v). The chromatic number of G, denoted χ(G),
is the smallest k such that G has a proper k-coloring. We say that X ⊆ V (G) is a module of
G if for every y ∈ V (G) \X we have either all edges between y and X, or no edge between y
and X.

2.2 Twin-width

To define the notion of twin-width, we first need to introduce the notion of trigraph. A
trigraph is a triple G = (V,E,R) where V is a set of vertices, and E,R are disjoint sets of
edges on V . We will refer to E as the set of black edges and to R as the set of red edges.
Informally, the presence of a red edge between two vertices means that we are unsure of the
presence of this edge in the graph. Every graph G = (V,E) can be interpreted as the trigraph
G = (V,E, ∅). A d-trigraph is a trigraph where the red degree of each vertex is at most d.
We now define the notion of contraction. If G = (V,E,R) is a trigraph and u, v are distinct
vertices (not necessarily adjacent), the contraction of u, v is the trigraph we obtain by merging
u and v into a single vertex w, and updating the edges in the following way. If both u, v are
adjacent to x with a black edge, then wx is a black edge. If there was no edge ux and no edge
vx, then there is no edge wx. In all other cases, there is a red edge wx. The rest of edges
(not incident to u or v) remains unchanged. Note that u and v are removed from the graph.

A d-sequence of a graph G is a sequence a d-trigraphs Gn, Gn−1, . . . , G1 where Gn = G, G1

is the trigraph on one vertex, and each Gi−1 is obtained from Gi by performing a contraction
of two vertices. Note that for every i ∈ [n], Gi has exactly i vertices. The twin-width of G,
denoted by tww(G), is the minimum integer d such that G admits a d-sequence. For instance,
the graphs of twin-width 0 are exactly the cographs.

If v is a vertex of Gi, we denote by v(G) the set of vertices of G that were eventually
contracted into v. Then, there is a black edge uv in Gi if and only if the bipartite graph
between u(G) and v(G) is a complete bipartite graph. Similarly, there is no edge uv in Gi if
and only if there is no edge between u(G) and v(G).
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Figure 1: A 2-sequence witnessing that the original graph has twin-width at most 2.

2.3 χ-boundedness

A class of graphs C is χ-bounded if there exists a function f such that χ(G) ≤ f(ω(G)) for
every G ∈ C. When f can be chosen as a polynomial, the class C is polynomially χ-bounded.
Polynomial χ-boundedness is one of the tamest behaviours a class can have, and it generally
indicates that the class has a lot of structure. There are classes which are χ-bounded but not
polynomially χ-bounded, see Briański, Davies and Walczak [8]. The field is developing at a
very fast pace: for a recent survey, see Scott and Seymour [18].

As an example, the class of graphs corresponding to f(x) = x is the celebrated class of
perfect graphs. This class can alternatively be defined by forbidden induced subgraphs (odd
holes and antiholes) as well as it enjoys some structural results based on some elementary
decompositions. This leads to three main directions of research: Which forbidden induced
subgraphs give polynomial χ-boundedness? Which structural parameters give polynomial
χ-boundedness? Which operations preserve χ-boundedness? These three questions are in-
timately connected. A canonical example of polynomially χ-bounded class, cographs, are
altogether P4-free graphs (no induced path of length 4), have clique-width at most 2 and are
the closure under substitutions of the graphs of size at most 2.

From the forbidden induced subgraph perspective, the Perfect Graph Theorem, proved by
Chudnovsky, Robertson, Seymour and Thomas [10] is definitely the masterpiece of the field.
From the point of view of operations preserving (polynomial) χ-boundedness, the landscape
is less developed. In this direction, Chudnovsky, Penev, Scott, and Trotignon [9] showed
that the substitution closure of a (polynomially) χ-bounded class is also (polynomially) χ-
bounded. They also showed that if a class is (polynomially) χ-bounded, its closure under the
operation of gluing on a small set of vertices is also (polynomially) χ-bounded.
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3 Extensions of graph classes

Our approach to prove that graphs of bounded twin-width are polynomially χ-bounded is
the following. We want to show that each graph of twin-width at most d can be constructed
using some operations, starting from some class of basic graphs. If these operations preserve
polynomial χ-boundedness and if the basic class is polynomially χ-bounded, we immediately
get the desired result. This structural approach is very common in the study of graph classes.
In this section, we will explore several operations that preserve χ-boundedness.

3.1 Substitution closure

When working on χ-boundedness, one of the most natural classes is the class of perfect graphs.
A graph G is perfect if for every induced subgraph H of G, we have χ(H) = ω(H). One can
wonder which operations preserve perfectness. In [14], Lovász proved the so-called Weak
Perfect Graph Theorem, stating that the complement of a perfect graph is also a perfect
graph. In the same paper, he also proved that perfect graphs are closed under substitution.

Given two vertex-disjoint graphs G and H, and a vertex u of G, by substituting H for u
in G, we mean deleting u and joining every vertex of H to all neighbours of u in G. Formally,
G′ is obtained by substituting H for u in G if the following conditions hold:

• V (G′) = (V (G) \ {u}) ∪ V (H),

• G′[V (G) \ {u}] = G− u,

• G′[V (H)] = H,

• For v ∈ V (G) \ {u} and w ∈ V (H), vw ∈ E(G′) if and only if uv ∈ E(G).

Given a class of graphs C, the substitution closure of C, denoted by Cs, is the class of all
graphs we can obtain as follows: we start from a graph of C, we substitute a vertex of this
graph by a graph of C, and we repeat this process any number of times. For instance, if C
is the class of complete graphs and edgeless graphs, then Cs is the class of cographs. Since
perfect graphs are closed under substitution, if C is the class of perfect graphs, then C = Cs.
This indicates that the substitution closure behaves well with respect to χ-boundedness. More
generally, Chudnovsky, Penev, Scott and Trotignon [9] proved the following result.

Theorem 3.1 ([9]) If C is a class of graphs which is polynomially χ-bounded with function
χ ≤ ωk, then Cs is polynomially χ-bounded with function χ ≤ ω3k+11.

To say it with words, this means that the operation of substitution preserves polynomial
χ-boundedness.

3.2 Tree decompositions

We now describe another (equivalent) way of defining the substitution closure of a class of
graphs, based on tree decompositions. This definition is more natural to work with and easier
to generalize.

To distinguish the elements of our (rooted) tree decompositions from the vertices of our
graphs, we will speak about nodes of trees. Also we will make use of parent (first node of the
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path to the root), ancestors (nodes of the path to the root), children, siblings (nodes with
same parent), grandchildren (children of a child), and cousins (non sibling grandchildren).

Given a class of graphs C, a C-tree-decomposition is a pair (T, g) in which T is a rooted
tree and g is a function associating to every internal node x of T a graph g(x) ∈ C whose
vertices are the children of x. The realization R(T, g) is the graph such that:

• its vertex set is the set of leaves L of T ,

• two vertices x, y ∈ L are joined by an edge if, given that z is their closest ancestor in T
and x′, y′ are the respective children of z which are the ancestors of x, y, the edge x′y′

belongs to g(z).

Given a class C, its substitution closure Cs is the class of all R(T, g) where (T, g) is a
C-tree-decomposition. Let us give some intuition on why this is the case. Let (T, g) be a
C-tree-decomposition, with r the root of T , and G = R(T, g). To build G using substitutions,
we start from the graph g(r) ∈ C. Then, for every node x that is a child of r, we substitute
x by g(x) ∈ C. We then keep doing this substitution process, sweeping all levels of the tree
T . After having done so, we obtain a graph whose vertex set is indeed the set of leaves L
of T , and it is straightforward to check that the adjacency relation in the graph we obtain
corresponds to the adjacency relation in R(T, g).

This was the “constructive” point of view on the substitution closure. There is a dual
point of view, which can be described as a “decomposition” point of view. We now sketch it.
Let (T, g) be a C-tree-decomposition with root r. Given any node xi that is a child of r in
T , let Xi ⊆ L be the set of leaves with ancestor xi. Then, Xi is a module in G. Hence, to
decompose our graph, we can partition its vertex set into modules, and ask that the quotient
graph, which we obtain by keeping one vertex in each module, is in C. This will be the case
since this graph is precisely g(r). We further require that the graph induced on each module
is in Cs.

In general, the aim of graph decompositions is to describe graphs that are somehow simple.
One way to do so is to say that a graph is simple if we can partition its vertex set into parts,
such that the “quotient graph” between the parts – for some adequate definition of quotient
graph – is already known to be simple, and such that the graph induced on each part is also
already known to be simple. This is exactly what happens for the substitution closure, and
we will see it appear again several times.

3.3 Delayed tree decompositions

Tree decompositions are only useful when the graphs we consider have modules. However,
graphs of bounded twin-width need not have modules. For this reason, we introduced a new
decomposition technique, the delayed tree decomposition, which is more suited to the study
of graphs of bounded twin-width.

Recall that a grandchild of a node x in a tree is a child of one of its children. Given a
class of graphs C, a C-delayed-tree-decomposition is a pair (Td, g) in which:

• Td is a rooted tree in which every leaf has a parent with only one child,

• g is a function associating to every node x ∈ Td that has grandchildren a graph g(x) ∈ C
such that the vertices of g(x) are the grandchildren of x (hence the delayed).
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The delayed realization Rd(Td, g) is the graph such that:

• its vertex set is the set of leaves Ld of Td,

• two vertices x, y ∈ Ld are joined by an edge if, given that z is their closest ancestor in
T and x′, y′ are the respective grandchildren of z which are the ancestors of x, y, the
edge x′y′ belongs to g(z).

Given a class C, we denote by Cd the class of all Rd(Td, g) where (Td, g) is a C-delayed-
tree-decomposition. We call Cd the delayed extension of C. It is not strictly speaking a closure
since applying it twice can produce more graphs than applying it once.

Observe that by definition of Rd(Td, g), we never look at the adjacency between nodes
that are siblings. Hence, such edges in the g(x) can help make g(x) simpler, but they are
meaningless with respect to Rd(Td, g).

Delayed tree decompositions are in spirit very similar to tree decompositions, the main
difference being on the definition of the “quotient graphs”, the g(x), which are now defined on
the grandchildren of a node and not on its children, thus offering more flexibility to decompose
module-free graphs. This similarity is reflected in the following lemma.

Lemma 3.2 Every graph in Cd is the edge union of two graphs in Cs.

Proof. Let Rd(Td, g) be a delayed realization of a C-delayed-tree-decomposition. We define
the parity of a node of Td as its distance to the root modulo 2. For instance, the root is even.
We partition the set of edges xy of Rd(Td, g) into odd edges and even edges depending of the
parity of the closest ancestor of x, y in Td. Hence Rd(Td, g) is the edge union of two spanning
subgraphs Go (odd edges) and Ge (even edges). The key-fact is that Go and Ge are both
a realization of a C-tree-decomposition. To see this, we form two subsets of nodes To (odd
nodes) and Te (even nodes) of Td. Note that since every leaf l of Td has a parent l′ with only
one child, either l or l′ belongs to Te (or to To). Hence, to every leaf l (and thus to every
vertex of Rd(Td, g)) one can identify a leaf of To and a leaf of Te. Now, g restricts naturally
as a function ge of the internal nodes of Te in which ge(x) is a graph on the children of x in
Te. The same holding for go, we finally obtain that Rd(Td, g) = R(Te, ge) ∪R(To, go).

Corollary 3.3 If C is polynomially χ-bounded with function ωk, then Cd is polynomially χ-
bounded with function ω6k+22.

Proof. Let G ∈ Cd. By Lemma 3.2, G is the edge union of Go and Ge with Go, Ge ∈ Cs.
Then, χ(G) ≤ χ(Go) · χ(Ge) (take the product of the two colorings). By Theorem 3.1, we
have χ(Go) ≤ ω(Go)

3k+11 ≤ ω(G)3k+11 and similarly for χ(Ge). Thus, χ(G) ≤ ω(G)6k+22.

3.4 Obtaining a delayed tree decomposition

In this section, we prove that every graph G has a delayed tree decomposition and we describe
a canonical way to compute one when given an order on the vertices. Graphs of bounded
twin-width naturally come with such an order, which gives a natural way of obtaining a
delayed tree decomposition.
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Let G be a graph on vertex set V (G) = {v1, . . . , vn}. The tree Td is defined via a sequence
of refining partitions P0, P1, . . . , Pk of V (G), starting with the root vertex P0 = {V (G)} and
ending on Pk = {{v1}, . . . , {vn}}, the partition into singletons corresponding to the vertices.
We now describe how to construct the refinement Pi+1 of Pi = {B1, . . . , Bm}, that is how a
part Bj is further refined. In this process, all parts will consist of consecutive vertices in the
ordering v1, . . . , vn.

For this, we define a partition P (I) of an arbitrary interval of consecutive vertices I =
{vi, . . . , vj}.

• If i = j, it is not refined.

• If I is a module inG, we divide it into two parts {vi, . . . , v⌊(i+j)/2⌋} and {v⌊(i+j)/2⌋+1, . . . , vj}.

• If I is not a module in G, we partition it into maximal subsets S of consecutive vertices
such that S is a module in G[(V \ I) ∪ S]. We call these parts local modules. In other
words vs, vs+1 ∈ I are in the same local module of I if and only if they have the same
neighbours in V \ I.

To form the refinement Pi+1 of Pi = {B1, . . . , Bm}, we just refine every Bj into P (Bj). Ob-
serve that since P0 = {V (G)} is a module, we have P1 = {{v1, . . . , v⌈n/2⌉}, {v⌈n/2⌉+1, . . . , vn}}.
We stop the process when Pk = Pk−1, which happens when all parts are singletons. We keep
the two identical partitions into singletons Pk−1, Pk instead of simply stopping at step k − 1
so that each leaf has a parent with only one child. The partition of a module into two (near)
equal intervals is arbitrary, we could for instance partition I into {vi} and {vi+1, . . . , vj}.

We next consider the tree Td corresponding to this decomposition process, where the
nodes at depth i correspond to the parts of Pi, and the children of a node x ∈ Pi are the parts
y ∈ Pi+1 such that y ⊆ x (we usually identify the nodes of Td to subsets of V (G)). The leaves
of Td are the vertices vi of G. Moreover, the parent of a leaf vi is vi since Pk−1 = Pk. We now
describe how to structure Td as a delayed tree decomposition in order to encode the graph G.
Consider any node x of Td that has two grandchildren y, z which are not siblings (recall that
edges between siblings are meaningless). Let y′ be the parent of y and z′ the parent of z. By
construction of y and z, we have that y is a module in G[(x \ y′) ∪ y] and that z is a module
in G[(x \ z′) ∪ z]. This implies that y and z are modules in G[y ∪ z]. In other words, cousins
are modules with respect to each other. Therefore, either we have all edges between y and z,
or no edge between them.

From this observation, we define a function g associating to every node x ∈ Td a graph
g(x) whose vertex set is the set of grandchildren of x and such that yz is an edge of g(x) if
y, z are cousins and there exists an edge between y and z in G (and thus y is fully joined to
z).

It is then straightforward to check that we indeed have G = Rd(Td, g).
Given a class C, let Cq be the class of all graphs that appear as a quotient graph in a delayed

decomposition of some element of C. By Corollary 3.3, to prove that C is polynomially χ-
bounded, it suffices to prove that Cq is polynomially χ-bounded. This is what we will do
to prove that graphs of bounded twin-width are polynomially χ-bounded. The operation we
introduce in the next section will help us analyze the quotient graphs in that case.

8



A B C D E

A

C

D E

B

Figure 2: The canonical delayed decomposition tree of C5 obtained from the order
A,B,C,D,E on the vertices, and its corresponding realization. The edges of every g(x)
are drawn in the same color as x. Note that all g(x) are cographs.

3.5 Right extension

In this section, we define an extension of a class of graphs C which preserves χ-boundedness,
and even polynomial χ-boundedness when the twin-width of C is bounded.

Given a graph G, a right module partition (RMP) is a partition V1, . . . , Vk of the vertices
of G such that

1. Each Vi is a stable set,

2. For every i < j, Vi is a module with respect to Vj (i.e. Vi is a module in G[Vi ∪ Vj ]).

Note that every graph G has a trivial RMP where each Vi consists of a single vertex.
Therefore, there should be some limitations to the definition of RMP, for instance by imposing
restrictions on the quotient graph between the parts. A first attempt to define the quotient
is to consider a class of graphs C, and insist that every induced subgraph intersecting every
Vj on at most one vertex (called a transversal) belongs to C. Unfortunately, even RMP with
forests transversals are not χ-bounded. To see this, consider Sn,2, the n-th shift graph, whose
vertex set is {(i, j), 1 ≤ i < j ≤ n} and such that there is an edge between (i, j) and (i′, j′) if
and only if j = i′. Observe that the graphs Sn,2 have unbounded chromatic number and are
triangle-free. However, the partition (V2, . . . , Vn) where Vj = {(i, j), 1 ≤ i < j} for 2 ≤ j ≤ n
is an RMP (with V1 empty) such that the only neighbours of (i, j) ∈ Vj in parts Vk where
k < j are in Vi. Thus if (i, j) belongs to a transversal, its degree is at most one with respect
to the vertices in Vk with k < j. Hence, all transversals are forests, while the graphs Sn,2 are
not χ-bounded.

For this reason, we introduce a stronger notion of RMP, meant to preserve χ-boundedness.
If P = (V1, . . . , Vk) is an RMP of a graph G, for every 1 ≤ j1 < j2 < . . . < jℓ ≤ k and every
Wj1 ⊆ Vj1 , . . . ,Wjℓ ⊆ Vjℓ , all non-empty, we denote by G/{Wj1 , . . . ,Wjℓ} the graph on vertex
set [ℓ] such that there is an edge ii′ if and only if there is an edge between Wji and Wji′ .
We call such a graph a transversal minor of (G,P). Given a class C, an RMP such that all
transversal minors are in C is called a C-RMP. The class of graphs G admitting a C-RMP is
denoted by RM(C) and is called the right extension of C.
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Figure 3: The RMP for S5,2. Here, an edge means that we have all edges from the stable set
on the left to the vertex on the right. Observe that every transversal is a forest, however we
can form every graph on 4 vertices as a transversal minor.

The following result proves that right extensions behave well with respect to the chromatic
number. It is is not used in the proof that bounded twin-width graphs are polynomially χ-
bounded, hence we postpone its proof to Appendix A.

Proposition 3.4 If C is a χ-bounded class of graphs, then RM(C) is also χ-bounded.

It is worth noting that the proof of this proposition does not provide a polynomial bound
if the class C is polynomially χ-bounded. We could not prove (or disprove) that polynomial
χ-boundedness is preserved by RMP. However, this is the case when the twin-width of C is
bounded, as shown in the following section.

4 Polynomial χ-boundedness of bounded twin-width

With all these operations in hand, we move to the proof that classes of graphs of bounded
twin-width are polynomially χ-bounded. The proof we give heavily relies on some definitions,
tools and techniques introduced by Pilipczuk and Soko lowski in [17], where they prove the
quasi-polynomial χ-boundedness of graphs of bounded twin-width.

4.1 Twin-width and matrices

In this section, we will adopt the matrix point of view of twin-width, where every graph G is
represented via its symmetric adjacency matrix (au,v) where u, v are over couples of vertices.
The entry au,v is 1 if uv is an edge, 0 if uv is not an edge, and ∗ if u = v. The addition of the
∗ symbol slightly simplifies some technicalities, but is not necessary for the argument.

A 01∗-matrix is horizontal if all its rows are constant. It is vertical if all its columns
are constant. It is constant if it is both horizontal and vertical. It is mixed if it is neither
horizontal nor vertical, or if it has at least 2 rows and 2 columns and contains a ∗ entry. A
corner in a matrix M is a mixed 2× 2 contiguous submatrix of M .

Lemma 4.1 ([6]) A matrix is mixed if and only if it contains a corner.
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A row partition of a matrix M is a partition of the rows of M in which each part of
the partition consists of consecutive rows. We define column partitions in a similar way. A
division D of M is a pair (R, C) where R is a row partition of M and C is a column partition
of M . If R and C both have the same number of parts, say k, we say that (R, C) is a k-division
of M . In this case, we index the row blocks and the column blocks of D with integers from
[k] in the natural order of the blocks. If D is a k-division of M , for i, j ∈ [k], we denote by
D[i, j] the intersection of the i-th row block with the j-th column block, which we call a zone
of D. If Ri ∈ R and Cj ∈ C, we also adopt the notation [Ri, Cj ] for the zone D[i, j]. It is a
contiguous submatrix of M .

We say that a zone of a matrix is mixed if it is mixed as a submatrix. If M is symmetric,
we say that a division (R, C) is symmetric if R and C partition rows and columns in the same
way (i.e. R is the transpose of C).

Let D be a d-division of a matrix M . We say that D is a d-mixed minor if each zone of
D is mixed. If M does not have any d-mixed minor, we say that M is d-mixed free. The
twin-width parameter and mixed-minor freeness are functionally equivalent, see [6], but here
we only need the following bound.

Theorem 4.2 ([6]) Let G be a graph and t be a positive integer. If the twin-width of G
is at most t, then there is a vertex ordering of G for which the adjacency matrix of G is
(2t+ 2)-mixed free.

We also recall the following result, which is a direct consequence of the Marcus-Tardos
theorem, see [15]:

Theorem 4.3 For every positive integer d, there is a constant mtd such that for every d-
mixed free matrix M and every k-division of M , the number of mixed zones is at most mtd ·k

Here is the key-definition of [17]. A d-division D of a matrix M is a d-almost mixed minor
if for every i ̸= j ∈ [d], the zone D[i, j] is mixed. If M does not have any d-almost mixed
minor, we say that M is d-almost mixed free. By extension, a graph is d-almost mixed free if
we can order its vertices in such a way that its adjacency matrix is d-almost mixed free.

Observe that every d-almost mixed free matrix is also d-mixed free. Conversely, every
d-mixed free matrix is also 2d-almost mixed free. Indeed, if M has a 2d-almost mixed minor,
then merging the first d + 1 row blocks, and the last d + 1 column blocks gives a d-mixed
minor of M . Note that every submatrix of a d-(almost) mixed free matrix is also d-(almost)
mixed free, hence every subgraph of a d-almost mixed free graph is also d-almost mixed free.

4.2 Twin-width and right module partitions

Let G be a graph with an RMP P = (V1, . . . , Vk). We say that (G,P) is d-almost mixed free,
if for every coarsening P ′ of P into d parts (V ′1 , . . . , V

′
d), where each V ′i consists of consecutive

parts of P, some zone [V ′i , V
′
j ], where i ̸= j, is not mixed in the adjacency matrix of G. Note

that we only speak here of restrictions on symmetric divisions of G, which encompass much
larger classes than bounded twin-width.

Lemma 4.4 If (G,P) is d-almost mixed free, then ω(G/P) ≤ ω(G)d.
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Proof. We write ω := ω(G) and denote P = (V1, . . . , Vk). Let ϕ such that ω(G/P) ≤ ϕ(ω, d).
We have ϕ(·, 1) = 0 (empty graph) and ϕ(1, ·) = 1 (edgeless graph). We assume ω ≥ 2 and
d ≥ 2 and show that ϕ(ω, d) = ϕ(ω − 1, d) + ϕ(ω, d− 1) + 1 upper bounds ω(G/P). We can
restrict ourselves to a maximal clique of G/P, so we can assume that there is an edge between
Vi and Vj whenever i < j ∈ [k].

Let us consider the smallest ℓ such that ω(G[V1 ∪ · · · ∪ Vℓ]) = ω. Denote by Y the set
V1 ∪ · · · ∪ Vℓ, and consider any Vi where i ≥ ℓ+ 1. Note that Y is not a module with respect
to Vi, as some vertex in Vi would dominate Y , hence forming a clique of size ω + 1 in G.
Conversely, if Vi is a module with respect to Y , since P is an RMP, and there exists an edge
between all pairs of parts, Vi would dominate Y , with the same contradiction.

Consider the graph G′ = G[Vℓ+1 ∪ · · · ∪ Vk] and its RMP P ′ = (Vℓ+1, . . . , Vk). We claim
that (G′,P ′) is d− 1-almost mixed free, otherwise any d− 1-almost mixed minor coarsening
(V ′1 , . . . , V

′
d−1) of P ′ could be extended to the d-almost mixed minor (Y, V ′1 , . . . , V

′
d−1) of (G,P).

Thus k = ω(G/P) satisfies by induction that k ≤ ℓ+ϕ(ω, d− 1). And since the first ℓ− 1
parts do not contain a clique of size ω, we have k ≤ ϕ(ω − 1, d) + 1 + ϕ(ω, d − 1) = ϕ(ω, d).
Setting ψ(·, ·) = ϕ(·, ·) − 1, we have that ψ(ω, d) = ψ(ω − 1, d) + ψ(ω, d − 1). Moreover, we
both have ψ(ω, 1) = −1 and ψ(1, d) = 0, so ψ(ω, d) ≤

(
ω+d−2
d−1

)
≤ ωd−1.

Proposition 4.5 Let C be a class of graphs with polynomial χ-bounding function f(x) = xc.
If P is a C-RMP of G such that (G,P) is d-almost mixed free, then χ(G) ≤ ωcd.

Proof. Since ω(G/P) ≤ ω(G)d, we have χ(G) ≤ χ(G/P) ≤ ω(G/P)c ≤ ω(G)cd.

4.3 Proof of polynomial χ-boundedness of bounded twin-width

To prove that a class C is polynomially χ-bounded, a strategy is to show that every graph
G of C has a vertex-partition or an edge-partition into a bounded number of graphs, each of
them belonging to some known polynomially χ-bounded class C′. We will use this argument
several times here.

Theorem 4.6 The class of d-almost mixed free graphs is polynomially χ-bounded.

Proof. The proof is by induction on d. For d = 2, if G has a 2-almost mixed free adjacency
matrix, G is a cograph (see [17]), hence G is perfect so the property holds. Now, let d ≥ 3 and
consider a graph G, which is d-almost mixed free with respect to the vertex ordering v1, . . . , vn.
We first partition the set of vertices V ′ = {v2, . . . , vn−1} into four subsets V ′00, V

′
01, V

′
10, V

′
11

according to their neighbourhood in {v1, vn}. For instance, V ′01 = (V ′ \ N(v1)) ∩ N(vn).
It suffices to show that all four graphs G[V ′ij ] belong to some polynomially χ-bounded class.
Hence, without loss of generality, we can assume that V ′ is a module inG. We now consider the
delayed decomposition tree (Td, g) of G′ := G[V ′] and consider the class C containing all g(x)
and their induced subgraphs. By Corollary 3.3, we just have to show that C is polynomially
χ-bounded. The graphs g(x) are obtained by starting from an interval I = {vs, . . . , vt} of
vertices of G′, partitioning it into local modules L1, . . . , Lk, and then partitioning each local
module into local submodules. Let H be the graph we obtain from G[I] by removing all edges
inside all local modules Li. Note that H can also be obtained by substituting the vertices of
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g(x) by stable sets. This does not change χ and ω. Therefore, to show that C is polynomially
χ-bounded, it suffices to prove the following.

Claim 4.7 Let I = {vs, . . . , vt} be any interval of vertices of G′. Consider its partition into
local modules L1, . . . , Lk and denote by H the graph on vertex set I obtained from G[I] by
deleting the edges inside the local modules. Then, H is a bounded (vertex and edge) union of
graphs from hereditary polynomially χ-bounded classes.

Note that the claim holds when I is a non trivial module since it is cut into two parts.
Indeed, in this case H is bipartite and thus χ-bounded by 2. Assume now that we have local
modules L1, . . . , Lk, and consider all pairs i < j such that G[Li, Lj ] is mixed (call mixed
pairs). The Li’s form a k-division of the adjacency matrix of G[I], which is d-mixed free.
Thus, by Theorem 4.3, the graph R on vertex set [k] whose edges correspond to mixed pairs
has at most mtd

2 · k edges. In particular, R can be vertex-colored into (mtd + 1) classes. In
other words, one can partition the set of local modules into (mtd + 1) subsets, in which local
modules are not pairwise mixed. We denote by L′ such a subset of local modules. To prove
our claim, we just have to show that H ′ := H[L′] belongs to a polynomially χ-bounded class
of graphs.

Observe that for every i < j and Li, Lj ∈ L′, we have that Li is a module in H[Li ∪ Lj ]
(denoted Li → Lj) or Lj is a module in H[Li∪Lj ], that is Lj → Li. Note that if we both have
Lj → Li and Li → Lj , we have all edges or no edge between Li and Lj . We now define two
subgraphs H ′→ and H ′← of H ′: in H ′→ we only keep the edges of H ′ between pairs Li → Lj

where i < j, and in H ′← we only keep the edges of H ′ between pairs Li ← Lj where i < j.
Note that H ′ = H ′→ ∪H ′←, and thus we just have to show that (for instance) H ′→ belongs to
a polynomially χ-bounded class of graphs.

The graph H ′→ with the partition L′ is a right module partition. Note that the same holds
for H ′← if we reverse the order of the local modules. We further partition H ′→: let us say that
a local module Li is left if i > 1 and there is a vertex vj among v1, v2, . . . , vs−1 (i.e. to the left
of I) which distinguishes Li−1 from Li. Precisely, vj is not joined in the same way to the last
vertex of Li−1 and to the first of Li. If Li (with i > 1) is not left, then it is right (and indeed
some vertex vj to the right of I distinguishes Li−1 from Li). We neglect L1 in this definition
(it only adds 1 to the chromatic number of H ′). We now partition L′ into L′ri containing
all right local modules Li of L′, and L′le containing the left local modules. Again, by vertex
partition, we just have to show that the RMP H ′→,ri which is the induced restriction of H ′→ to
L′ri is polynomially χ-bounded. To apply Proposition 4.5, we first show that the transversal
minors of (H ′→,ri, L

′
ri) are d− 1-almost mixed free, which by induction implies that they are

polynomially χ-bounded. Then we argue that (H ′→,ri, L
′
ri) has no large almost mixed minor.

It suffices here to show that it is 2d-almost mixed free.

Claim 4.8 ([17]) Every transversal minor of (H ′→,ri, L
′
ri) is d− 1-almost mixed free.

Claim 4.9 The pair (H ′→,ri, L
′
ri) is 2d-almost mixed free.

We postpone the proofs of these two claims to Appendix B and Appendix C

By Theorem 4.2 and since every t-mixed-free matrix is 2t-almost mixed-free, we finally
obtain the following.
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Theorem 4.10 For every d ∈ N, the class of graphs of twin-width at most d is polynomially
χ-bounded.

5 Twincut graphs

5.1 Motivation

The following was shown in [5].

Theorem 5.1 ([5]) If G has twin-width t, then χ(G) ≤ (t+ 2)ω(G)−1.

In the previous section, we showed that this bound is far from being tight for large values
of ω, as the optimal bound is polynomial in ω and not exponential. However, this polynomial
bound does not help us understand how the chromatic number of graphs of small twin-width
and small clique number behaves. In particular, the following is an immediate corollary of
Theorem 5.1.

Theorem 5.2 Every triangle-free graph of twin-width t has chromatic number at most t+ 2.

At the 2022 Barbados workshop, Bonnet [2] questioned the sharpness of the bound. We
introduce a new explicit sequence of triangle-free graphs Gk, which we call twincut graphs,
satisfying χ(Gk) = k and tww(Gk) ≤ k − 1. Using twincut graphs, we obtain here a near
optimal answer (and suspect that Theorem 5.2 could be improved to t + 1 when t ⩾ 1).
Twincut graphs also give a new construction of triangle-free graphs with unbounded chromatic
number and strikingly low structural complexity.

5.2 Construction

We now present an inductive construction of the twincut graphs.
A structured tree is a pair (T, g) where T is a rooted tree and g is a function defined on

the internal nodes v of T (i.e. non leaves) such that g(v) is a graph whose vertices are the
children of v in T . A branch in T is a path from the root to one of the leaves of T . The
realization R(T, g) of (T, g) is the graph defined on vertex set V (T )∪B, where B is the set of
branches of T . The edges of R(T, g) first consist of all uv where u, v are children of z and uv
is an edge of g(z). At this point, the graph R(T, g) is simply the disjoint union of all g(z) and
some isolated vertices (such as B and the root). Next, we connect each branch vertex b ∈ B
to all the vertices of T in the branch b. Observe that the edges of T are not edges of R(T, g).
Note that this realization has nothing to do with the realization of the tree decompositions
we mentioned previously, even though the notations are similar.

Note that when T has only one (root) node, it is also a leaf. In particular g is empty
(T has no internal node) and therefore R(T, g) is obtained from T by adding a single vertex
which is adjacent to the root. Hence, R(T, g) is K2. We now move to the construction itself.

First, G1 is defined as the graph on one vertex. Assuming that G1, . . . , Gk−1 have been
built, the graph Gk is defined as the realization of the following structured tree (Tk, gk): the
tree Tk has k − 1 levels (the root being at level 1), and for each node v at level i < k − 1, we
give |V (Gi+1)| children to v and set gk(v) = Gi+1. For instance T2 consists only of its root,
and its realization G2 is K2 as explained above. Then, T3 has a root r with two children c, c′

which are linked in g3(r) = G2. The realization adds a vertex x connected to r, c, and a
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vertex y connected to r, c′, thus creating a 5-cycle rxcc′y, hence G3 = C5. The graph G4 has
1 + 2 + 10 + 10 = 23 vertices, see Figure 4.

Figure 4: The 4-chromatic triangle-free graph G4. The tree T4 is represented with dashed
blue edges (which are not actual edges of G4). Every green vertex is adjacent to all vertices
in a branch of T4. We explicitly represented these edges for the two leftmost green vertices.

5.3 Properties of twincut graphs

Proposition 5.3 For every integer k ≥ 1, Gk is triangle-free.

Proof. This can be seen by induction on k. G1 is triangle-free since it has a single vertex.
Gk+1 is obtained from the disjoint union of copies of G1, G2, . . . , Gk, which by the induction
hypothesis is triangle-free, by adding vertices adjacent to an independent set. Indeed each new
vertex b in Gk+1 is adjacent to at most one vertex in each copy of the graphs G1, G2, . . . , Gk,
hence cannot create a triangle. Thus Gk+1 is itself triangle-free.

Twincut graphs have unbounded chromatic number, with a similar argument to the one
used for Zykov graphs, and the additional twist of finding a rainbow independent set along a
branch of the structured tree.

Proposition 5.4 For every integer k ≥ 1, we have χ(Gk) = k.

Proof. The proof is again by induction on k. The case k = 1 holds since G1 is a 1-vertex
graph. Now, let k ≥ 1 and suppose χ(Gℓ) = ℓ for ℓ ≤ k. Fix c a proper coloring ofGk+1. In the
underlying structured tree Tk+1, we will pick a branch which uses k distinct colors. Assume by
induction that v1, . . . , vℓ is a path in Tk+1 starting from the root v1 such that the colors c(vi)
are all distinct. By construction of Gk+1, the children of vℓ induce a copy of Gℓ+1, which
is (ℓ + 1)-chromatic. Thus, there is a child vℓ+1 whose color is distinct from c(v1), . . . , c(vℓ),
with which we extend the path. Once this process reaches a leaf of Tk+1, we obtain a branch b
whose vertices use k distinct colors, hence the vertex b, which is connected exactly to this
branch, needs one additional color. Thus, c uses at least k + 1 colors, so χ(Gk+1) ≥ k + 1.

Conversely, if we color in Gk+1 all branch vertices by k + 1 and remove them from Gk+1,
we are left with the disjoint union of all graphs g(v), i.e., copies of G1, . . . , Gk which are
k-colorable by induction. This yields a (k + 1)-coloring of Gk+1.
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Proposition 5.5 For every k, the twin-width of Gk is at most k − 1.

Proof. Observe that G1 and G2 both have twin-width 0, and G3 = C5 has twin-width 2. Let
k ≥ 4 and assume that the property holds for every j < k. Let v be a vertex at level k − 1
in Tk+1. Then, the vertices of g(v) are leaves of Tk+1. Furthermore, the leaves of Tk+1 are in
bijection with the branches of Tk+1 so if ℓ is the leaf corresponding to branch b, we can denote
xb by xℓ without any ambiguity. We have that g(v) = Gk has twin-width at most k − 1 by
induction hypothesis. Consider a contraction sequence of Gk achieving tww(Gk) ≤ k−1. We
mimic this contraction sequence inside g(v), but before doing any contraction between ℓ and
ℓ′, we first contract xℓ and xℓ′ . By doing this, at any point, the maximum red degree of a xℓ
is at most 2 (two xℓ that are merged have all their ancestors in common except one), and the
maximum red degree of a vertex of g(v) is its red degree in the original contraction sequence
plus one, i.e. at most k. We do this for every vertex v at level k − 1.

Let T ′k+1 be the tree we get by starting from Tk+1 and removing all nodes at level k. The
graph we obtain after having contracted all the g(v) corresponds to the realization of this tree,
except that for every xb now has a pending red edge where the pending vertex corresponds to
a contracted g(v). Next, consider a vertex w at level k − 2 in T ′k+1. Then, g(w) = Gk−1 has
twin-width at most k−2 by induction hypothesis. We once again mimic an optimal sequence
inside g(w), except that we first contract the vertices pending from the xb, then the xb and
only then we do the contraction in g(w). When doing this, the maximum red degree of a pend-
ing vertex is 2, the maximum red degree of a xb is 3, and the maximum red degree of a vertex
of g(w) is its red degree in the original contraction sequence plus one, i.e. at most k− 1. We
finally contract the vertex corresponding to g(w) to the vertex pending from the leaf, which
creates no red edge, and decreases the red degree of the node corresponding to the contraction
of all branch vertices by 1. We do this for all w at level k − 2. By doing so, we once again
remove a level to our tree, while keeping a single pending red edge for every xb. Iterating this,
we can contract Gk+1 to a single vertex, while keeping the red degree at most k at each step.

In particular, by Theorem 5.2, this means that the twincut graphs are triangle-free graphs
with unbounded chromatic number whose structural complexity is close to being optimal.
This is also reflected in the value of other width parameters, such as the tree-width or the
rank-width.

5.4 Operations that preserve χ-boundedness

We define (yet) another operation on graphs, the gluing operation. If G1, G2 are graphs with
inclusion-wise incomparable vertex sets, let C = V (G1)∩V (G2). Assume that G1[C] = G2[C].
Let G the the graph such that V (G) = V (G1) ∪ V (G2), with adjacency as follows.

• G[V (G1)] = G1,

• G[V (G2)] = G2,

• There is no edge between V (G1) \ C and V (G2) \ C.

We then say that G is obtained by gluing G1 and G2 along C. In this case, we also say
that G is obtained by gluing G1 and G2 on |C| vertices. If C is a class of graphs and k is
an integer, the k-gluing closure of C, denoted by Ckg is the class of graphs we can obtain by
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iteratively gluing graphs of C on at most k vertices. In [9], the authors show that for every
k, if C is (polynomially) χ-bounded, then Ckg is also (polynomially) χ-bounded. In the same
paper, they prove that the closure of a χ-bounded class under substitution is χ-bounded, and
that substitutions further preserve polynomial χ-boundedness. Trying to merge these two
operations, they posed the following problem, also mentioned in [18]:

Problem 5.6 Is the closure of a χ-bounded class under substitution and gluing along a bounded
number of vertices also χ-bounded?

This problem can be simplified to a seemingly trivial case, where the base class consists
only of the complete graphs on one and two vertices, where we can glue on at most 2 vertices,
under the extra constraint that these two vertices are not adjacent, and where we can only
substitute a vertex by two non-adjacent vertices. Call T the resulting class. It is immediate
that T is the class of graphs that verify the following property: all their induced subgraphs
with at least 3 vertices have false twins (two non-adjacent vertices with the same neighbor-
hood), or an edgeless vertex cutset of size at most two. Since T is hereditary and since the
triangle is not in T , all graphs in T are triangle-free. Hence, to give a negative answer to
Problem 5.6, it suffices to prove that graphs of T can have arbitrarily high chromatic number.

Somewhat surprisingly, the twincut graphs are in T , which gives a negative answer to
Problem 5.6, as well as it highlights even more the low structural complexity of the twincut
graphs.

Proposition 5.7 The graphs Gk are in T .

We more generally show that T is closed under the realization of structured trees, which
immediately implies Proposition 5.7.

Lemma 5.8 Let (T, g) be a structured tree such that every g(v) is in T . Then R(T, g) ∈ T .

Proof. For a node v of T , let T (v) be the subtree rooted at v, i.e., the subtree consisting of
all descendants of v. Equipped with the restriction of g, T (v) is a structured tree. We prove
by induction on T , starting from the leaves, that for all nodes v, the realization R(T (v), g) is
in T . For the sake of brevity, let us denote this realization of a subtree by Rv = R(T (v), g).

If v is a leaf, then Rv is simply an edge, which is in T . Let now v be an internal node
with children u1, . . . , uℓ, and assume that each Rui is in T . Recall also that g(v) is assumed
to be in T . We construct Rv as follows. First, in each Rui , create a copy u′i of ui by sub-
stituting ui with a stable set of size two, and call R′ui

the resulting graph. Next, take g(v)
and add to it an isolated vertex standing for v. We then glue each R′ui

successively with
this graph, by identifying u′i with v, and identifying the occurrences of ui in R′ui

and in g(v).
This corresponds to gluing along a stable set of size two. Hence, we constructed Rv starting
from g(v), Ru1 , . . . , Ruℓ

, by substituting with and gluing on stable sets of size at most two,
thereby proving that Rv ∈ T .

6 Factoring permutations into separable ones

The scope of twin-width extends beyond graphs. In particular, one can define the twin-width
of a permutation. A seminal result by Guillemot and Marx [13] is that strict (“hereditary”)
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classes of permutation have bounded twin-width – this paper actually preceded and inspired
the definition of twin-width. Using a variant of delayed decompositions, we show that every
strict class of permutations is contained in a bounded power of the class of separable per-
mutations. This structural result illustrates the versatility of both twin-width and delayed
decompositions. I will explain the result we obtain, but I will not give any proof in this report.

6.1 Patterns

If n ≤ m are two integers, we say that a permutation π ∈ Sn is a pattern of σ ∈ Sm if
there is a strictly increasing function f from [n] to [m] such that π(i) < π(j) if and only if
σ(f(i)) < σ(f(j)) for all i < j in [n]. Another way to characterize patterns is to associate to
every permutation σ ∈ Sn its n× n matrix A(σ) = (aij) in which aij is equal to 1 whenever
j = σ(i) and equal to 0 otherwise. Then, π is a pattern of σ if and only if A(π) is a submatrix
of A(σ). Informally, patterns in permutations correspond to induced subgraphs in graphs.
For instance, 12345 is a pattern of σ if σ contains an increasing subsequence of length five.
A crucial achievement in permutation patterns is the Guillemot-Marx algorithm [13] which
decides if a permutation π is a pattern of σ in time f(π).|σ|, where |σ| is the length of σ.

Patterns offer a very easy way to analyze the complexity of a permutation: roughly
speaking, a permutation is simple if it does not contain a given small pattern. It is more
convenient here to speak of classes of permutations which are assumed closed with respect to
patterns. In [13], Guillemot and Marx introduced a measure of complexity of a permutation,
which they simply call width. Twin-width is a generalization of this notion to other structures,
including graphs. Although their presentation is quite different, one may check that the width
of a permutation σ in the work of Guillemot and Marx is precisely the twin-width of σ. With
this in mind, a major result of Guillemot and Marx— the duality between patterns and
twin-width—can be restated as follows.

Theorem 6.1 ([13, Theorem 4.1]) For any permutation τ , there is cτ ∈ N such that if σ
avoids τ as pattern, then σ has twin-width at most cτ .

The existence of a gap between the class of all permutations and any smaller class is illustrated
by the Marcus-Tardos theorem [15] (answering the Stanley-Wilf conjecture): every strict class
of permutations has at most exponential growth, whereas the class of all permutations reaches
factorial growth.

Strict classes of permutations are therefore very simple, both from the algorithmic and
counting point of view. The next natural question is then to construct them from a basic
class using some operations. In the case of permutations, one of the simplest operations is the
product (or composition). Furthermore, separable permutations, which are the permutations
avoiding the patterns 2413 and 3142 constitute a very restricted class (as they are equivalently
the closure under substitutions of the permutations 12 and 21). In that sense, they can be
seen as the permutation counterpart of cographs. We can now state our result.

Theorem 6.2 For every permutation τ there exists kτ such that every permutation avoiding
τ as a pattern is a product of at most kτ separable permutations.

Note that this result can be seen as a constructive version of the Marcus-Tardos theorem
[15] (which is used in the proof). To prove this result, thanks to Theorem 6.1, it suffices
to prove that any permutation of bounded twin-width can be written as a product of some
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bounded number of separable permutations. To do so, one of the main tools we use is a
generalization of delayed decompositions to permutations, so that we only have to analyze
the “quotient permutations”. I will not give more details about the proof of Theorem 6.2 in
this report. However, we are currently finalizing the write up of a paper proving Theorem
6.2.

Acknowledgements
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ant. Twin-width III: Max Independent Set, Min Dominating Set, and Coloring. In Nikhil
Bansal, Emanuela Merelli, and James Worrell, editors, 48th International Colloquium on
Automata, Languages, and Programming (ICALP 2021), volume 198 of Leibniz Interna-
tional Proceedings in Informatics (LIPIcs), pages 35:1–35:20, Dagstuhl, Germany, 2021.
Schloss Dagstuhl – Leibniz-Zentrum für Informatik.
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[8] Marcin Briański, James Davies, and Bartosz Walczak. Separating polynomial χ-
boundedness from χ-boundedness, 2022.

[9] Maria Chudnovsky, Irena Penev, Alex Scott, and Nicolas Trotignon. Substitution and
χ-boundedness. Journal of Combinatorial Theory, Series B, 103(5):567–586, 2013.

[10] Maria Chudnovsky, Neil Robertson, Paul Seymour, and Robin Thomas. The strong
perfect graph theorem. Annals of Mathematics, 164:51–229, 2006.

[11] Blanche Descartes. Solution to advanced problem no. 4526. Amer. Math. Monthly, 61,
1954.
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A Proof of Proposition 3.4

We will express our result in the language of ordered graphs (graphs with a total order on
vertices). An RMP for an ordered graph must respect the order, that is the parts of the
partition must consist of consecutive vertices.

The proof of Proposition 3.4 is heavily based on the following lemma about the clique
number. Given an ordered graph G and an RMP P = (V1, . . . , Vk), we denote by G/P the
ordered graph obtained by contracting all parts of P, i.e. G/{V1, . . . , Vk}. This is a particular
transversal minor of G, with the property that χ(G) ≤ χ(G/P). A class C of ordered graphs
is h-free if it does not contain some ordered graph on h vertices.

Lemma A.1 There exists a function ϕ such that for every h-free class C and every ordered
graph G with a C-right module partition P, we have ω(G/P) ≤ ϕ(ω(G), h)

Proof. The proof is by induction on ω := ω(G) and h. If h = 1 or ω = 1 then G is edgeless,
so we can set ϕ(x, 1) = ϕ(1, y) = 1. Now, ω ≥ 2 and h ≥ 2, and we assume that we proved the
existence of ϕ(ω− 1, h) and ϕ(ω, h− 1). We denote P = (V1, . . . , Vk) and consider an ordered
graph H on vertices v1, . . . , vh which is not in C. Observe that we can restrict ourselves to
the case where G/P is a clique, as we can only consider a maximal clique of G/P.

Thus, for every i < j ∈ [k], there is an edge between Vi and Vj . Let Dk be a subset of Vk
of minimal size such that there is an edge between Vi and Dk for every i < k. By minimality
of Dk, for every d ∈ Dk there exists id ∈ [k − 1] such that there is an edge between Vid and
d (and thus d dominates Vid) but no edge between Vid and Dk \ {d}. We consider two cases
depending on the size of Dk.

1. If |Dk| > ϕ(ω, h−1)+1, we show that we reach a contradiction. Select some x ∈ Dk and
consider the set P ′ of |Dk| − 1 parts Vid as defined above, except for the part Vix which
is not selected in P ′. Since G/P ′ is a clique of size at least ϕ(ω, h − 1) + 1, it follows
by induction that (G[∪P ′],P ′) contains all ordered graphs of size h − 1 as transversal
minors. In particular, the ordered graph H ′ = H \ vh is a transversal minor of P ′. If
vh is isolated in H, we reach a contradiction since H ′ ∪ x is isomorphic to H and is a
transversal minor of (G,P). Otherwise, observe that one can extend H ′ in all possible
ways as a transversal minor of P by selecting some vertices in Dk. Indeed, every Vid
corresponds to a vertex d in Dk which is only joined to Vid . We can then select vertices
in Dk to extend H ′ to H, a contradiction.

2. If |Dk| ≤ ϕ(ω, h − 1) + 1. For d ∈ Dk, let Sd be the set of neighbours of d in G. In
particular, ω(G[Sd]) ≤ ω − 1. Furthermore, P induces by restriction a C-RMP Pd of
G[Sd]. We then have ω(G[Sd]/Pd) ≤ ϕ(ω − 1, h). By taking the union over all d ∈ Dk,
we deduce ω(G/P) ≤ ϕ(ω − 1, h) · (ϕ(ω, h − 1) + 1) + 1 (the additional +1 stands for
the last class Vk which is not dominated).

Therefore, we can choose ϕ(ω, h) = ϕ(ω − 1, h) · (ϕ(ω, h− 1) + 1) + 1.

We are now ready to prove Proposition 3.4. If C has a χ-bounding function f , by the fact
that the class of all graphs is not χ-bounded, there is a graph H of size h which is not in C.
Consider now any graph G in RM(C) with clique number ω and C-RMP P. We have

χ(G) ≤ χ(G/P) ≤ f(ω(G/P)) ≤ f(ϕ(ω(G), h)).
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Therefore the function f(ϕ(ω(G), h)) is χ-bounding for RM(C).

B Proof of Claim 4.8

As we will perform some operations on our graphs (such as deleting edges and contracting
subsets of vertices), we show in the next results how mixed zones are affected. These are
technical results with short and easy proofs. We do not give them here, but they can be
found in [7]. Let M be a 01∗-matrix (not necessarily an adjacency matrix) with exactly two
row blocks R,R′ and two columns blocks C,C ′, each of size at least two.

Lemma B.1 If all four zones of M are mixed, there is a corner intersecting all zones.

The contraction M ′ = M/{R,R′;C,C ′} is the 2× 2-matrix obtained by keeping a single
value x for each of the 4 zones, with the following rule: x is the maximum value of the zone
according to the order 0 < 1 < ∗. Thus, we get ∗ as soon as there exists a ∗, and we get 0
only if the zone is full 0.

Lemma B.2 If M ′ is mixed, then M is mixed.

We keep the same notations as before, and assume moreover that none of the four zones of
M is mixed (in particular M has no value ∗). The horizontal-deletion MH of M is the matrix
obtained from M by setting all values to 0 in each zone which is not vertical (or equivalently
each zone which is horizontal and non-constant). We similarly define the vertical-deletion
MV .

Lemma B.3 If MH is mixed, then M is mixed.

We now move to the proof of Claim 4.8

Proof. Assume for contradiction that we can find a sequence of local modules L′1, . . . , L
′
t in

L′ri, each of them containing a non empty subset of vertices W1, . . . ,Wt, such that the graph
Q = H ′→,ri/{W1, . . . ,Wt} has a d − 1-almost mixed minor. The vertices of Q are denoted
W = {w1, . . . , wt}, where Wi is contracted to wi. Moreover, there exist two partitions of W
into consecutive blocks of vertices (R1, . . . , Rd−1) and (C1, . . . , Cd−1) such that Q is mixed on
the zone [Ri, Cj ] whenever i ̸= j (thus all Ri and Cj have size at least 2). We now show how
to ”lift” these partitions to G in order to get a contradiction.

Consider any partition R′ = (R′1, . . . , R
′
d−1) of I (where parts consist of consecutive local

modules) satisfying that wi ∈ Rj implies L′i ⊆ R′j . Similarly C′ = (C ′1, . . . , C
′
d−1) partitions I

and wi ∈ Cj implies L′i ⊆ C ′j . We now extend the partitions R′, C′ of I to the whole vertex
set V of G by first setting R′1 := R′1 ∪ {v1, . . . , vs−1} and C ′1 := C ′1 ∪ {v1, . . . , vs−1}, and then
adding a new part {vt+1, . . . , vn} = R′d = C ′d to both R′ and C′. These new partitions are
called R and C. Observe that if we were working with H ′→,le, we would have added the part
R′0 = C ′0 = {v1, . . . , vs−1} to both R′ and C′ and extended the parts R′d−1 and C ′d−1 by adding
{vt+1, . . . , vn}.

We now show that R and C form a d-almost mixed minor for G, which will be our
contradiction. We need to focus on two points: the added parts R′d, C

′
d should be mixed with

respect to the others, and the original mixed zones [Ri, Cj ] of Q should yield mixed zones
[R′i, C

′
j ] of G. We separate the two arguments:
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• Consider first some zone [R′i, C
′
d] where i < d (similar argument for [R′d, C

′
i]). By the

fact that Ri contains two vertices wa, wb, the part R′i contains the right local modules
L′a, L

′
b (where a < b). Focus now on the vertex vj which is the first vertex of L′b, and

note that vj−1 ∈ R′i since L′a ⊆ R′i. Since L′b is a right local module, there exists vk,
where k > t such that vk is differently joined to vj−1 and vj . Recall that vn is joined in
the same way to vj−1 and vj . Since vj−1, vj ∈ R′i and vk, vn ∈ C ′d, they witness the fact
that [R′i, C

′
d] is mixed.

• Now, consider any zone [R′i, C
′
j ] where i, j < d and i ̸= j. If the zone [Ri, Cj ] contains a ∗

(i.e. some wa both belongs to Ri and Cj), then [R′i, C
′
j ] also contains a ∗. Otherwise, by

Lemma 4.1, Ri contains two vertices wa, wb and Cj contains two vertices wc, wd such that
{wa, wb}, {wc, wd} is a corner. Moreover, since there is no ∗ value, we have a < b < c < d
or c < d < a < b. Without loss of generality, we assume a < b < c < d. By Lemma B.2,
the restriction of the adjacency matrix of H ′→,ri on [Wa ∪Wb,Wc ∪Wd] is mixed since
its contraction is the corner {wa, wb}, {wc, wd}. So the submatrix [L′a ∪ L′b, L′c ∪ L′d] is
also mixed. By definition of H ′→,ri, if L′a (or L′b) is not a module with respect to L′c (or
to L′d), then the zone [L′a, L

′
c] is set to 0. In other words, the adjacency matrix of H ′→,ri

restricted to [L′a ∪ L′b, L′c ∪ L′d], is the horizontal-deletion of the adjacency matrix of G.
Thus the zone [R′i, C

′
j ] is mixed by Lemma B.3.

C Proof of Claim 4.9

Proof. Assume for contradiction that we can find a coarsening W ′1, . . . ,W
′
2d of L′ri which

forms a 2d-almost mixed minor of H ′→,ri. We now set Wi = W ′2i−1 ∪ W ′2i for all i =
1, . . . , d. By Lemma 4.1 every (mixed) zone [Wi,Wj ] with i ̸= j of H ′→,ri contains a cor-
ner {wa, wb}, {wc, wd}. By Lemma B.1, we can assume that wa, wb, wc, wd belong respectively
to W ′2i−1,W

′
2i,W

′
2j−1,W

′
2j , hence to respective distinct local modules L′a, L

′
b, L
′
c, L
′
d. We as-

sume without loss of generality that i < j, and thus a < b < c < d. By definition of H ′→,ri,
if L′a (or L′b) is not a module with respect to L′c (or to L′d), then the zone [L′a, L

′
c] is set

to 0. In other words, the adjacency matrix of H ′→,ri restricted to [L′a ∪ L′b, L′c ∪ L′d], is the
horizontal-deletion of the adjacency matrix of G. Hence the zone [Wi,Wj ] is mixed in G by
Lemma B.3. Thus G restricted to W1, . . . ,Wd has a d-almost mixed minor, a contradiction.
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