Polynomial χ -Boundedness of Bounded Twin-Width Classes

Romain Bourneuf Joint work with Stéphan Thomassé

1st Twin-Width Workshop, Aussois, 2023

Polynomial χ -Boundedness of Bounded Twin-Width Classes

Definition (χ -bounded)

If C is a class of graphs, C is χ -bounded if $\forall G \in C, \chi(G) \leq f(\omega(G))$ for some function f.

If f is a polynomial, C is polynomially χ -bounded.

Definition (χ -bounded)

If C is a class of graphs, C is χ -bounded if $\forall G \in C, \chi(G) \leq f(\omega(G))$ for some function f.

If f is a polynomial, C is polynomially χ -bounded.

Theorem [Twin-Width III]

The class of graphs of twin-width at most t is χ -bounded with function $f_t(\omega) = (t+2)^{\omega-1}$.

Definition (χ -bounded)

If C is a class of graphs, C is χ -bounded if $\forall G \in C, \chi(G) \leq f(\omega(G))$ for some function f.

If f is a polynomial, C is polynomially χ -bounded.

Theorem [Twin-Width III]

The class of graphs of twin-width at most t is χ -bounded with function $f_t(\omega) = (t+2)^{\omega-1}$.

Theorem [BBDGTT'23]

For every t, there exists a triangle-free graph with twin-width t and chromatic number t + 1.

Theorem [Pilipczuk, Sokołowski '22]

For every t, the class of graphs with twin-width at most t is quasi-polynomially χ -bounded.

Theorem [Pilipczuk, Sokołowski '22]

For every t, the class of graphs with twin-width at most t is quasi-polynomially χ -bounded.

Theorem

For every t, the class of graphs with twin-width at most t is polynomially χ -bounded.

Theorem [Pilipczuk, Sokołowski '22]

For every t, the class of graphs with twin-width at most t is quasi-polynomially χ -bounded.

Theorem

For every t, the class of graphs with twin-width at most t is polynomially χ -bounded.

• Gives an efficient coloring algorithm.

 Main tool: Decompose a graph into some simpler graphs, while preserving χ-boundedness.

- Main tool: Decompose a graph into some simpler graphs, while preserving χ -boundedness.
- Vertex partition: $V(G) = V_1 \cup V_2$ s.t. $G[V_1]$ and $G[V_2]$ are simpler.

- Main tool: Decompose a graph into some simpler graphs, while preserving χ-boundedness.
- Vertex partition: $V(G) = V_1 \cup V_2$ s.t. $G[V_1]$ and $G[V_2]$ are simpler. With 2 different palettes: $\chi(G) \le \chi(G[V_1]) + \chi(G[V_2])$.

- Main tool: Decompose a graph into some simpler graphs, while preserving χ -boundedness.
- Vertex partition: $V(G) = V_1 \cup V_2$ s.t. $G[V_1]$ and $G[V_2]$ are simpler. With 2 different palettes: $\chi(G) \le \chi(G[V_1]) + \chi(G[V_2])$.
- Edge partition: $E(G) = E_1 \cup E_2$ s.t. $(V(G), E_1)$ and $(V(G), E_2)$ are simpler.

- Main tool: Decompose a graph into some simpler graphs, while preserving χ -boundedness.
- Vertex partition: $V(G) = V_1 \cup V_2$ s.t. $G[V_1]$ and $G[V_2]$ are simpler. With 2 different palettes: $\chi(G) \le \chi(G[V_1]) + \chi(G[V_2])$.
- Edge partition: $E(G) = E_1 \cup E_2$ s.t. $(V(G), E_1)$ and $(V(G), E_2)$ are simpler.

With the product coloring: $\chi(G) \leq \chi(G_1) \cdot \chi(G_2)$.

If G = (V, E) is a graph, we say that $X \subseteq V$ is a *module* if $\forall v \in V \setminus X$, either v is complete to X or v is anti-complete to X.

If G = (V, E) is a graph, we say that $X \subseteq V$ is a module if $\forall v \in V \setminus X$, either v is complete to X or v is anti-complete to X. If $X = \emptyset, \{v\}$ or V, then X is a trivial module.

If G = (V, E) is a graph, we say that $X \subseteq V$ is a module if $\forall v \in V \setminus X$, either v is complete to X or v is anti-complete to X. If $X = \emptyset, \{v\}$ or V, then X is a *trivial module*. A graph is *prime* if it has no non-trivial module.

If G = (V, E) is a graph, we say that $X \subseteq V$ is a module if $\forall v \in V \setminus X$, either v is complete to X or v is anti-complete to X. If $X = \emptyset, \{v\}$ or V, then X is a trivial module. A graph is prime if it has no non-trivial module.

If X is a module of G, we can define G/X, the quotient graph.

If G = (V, E) is a graph, we say that $X \subseteq V$ is a module if $\forall v \in V \setminus X$, either v is complete to X or v is anti-complete to X. If $X = \emptyset, \{v\}$ or V, then X is a *trivial module*. A graph is *prime* if it has no non-trivial module.

If X is a module of G, we can define G/X, the quotient graph.

Theorem [Gallai '67]

If G and its complement are connected, the maximal proper modules of G form a partition of V, and the quotient graph is prime.

Given a structured tree (T, g), we can define its realization R(T, g).

Given a structured tree (T, g), we can define its realization R(T, g). If C is a class of graphs, the substitution closure C_s of C is the set of all R(T, g) where all $g(x) \in C$.

Given a structured tree (T, g), we can define its realization R(T, g). If C is a class of graphs, the substitution closure C_s of C is the set of all R(T, g) where all $g(x) \in C$.

Equivalently, its the set of graphs we can obtain by starting from graphs in ${\cal C}$ and iteratively substituting their vertices by graphs from ${\cal C}.$

Given a structured tree (T, g), we can define its realization R(T, g). If C is a class of graphs, the substitution closure C_s of C is the set of all R(T, g) where all $g(x) \in C$.

Equivalently, its the set of graphs we can obtain by starting from graphs in ${\cal C}$ and iteratively substituting their vertices by graphs from ${\cal C}.$

Theorem (Chudnovsky, Penev, Scott, Trotignon '13)

If C is polynomially χ -bounded, so is C_s .

Definition (Delayed extension)

Given a *delayed structured tree* (T,g), we can define its *delayed realization* $R_d(T,g)$.

Definition (Delayed extension)

Given a delayed structured tree (T, g), we can define its delayed realization $R_d(T, g)$. If C is a class of graphs, the delayed extension C_d of C is the set of all $R_d(T, g)$ where all $g(x) \in C$.

Definition (Delayed extension)

Given a delayed structured tree (T, g), we can define its delayed realization $R_d(T, g)$. If C is a class of graphs, the delayed extension C_d of C is the set of all $R_d(T, g)$ where all $g(x) \in C$.

Theorem

If C is polynomially χ -bounded, so is C_d .

Second operation: Right Module Partition

Second operation: Right Module Partition

Second operation: Right Module Partition

• With this definition, the right extension of the class of all forests is not χ -bounded.

- With this definition, the right extension of the class of all forests is not χ -bounded.
- Shift graphs: triangle-free, unbounded χ .

- With this definition, the right extension of the class of all forests is not χ -bounded.
- Shift graphs: triangle-free, unbounded χ .

1, 2	2, 3	3, 4	4, 5
	1, 3	2, 4	3, 5
		1, 4	2, 5
			1, 5

- With this definition, the right extension of the class of all forests is not χ-bounded.
- Shift graphs: triangle-free, unbounded χ .

- With this definition, the right extension of the class of all forests is not χ -bounded.
- Shift graphs: triangle-free, unbounded χ .

Transversal minor

Transversal minor

Transversal minor

Definition (Right extension)

Let C be a class of graphs. The *right extension* RM(C) of C is the set of graphs G that have an RMP where all transversal minors are in C.

Definition (Right extension)

Let C be a class of graphs. The *right extension* RM(C) of C is the set of graphs G that have an RMP where all transversal minors are in C.

Theorem

If C is χ -bounded, then so is RM(C).

Definition

An RMP \mathcal{P} of a graph G is *d*-nice if there does not exist an ordered coarsening of \mathcal{P} into d parts such that every two distinct parts are mixed.

Definition

An RMP \mathcal{P} of a graph G is *d*-nice if there does not exist an ordered coarsening of \mathcal{P} into d parts such that every two distinct parts are mixed.

Theorem (from [PS'22])

If C is polynomially χ -bounded, the set of graphs with a *d*-nice C-RMP is also polynomially χ -bounded.

By induction, we show that $t\text{-}\mathsf{almost}$ mixed-free graphs are polynomially $\chi\text{-}\mathsf{bounded}.$

By induction, we show that $t\text{-}\mathsf{almost}$ mixed-free graphs are polynomially $\chi\text{-}\mathsf{bounded}.$

G, t-almost mixed-free.

- G, t-almost mixed-free.
 - Do the delayed decomposition, look at the quotient graphs.

- G, t-almost mixed-free.
 - Do the delayed decomposition, look at the quotient graphs.
 - Apply the Marcus-Tardos theorem to vertex partition into a constant number of graphs.

- G, t-almost mixed-free.
 - Do the delayed decomposition, look at the quotient graphs.
 - Apply the Marcus-Tardos theorem to vertex partition into a constant number of graphs.
 - Find a suitable RMP.

- G, t-almost mixed-free.
 - Do the delayed decomposition, look at the quotient graphs.
 - Apply the Marcus-Tardos theorem to vertex partition into a constant number of graphs.
 - Find a suitable RMP.
 - Prove that the *RMP* is 2*t*-nice.

- G, t-almost mixed-free.
 - Do the delayed decomposition, look at the quotient graphs.
 - Apply the Marcus-Tardos theorem to vertex partition into a constant number of graphs.
 - Find a suitable RMP.
 - Prove that the *RMP* is 2*t*-nice.
 - Prove that all transversal minors are t 1-almost mixed-free.

• What can we get by iterated delayed extensions starting from $\{K_2, \overline{K_2}\}$?

- What can we get by iterated delayed extensions starting from $\{K_2, \overline{K_2}\}$?
- Does the right extension preserve polynomial χ -boundedness in general?

- What can we get by iterated delayed extensions starting from $\{K_2, \overline{K_2}\}$?
- Does the right extension preserve polynomial χ -boundedness in general?
- For triangle-free graphs of twin-width t, do we have $\chi \leq t + 1$?