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Total search problems

Definition (Total search problem, TFNP)

• A search problem is total if all instances have a solution.

• TFNP is the class of total search problems for which we can check in
polytime if an answer is indeed a solution.

Example: Factoring

Input: Integer n ≥ 2.
Solution : A prime factor of n.

Many interesting problems in cryptography lie in TFNP.
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Subclasses of TFNP

TFNP subclasses are defined based on the mathematical argument used to
prove the totality of a problem.

Classical Theorem (Weak Pigeonhole Principle)

If f : [2n] → [n] then there exist x ̸= y ∈ [2n] s.t. f (x) = f (y).

Definition (WeakPigeon [Jěrábek ’15])

Input: Poly-sized circuit H : {0, 1}n → {0, 1}n−1.
Solution : x ̸= y ∈ {0, 1}n s.t. H(x) = H(y).

PWPP is the class whose complete problem is WeakPigeon.

• Characterize PWPP: new complete problems from extremal
combinatorics.
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PWPP and Extremal Combinatorics

Definition (Extremal Combinatorics)

If the size of some object is large enough then some structure must appear.

Classical Theorem (Ramsey’s Theorem)

If G is a graph on 22n vertices, then G has a clique or an independent set
of size n.

Definition (Ramsey [Krajiček ’05])

Input: Poly-sized circuit C : {0, 1}2n × {0, 1}2n → {0, 1}.
Solution : • x , y ∈ {0, 1}2n such that C (x , y) ̸= C (y , x).

• x1, . . . , xn that form a clique or an independent set.
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Ramsey is PWPP-hard

Theorem [Komargodski, Naor, Yogev ’19]

Ramsey is PWPP-hard.

Input: H : {0, 1}2n → {0, 1}n/8, want to find a collision.
Let G be a graph on 2n/8 vertices that has no clique or independent set of
size n.
We consider the graph G ′ on vertex set {0, 1}2n with an edge xy if and
only if there is an edge H(x)H(y) in G .
If we have a clique or independent set of size n in G ′, two of its vertices
must form a collision.
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Sperner Antichain Problem

Classical Theorem (Sperner, 1928)

If we have >
(2n
n

)
subsets of [2n], then one of them is contained in another.

Definition (Weak Sperner Antichain Problem)

Input: Poly-sized circuit C : {0, 1}α+1 → {0, 1}2n, with α = log
(2n
n

)
.

Solution: x ̸= y ∈ {0, 1}α+1, s.t. C (x) ⊆ C (y).

Theorem

Weak Sperner Antichain is PWPP-complete.
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Proof sketch

Hardness: Variant of the graph-hash product.

Take a large antichain and “blow it up”.

Inclusion: Let N =
(2n
n

)
.

We have a “list” of 2N sets S1, . . . ,S2N .
By Dilworth, partition (2[2n],⊆) into N chains C1, . . . ,CN .
Consider the circuit H which maps i to the unique j such that Si ∈ Cj .
Collisions in H correspond to sets in the same chain.
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From PWPP to PPP

Classical Theorem (Weak Pigeonhole Principle)

If f : [2n] → [n], ∃x ̸= y , f (x) = f (y).

Classical Theorem (Strong Pigeonhole Principle)

If f : [n] → [n], either ∃x ̸= y , f (x) = f (y), or f is a permutation.

Definition (Pigeon/PPP [Papadimitriou ’94])

Input : Poly-sized circuit C : {0, 1}n → {0, 1}n.
Solution : • x ̸= y ∈ {0, 1}n, s.t. C (x) = C (y).

• x ∈ {0, 1}n, s.t. C (x) = 0n.
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Strong version of Sperner

Classical Theorem (Weak Sperner Theorem)

If we have >
(2n
n

)
subsets of [2n], then one of them is contained in another.

Classical Theorem (Strong Sperner Theorem)

If we have exactly
(2n
n

)
subsets of [2n], then either one of them is

contained in another, or we have all n-subsets of [2n].

Definition (Strong Sperner Antichain Problem)

Input: Poly-sized circuit C : {0, 1}α → {0, 1}2n, with α = log
(2n
n

)
.

Solution: • x ̸= y , s.t. C (x) ⊆ C (y).
• x , s.t. C (x) = [n].

Theorem

The problem Strong Sperner Antichain is PPP-complete.

PPP-Completeness and Extremal Combinatorics CoA 2023 9 / 11



Strong version of Sperner

Classical Theorem (Weak Sperner Theorem)

If we have >
(2n
n

)
subsets of [2n], then one of them is contained in another.

Classical Theorem (Strong Sperner Theorem)

If we have exactly
(2n
n

)
subsets of [2n], then either one of them is

contained in another, or we have all n-subsets of [2n].

Definition (Strong Sperner Antichain Problem)

Input: Poly-sized circuit C : {0, 1}α → {0, 1}2n, with α = log
(2n
n

)
.

Solution: • x ̸= y , s.t. C (x) ⊆ C (y).
• x , s.t. C (x) = [n].

Theorem

The problem Strong Sperner Antichain is PPP-complete.

PPP-Completeness and Extremal Combinatorics CoA 2023 9 / 11



Strong version of Sperner

Classical Theorem (Weak Sperner Theorem)

If we have >
(2n
n

)
subsets of [2n], then one of them is contained in another.

Classical Theorem (Strong Sperner Theorem)

If we have exactly
(2n
n

)
subsets of [2n], then either one of them is

contained in another, or we have all n-subsets of [2n].

Definition (Strong Sperner Antichain Problem)

Input: Poly-sized circuit C : {0, 1}α → {0, 1}2n, with α = log
(2n
n

)
.

Solution: • x ̸= y , s.t. C (x) ⊆ C (y).
• x , s.t. C (x) = [n].

Theorem

The problem Strong Sperner Antichain is PPP-complete.

PPP-Completeness and Extremal Combinatorics CoA 2023 9 / 11



Strong version of Sperner

Classical Theorem (Weak Sperner Theorem)

If we have >
(2n
n

)
subsets of [2n], then one of them is contained in another.

Classical Theorem (Strong Sperner Theorem)

If we have exactly
(2n
n

)
subsets of [2n], then either one of them is

contained in another, or we have all n-subsets of [2n].

Definition (Strong Sperner Antichain Problem)

Input: Poly-sized circuit C : {0, 1}α → {0, 1}2n, with α = log
(2n
n

)
.

Solution: • x ̸= y , s.t. C (x) ⊆ C (y).
• x , s.t. C (x) = [n].

Theorem

The problem Strong Sperner Antichain is PPP-complete.

PPP-Completeness and Extremal Combinatorics CoA 2023 9 / 11



Other results

Classical Theorem (Weak Erdős-Ko-Rado Theorem)

If F is a family of pairwise intersecting n-subsets of [kn] then
|F| ≤

(kn−1
n−1

)
.

Theorem

The problems associated to the Erdős-Ko-Rado Theorem are respectively
PWPP-complete and PPP-complete.

• Similar results for Cayley’s theorem on trees.
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Overview & Open problems

Overview:

• We characterize the classes PWPP and PPP via problems from
extremal combinatorics.

• We highlight a correspondence between the strong and weak versions
of several classical theorems.

• From a proof theory viewpoint, the theorems are equivalent in some
sense to the pigeonhole principle.

Open problems:

• What about other classical theorems (Turán,...)?

• Do we have Ramsey ∈ PWPP?
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