PPP-Completeness and Extremal Combinatorics

Romain Bourneuf Joint work with Lukáš Folwarczný, Pavel Hubáček, Alon Rosen and Nikolaj I. Schwartzbach

CoA 2023

Total search problems

• A search problem is *total* if all instances have a solution.

- A search problem is *total* if all instances have a solution.
- TFNP is the class of total search problems for which we can check in polytime if an answer is indeed a solution.

- A search problem is *total* if all instances have a solution.
- TFNP is the class of total search problems for which we can check in polytime if an answer is indeed a solution.

Example: Factoring

Input: Integer $n \ge 2$. Solution : A prime factor of n.

- A search problem is *total* if all instances have a solution.
- TFNP is the class of total search problems for which we can check in polytime if an answer is indeed a solution.

Example: Factoring

Input: Integer $n \ge 2$. Solution : A prime factor of n.

Many interesting problems in cryptography lie in TFNP.

Subclasses of TFNP

PPP-Completeness and Extremal Combinatorics

Classical Theorem (Weak Pigeonhole Principle)

If $f : [2n] \rightarrow [n]$ then there exist $x \neq y \in [2n]$ s.t. f(x) = f(y).

Classical Theorem (Weak Pigeonhole Principle)

If $f : [2n] \to [n]$ then there exist $x \neq y \in [2n]$ s.t. f(x) = f(y).

Definition (WeakPigeon [Jeřábek '15])

Input: Poly-sized circuit $H : \{0,1\}^n \rightarrow \{0,1\}^{n-1}$. Solution : $x \neq y \in \{0,1\}^n$ s.t. H(x) = H(y).

Classical Theorem (Weak Pigeonhole Principle)

If $f : [2n] \to [n]$ then there exist $x \neq y \in [2n]$ s.t. f(x) = f(y).

Definition (WeakPigeon [Jeřábek '15])

Input: Poly-sized circuit $H : \{0,1\}^n \rightarrow \{0,1\}^{n-1}$. Solution : $x \neq y \in \{0,1\}^n$ s.t. H(x) = H(y).

PWPP is the class whose complete problem is WeakPigeon.

Classical Theorem (Weak Pigeonhole Principle)

If $f : [2n] \to [n]$ then there exist $x \neq y \in [2n]$ s.t. f(x) = f(y).

Definition (WeakPigeon [Jeřábek '15])

Input: Poly-sized circuit $H : \{0,1\}^n \rightarrow \{0,1\}^{n-1}$. Solution : $x \neq y \in \{0,1\}^n$ s.t. H(x) = H(y).

PWPP is the class whose complete problem is WeakPigeon.

• Characterize PWPP: new complete problems from extremal combinatorics.

Definition (Extremal Combinatorics)

If the size of some object is large enough then some structure must appear.

Definition (Extremal Combinatorics)

If the size of some object is large enough then some structure must appear.

Classical Theorem (Ramsey's Theorem)

If G is a graph on 2^{2n} vertices, then G has a clique or an independent set of size n.

Definition (Extremal Combinatorics)

If the size of some object is large enough then some structure must appear.

Classical Theorem (Ramsey's Theorem)

If G is a graph on 2^{2n} vertices, then G has a clique or an independent set of size n.

Definition (Ramsey [Krajiček '05])

Input: Poly-sized circuit $C : \{0,1\}^{2n} \times \{0,1\}^{2n} \rightarrow \{0,1\}$. Solution : • $x, y \in \{0,1\}^{2n}$ such that $C(x,y) \neq C(y,x)$. • x_1, \ldots, x_n that form a clique or an independent set.

Ramsey is PWPP-hard.

Ramsey is PWPP-hard.

Input: $H: \{0,1\}^{2n} \rightarrow \{0,1\}^{n/8}$, want to find a collision.

Ramsey is PWPP-hard.

Input: $H : \{0,1\}^{2n} \to \{0,1\}^{n/8}$, want to find a collision. Let G be a graph on $2^{n/8}$ vertices that has no clique or independent set of size n.

Ramsey is PWPP-hard.

Input: $H: \{0,1\}^{2n} \to \{0,1\}^{n/8}$, want to find a collision.

Let G be a graph on $2^{n/8}$ vertices that has no clique or independent set of size n.

We consider the graph G' on vertex set $\{0,1\}^{2n}$ with an edge xy if and only if there is an edge H(x)H(y) in G.

Ramsey is PWPP-hard.

Input: $H: \{0,1\}^{2n} \rightarrow \{0,1\}^{n/8}$, want to find a collision.

Let G be a graph on $2^{n/8}$ vertices that has no clique or independent set of size n.

We consider the graph G' on vertex set $\{0,1\}^{2n}$ with an edge xy if and only if there is an edge H(x)H(y) in G.

If we have a clique or independent set of size n in G', two of its vertices must form a collision.

Classical Theorem (Sperner, 1928)

If we have $> \binom{2n}{n}$ subsets of [2n], then one of them is contained in another.

Classical Theorem (Sperner, 1928)

If we have $> \binom{2n}{n}$ subsets of [2n], then one of them is contained in another.

Definition (Weak Sperner Antichain Problem)

Input: Poly-sized circuit $C : \{0,1\}^{\alpha+1} \to \{0,1\}^{2n}$, with $\alpha = \log {\binom{2n}{n}}$. Solution: $x \neq y \in \{0,1\}^{\alpha+1}$, s.t. $C(x) \subseteq C(y)$.

Classical Theorem (Sperner, 1928)

If we have $> \binom{2n}{n}$ subsets of [2n], then one of them is contained in another.

Definition (Weak Sperner Antichain Problem)

Input: Poly-sized circuit $C : \{0,1\}^{\alpha+1} \to \{0,1\}^{2n}$, with $\alpha = \log {\binom{2n}{n}}$. Solution: $x \neq y \in \{0,1\}^{\alpha+1}$, s.t. $C(x) \subseteq C(y)$.

Theorem

Weak Sperner Antichain is PWPP-complete.

Hardness: Variant of the graph-hash product.

Inclusion: Let $N = \binom{2n}{n}$.

Inclusion: Let $N = \binom{2n}{n}$. We have a "list" of 2N sets S_1, \ldots, S_{2N} .

Inclusion: Let $N = \binom{2n}{n}$. We have a "list" of 2N sets S_1, \ldots, S_{2N} . By Dilworth, partition $(2^{[2n]}, \subseteq)$ into N chains C_1, \ldots, C_N .

Inclusion: Let $N = \binom{2n}{n}$. We have a "list" of 2N sets S_1, \ldots, S_{2N} . By Dilworth, partition $(2^{[2n]}, \subseteq)$ into N chains C_1, \ldots, C_N . Consider the circuit H which maps i to the unique j such that $S_i \in C_j$.

Inclusion: Let $N = \binom{2n}{n}$. We have a "list" of 2N sets S_1, \ldots, S_{2N} . By Dilworth, partition $(2^{[2n]}, \subseteq)$ into N chains C_1, \ldots, C_N . Consider the circuit H which maps i to the unique j such that $S_i \in C_j$. Collisions in H correspond to sets in the same chain.

Classical Theorem (Weak Pigeonhole Principle)

If
$$f: [2n] \rightarrow [n], \exists x \neq y, f(x) = f(y).$$

Classical Theorem (Weak Pigeonhole Principle)

If
$$f: [2n] \rightarrow [n], \exists x \neq y, f(x) = f(y).$$

Classical Theorem (Strong Pigeonhole Principle)

If $f : [n] \to [n]$, either $\exists x \neq y, f(x) = f(y)$, or f is a permutation.

Classical Theorem (Weak Pigeonhole Principle)

If $f: [2n] \rightarrow [n], \exists x \neq y, f(x) = f(y).$

Classical Theorem (Strong Pigeonhole Principle)

If $f : [n] \to [n]$, either $\exists x \neq y, f(x) = f(y)$, or f is a permutation.

Definition (Pigeon/PPP [Papadimitriou '94])

Input : Poly-sized circuit $C : \{0, 1\}^n \to \{0, 1\}^n$. Solution : • $x \neq y \in \{0, 1\}^n$, s.t. C(x) = C(y). • $x \in \{0, 1\}^n$, s.t. $C(x) = 0^n$.

Classical Theorem (Weak Sperner Theorem)

If we have $> \binom{2n}{n}$ subsets of [2n], then one of them is contained in another.

Classical Theorem (Weak Sperner Theorem)

If we have $> \binom{2n}{n}$ subsets of [2n], then one of them is contained in another.

Classical Theorem (Strong Sperner Theorem)

If we have exactly $\binom{2n}{n}$ subsets of [2n], then either one of them is contained in another, or we have all *n*-subsets of [2n].

Classical Theorem (Weak Sperner Theorem)

If we have $> \binom{2n}{n}$ subsets of [2n], then one of them is contained in another.

Classical Theorem (Strong Sperner Theorem)

If we have exactly $\binom{2n}{n}$ subsets of [2n], then either one of them is contained in another, or we have all *n*-subsets of [2n].

Definition (Strong Sperner Antichain Problem)

Input: Poly-sized circuit $C : \{0,1\}^{\alpha} \to \{0,1\}^{2n}$, with $\alpha = \log {\binom{2n}{n}}$. Solution: • $x \neq y$, s.t. $C(x) \subseteq C(y)$. • x, s.t. C(x) = [n].

Classical Theorem (Weak Sperner Theorem)

If we have $> \binom{2n}{n}$ subsets of [2n], then one of them is contained in another.

Classical Theorem (Strong Sperner Theorem)

If we have exactly $\binom{2n}{n}$ subsets of [2n], then either one of them is contained in another, or we have all *n*-subsets of [2n].

Definition (Strong Sperner Antichain Problem)

Input: Poly-sized circuit $C : \{0,1\}^{\alpha} \to \{0,1\}^{2n}$, with $\alpha = \log {\binom{2n}{n}}$. Solution: • $x \neq y$, s.t. $C(x) \subseteq C(y)$. • x, s.t. C(x) = [n].

Theorem

The problem Strong Sperner Antichain is PPP-complete.

PPP-Completeness and Extremal Combinatorics

Classical Theorem (Weak Erdős-Ko-Rado Theorem)

If \mathcal{F} is a family of pairwise intersecting *n*-subsets of [kn] then $|\mathcal{F}| \leq {kn-1 \choose n-1}$.

Classical Theorem (Weak Erdős-Ko-Rado Theorem)

If \mathcal{F} is a family of pairwise intersecting *n*-subsets of [kn] then $|\mathcal{F}| \leq {kn-1 \choose n-1}$.

Theorem

The problems associated to the Erdős-Ko-Rado Theorem are respectively PWPP-complete and PPP-complete.

Classical Theorem (Weak Erdős-Ko-Rado Theorem)

If \mathcal{F} is a family of pairwise intersecting *n*-subsets of [kn] then $|\mathcal{F}| \leq {kn-1 \choose n-1}$.

Theorem

The problems associated to the Erdős-Ko-Rado Theorem are respectively PWPP-complete and PPP-complete.

• Similar results for Cayley's theorem on trees.

• We characterize the classes PWPP and PPP via problems from extremal combinatorics.

- We characterize the classes PWPP and PPP via problems from extremal combinatorics.
- We highlight a correspondence between the strong and weak versions of several classical theorems.

- We characterize the classes PWPP and PPP via problems from extremal combinatorics.
- We highlight a correspondence between the strong and weak versions of several classical theorems.
- From a proof theory viewpoint, the theorems are equivalent in some sense to the pigeonhole principle.

- We characterize the classes PWPP and PPP via problems from extremal combinatorics.
- We highlight a correspondence between the strong and weak versions of several classical theorems.
- From a proof theory viewpoint, the theorems are equivalent in some sense to the pigeonhole principle.

Open problems:

• What about other classical theorems (Turán,...)?

- We characterize the classes PWPP and PPP via problems from extremal combinatorics.
- We highlight a correspondence between the strong and weak versions of several classical theorems.
- From a proof theory viewpoint, the theorems are equivalent in some sense to the pigeonhole principle.

Open problems:

- What about other classical theorems (Turán,...)?
- Do we have Ramsey ∈ PWPP?