A tamed family of triangle-free graphs with unbounded chromatic number

Romain Bourneuf LaBRI

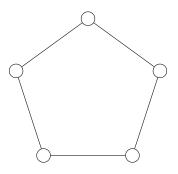
Joint work with Édouard Bonnet, Julien Duron, Colin Geniet, Stéphan Thomassé and Nicolas Trotignon

JGA 2024

Definition (Chromatic Number, Clique Number)

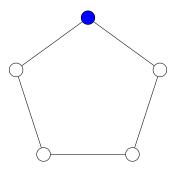
• $\chi(G) =$ minimum number of colors to color the vertices of G so that adjacent vertices always get different colors.

Definition (Chromatic Number, Clique Number)

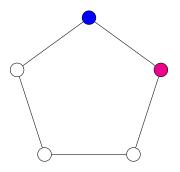

- $\chi(G) =$ minimum number of colors to color the vertices of G so that adjacent vertices always get different colors.
- $\omega(G) = \max \min \text{ size of a clique.}$

Definition (Chromatic Number, Clique Number)

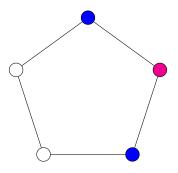
- $\chi(G)$ = minimum number of colors to color the vertices of G so that adjacent vertices always get different colors.
- $\omega(G) = \max \min \text{ size of a clique.}$


Definition (Chromatic Number, Clique Number)

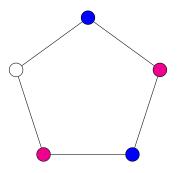
- $\chi(G) =$ minimum number of colors to color the vertices of G so that adjacent vertices always get different colors.
- $\omega(G) = \max \min \text{ size of a clique.}$


Definition (Chromatic Number, Clique Number)

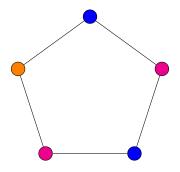
- $\chi(G) =$ minimum number of colors to color the vertices of G so that adjacent vertices always get different colors.
- $\omega(G) = \max \min \text{ size of a clique.}$


Definition (Chromatic Number, Clique Number)

- $\chi(G) =$ minimum number of colors to color the vertices of G so that adjacent vertices always get different colors.
- $\omega(G) = \max \min \text{ size of a clique.}$


Definition (Chromatic Number, Clique Number)

- $\chi(G) =$ minimum number of colors to color the vertices of G so that adjacent vertices always get different colors.
- $\omega(G) = \max \min \text{ size of a clique.}$


Definition (Chromatic Number, Clique Number)

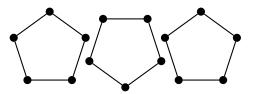
- $\chi(G) =$ minimum number of colors to color the vertices of G so that adjacent vertices always get different colors.
- $\omega(G) = \max \min \text{ size of a clique.}$

Definition (Chromatic Number, Clique Number)

- $\chi(G) =$ minimum number of colors to color the vertices of G so that adjacent vertices always get different colors.
- $\omega(G) = \max \min \text{ size of a clique.}$

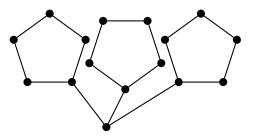
Theorem

There exist triangle-free graphs with arbitrarily large χ .

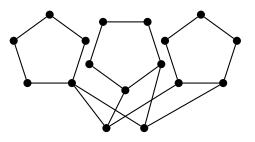

Theorem

There exist triangle-free graphs with arbitrarily large χ .

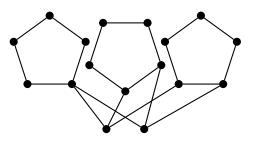
- Zykov (1952)
- Blanche Descartes (1954)
- Mycielski (1955)
- Erdős (1959)
- Burling (1965)
- ...


 $G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)$

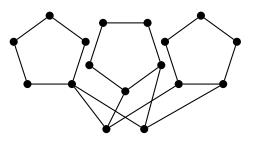
 $G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)$



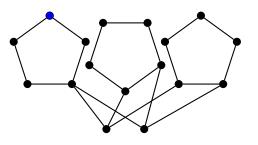
JGA 2024 4 / 10


 $G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)$

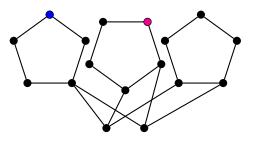
 $G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)$


$$G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)$$

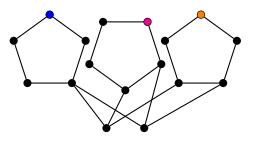
• If G_1, \ldots, G_k are triangle-free then $Z(G_1, \ldots, G_k)$ too.


JGA 2024 4 / 10

$$G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)$$


- If G_1, \ldots, G_k are triangle-free then $Z(G_1, \ldots, G_k)$ too.
- If $\chi(G_i) \ge i$ for every *i* then $\chi(Z(G_1, \ldots, G_k)) \ge k + 1.$

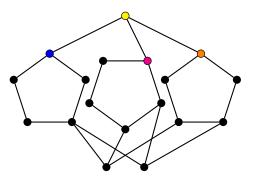
$$G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)$$


- If G_1, \ldots, G_k are triangle-free then $Z(G_1, \ldots, G_k)$ too.
- If $\chi(G_i) \ge i$ for every *i* then $\chi(Z(G_1, \ldots, G_k)) \ge k + 1.$

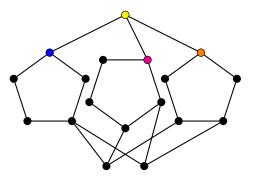
$$G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)$$

- If G_1, \ldots, G_k are triangle-free then $Z(G_1, \ldots, G_k)$ too.
- If $\chi(G_i) \ge i$ for every *i* then $\chi(Z(G_1, \ldots, G_k)) \ge k + 1.$

$$G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)$$


- If G_1, \ldots, G_k are triangle-free then $Z(G_1, \ldots, G_k)$ too.
- If $\chi(G_i) \ge i$ for every *i* then $\chi(Z(G_1, \ldots, G_k)) \ge k + 1.$

$$G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)$$

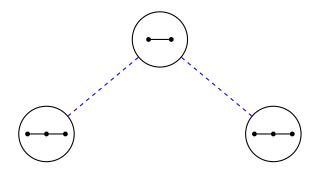

- If G_1, \ldots, G_k are triangle-free then $Z(G_1, \ldots, G_k)$ too.
- If $\chi(G_i) \ge i$ for every *i* then $\chi(Z(G_1, \ldots, G_k)) \ge k + 1.$

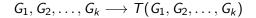
$$G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)$$

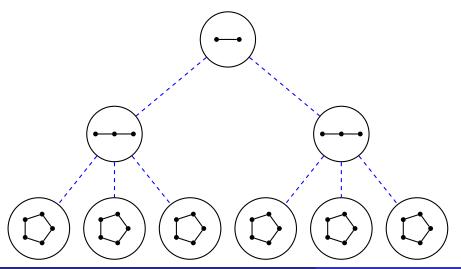
- If G_1, \ldots, G_k are triangle-free then $Z(G_1, \ldots, G_k)$ too.
- If $\chi(G_i) \ge i$ for every *i* then $\chi(Z(G_1, \ldots, G_k)) \ge k + 1.$

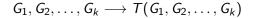
$$G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)$$

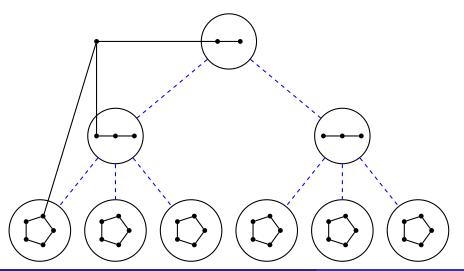
- If G_1, \ldots, G_k are triangle-free then $Z(G_1, \ldots, G_k)$ too.
- If $\chi(G_i) \ge i$ for every *i* then $\chi(Z(G_1, \ldots, G_k)) \ge k + 1.$

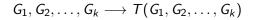

Zykov sequence: $Z_1 = K_1$, $Z_{k+1} = Z(Z_1, ..., Z_k)$.

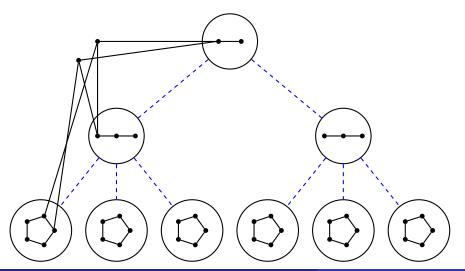

$$G_1, G_2, \ldots, G_k \longrightarrow T(G_1, G_2, \ldots, G_k)$$

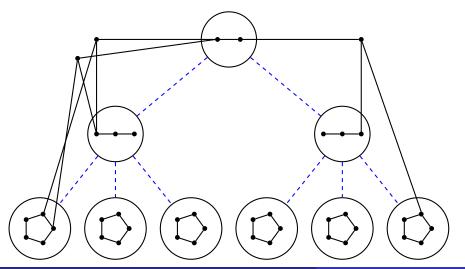

$$G_1, G_2, \ldots, G_k \longrightarrow T(G_1, G_2, \ldots, G_k)$$


$$G_1, G_2, \ldots, G_k \longrightarrow T(G_1, G_2, \ldots, G_k)$$

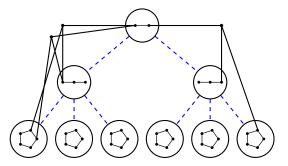




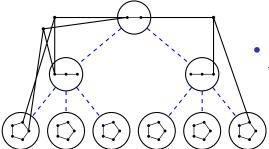

A tamed family of triangle-free graphs with unbounded chromatic number



A tamed family of triangle-free graphs with unbounded chromatic number

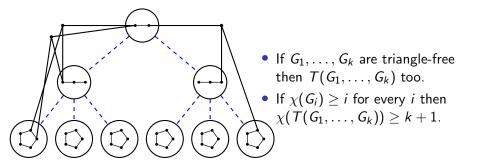

$$G_1, G_2, \ldots, G_k \longrightarrow T(G_1, G_2, \ldots, G_k)$$

A tamed family of triangle-free graphs with unbounded chromatic number


Properties of the Twincut operator

 $G_1, G_2, \ldots, G_k \longrightarrow T(G_1, G_2, \ldots, G_k)$

Properties of the Twincut operator


$$G_1, G_2, \ldots, G_k \longrightarrow T(G_1, G_2, \ldots, G_k)$$

 If G₁,..., G_k are triangle-free then T(G₁,..., G_k) too.

Properties of the Twincut operator

$$G_1, G_2, \ldots, G_k \longrightarrow T(G_1, G_2, \ldots, G_k)$$

Twincut sequence

$$T_1 = K_1, T_{k+1} = T(T_1, \ldots, T_k).$$

Twincut sequence

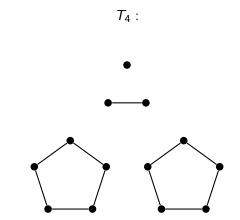
$$T_1 = K_1, T_{k+1} = T(T_1, \ldots, T_k).$$

 T_1 :

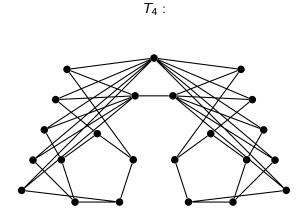
$$T_1 = K_1, T_{k+1} = T(T_1, \ldots, T_k).$$

A tamed family of triangle-free graphs with unbounded chromatic number

$$T_1 = K_1, T_{k+1} = T(T_1, \ldots, T_k).$$



$$T_1 = K_1, T_{k+1} = T(T_1, \ldots, T_k).$$


T_3 :

$$T_1 = K_1, T_{k+1} = T(T_1, \ldots, T_k).$$

$$T_1 = K_1, T_{k+1} = T(T_1, \ldots, T_k).$$

Theorem

Every T_k can be built from $\{K_1, K_2, \overline{K_2}\}$ by gluing on sets of size at most 2 and substituting by $\overline{K_2}$.

Theorem

Every T_k can be built from $\{K_1, K_2, \overline{K_2}\}$ by gluing on sets of size at most 2 and substituting by $\overline{K_2}$. Equivalently, every nontrivial induced subgraph of a T_k either has false twins or a separation of order at most 2.

Proposition

Every T_k is edge-critical: for every edge e of T_k , $\chi(T_k - e) = k - 1$.

Proposition

Every T_k is edge-critical: for every edge e of T_k , $\chi(T_k - e) = k - 1$.

Proposition

The family of twincut graphs has bounded VC-dimension.

Proposition

Every T_k is edge-critical: for every edge e of T_k , $\chi(T_k - e) = k - 1$.

Proposition

The family of twincut graphs has bounded VC-dimension.

Proposition

The twin-width of T_k is at most k - 1.

Proposition

Every T_k is edge-critical: for every edge e of T_k , $\chi(T_k - e) = k - 1$.

Proposition

The family of twincut graphs has bounded VC-dimension.

Proposition

The twin-width of T_k is at most k - 1.

Theorem [Bonnet, Geniet, Kim, Thomassé, Watrigant '21]

Every triangle-free graph of chromatic number k has twin-width at least k - 2.

• What is the maximum chromatic number of triangle-free graphs of twin-width k? (either k + 1 or k + 2)

- What is the maximum chromatic number of triangle-free graphs of twin-width k? (either k + 1 or k + 2)
- Is there a minimal hereditary subclass of twincut graphs with unbounded $\chi?$

- What is the maximum chromatic number of triangle-free graphs of twin-width k? (either k + 1 or k + 2)
- Is there a minimal hereditary subclass of twincut graphs with unbounded $\chi?$

Thank you!