A tamed family of triangle-free graphs with unbounded chromatic number

Romain Bourneuf LaBRI

Joint work with Édouard Bonnet, Julien Duron, Colin Geniet, Stéphan Thomassé and Nicolas Trotignon

JGA 2024

Definition (Chromatic Number, Clique Number)

• $\chi(G)$ = minimum number of colors to color the vertices of G so that adjacent vertices always get different colors.

Definition (Chromatic Number, Clique Number)

- $\bullet \ \chi(G) =$ minimum number of colors to color the vertices of G so that adjacent vertices always get different colors.
- $\omega(G)$ = maximum size of a clique.

Definition (Chromatic Number, Clique Number)

- $\chi(G)$ = minimum number of colors to color the vertices of G so that adjacent vertices always get different colors.
- $\omega(G)$ = maximum size of a clique.

Definition (Chromatic Number, Clique Number)

- $\chi(G)$ = minimum number of colors to color the vertices of G so that adjacent vertices always get different colors.
- $\omega(G)$ = maximum size of a clique.

Definition (Chromatic Number, Clique Number)

- $\chi(G)$ = minimum number of colors to color the vertices of G so that adjacent vertices always get different colors.
- $\omega(G)$ = maximum size of a clique.

Definition (Chromatic Number, Clique Number)

- $\chi(G)$ = minimum number of colors to color the vertices of G so that adjacent vertices always get different colors.
- $\omega(G)$ = maximum size of a clique.

Definition (Chromatic Number, Clique Number)

- $\chi(G)$ = minimum number of colors to color the vertices of G so that adjacent vertices always get different colors.
- $\omega(G)$ = maximum size of a clique.

Definition (Chromatic Number, Clique Number)

- $\chi(G)$ = minimum number of colors to color the vertices of G so that adjacent vertices always get different colors.
- $\omega(G)$ = maximum size of a clique.

Definition (Chromatic Number, Clique Number)

- $\chi(G)$ = minimum number of colors to color the vertices of G so that adjacent vertices always get different colors.
- $\omega(G)$ = maximum size of a clique.

Theorem

There exist triangle-free graphs with arbitrarily large χ .

Theorem

There exist triangle-free graphs with arbitrarily large χ .

- Zykov (1952)
- Blanche Descartes (1954)
- Mycielski (1955)
- Erdős (1959)
- Burling (1965)
- ...

 $G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)$

 $G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)$

 $G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)$

 $G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)$

$$
G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)
$$

• If G_1, \ldots, G_k are triangle-free then $Z(G_1, \ldots, G_k)$ too.

$$
G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)
$$

- If G_1, \ldots, G_k are triangle-free then $Z(G_1, \ldots, G_k)$ too.
- If $\chi(G_i) \geq i$ for every *i* then $\chi(Z(G_1, ..., G_k)) \geq k + 1.$

$$
G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)
$$

- If G_1, \ldots, G_k are triangle-free then $Z(G_1, \ldots, G_k)$ too.
- If $\chi(G_i) \geq i$ for every *i* then $\chi(Z(G_1, ..., G_k)) \geq k + 1.$

$$
G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)
$$

- If G_1, \ldots, G_k are triangle-free then $Z(G_1, \ldots, G_k)$ too.
- If $\chi(G_i) \geq i$ for every *i* then $\chi(Z(G_1, ..., G_k)) \geq k + 1.$

$$
G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)
$$

- If G_1, \ldots, G_k are triangle-free then $Z(G_1, \ldots, G_k)$ too.
- If $\chi(G_i) \geq i$ for every *i* then $\chi(Z(G_1, ..., G_k)) \geq k + 1.$

$$
G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)
$$

- If G_1, \ldots, G_k are triangle-free then $Z(G_1, \ldots, G_k)$ too.
- If $\chi(G_i) \geq i$ for every *i* then $\chi(Z(G_1, ..., G_k)) \geq k + 1.$

$$
G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)
$$

- If G_1, \ldots, G_k are triangle-free then $Z(G_1, \ldots, G_k)$ too.
- If $\chi(G_i) \geq i$ for every *i* then $\chi(Z(G_1, ..., G_k)) \geq k + 1.$

$$
G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)
$$

- If G_1, \ldots, G_k are triangle-free then $Z(G_1, \ldots, G_k)$ too.
- If $\chi(G_i) \geq i$ for every *i* then $\chi(Z(G_1, \ldots, G_k)) > k+1.$

Zykov sequence: $Z_1 = K_1, Z_{k+1} = Z(Z_1, \ldots, Z_k)$.

$$
G_1, G_2, \ldots, G_k \longrightarrow \mathcal{T}(G_1, G_2, \ldots, G_k)
$$

$$
G_1, G_2, \ldots, G_k \longrightarrow \mathcal{T}(G_1, G_2, \ldots, G_k)
$$

$$
G_1, G_2, \ldots, G_k \longrightarrow \mathcal{T}(G_1, G_2, \ldots, G_k)
$$

$$
\mathsf{G}_1,\mathsf{G}_2,\ldots,\mathsf{G}_k\longrightarrow \mathcal{T}(\mathsf{G}_1,\mathsf{G}_2,\ldots,\mathsf{G}_k)
$$

$$
\mathsf{G}_1,\mathsf{G}_2,\ldots,\mathsf{G}_k\longrightarrow \mathcal{T}(\mathsf{G}_1,\mathsf{G}_2,\ldots,\mathsf{G}_k)
$$

Properties of the Twincut operator

 $G_1, G_2, \ldots, G_k \longrightarrow \mathcal{T}(G_1, G_2, \ldots, G_k)$

Properties of the Twincut operator

$$
G_1, G_2, \ldots, G_k \longrightarrow \mathcal{T}(G_1, G_2, \ldots, G_k)
$$

• If G_1, \ldots, G_k are triangle-free then $T(G_1, \ldots, G_k)$ too.

Properties of the Twincut operator

$$
G_1, G_2, \ldots, G_k \longrightarrow \mathcal{T}(G_1, G_2, \ldots, G_k)
$$

$$
T_1 = K_1, T_{k+1} = T(T_1, \ldots, T_k).
$$

$$
T_1 = K_1, T_{k+1} = T(T_1, ..., T_k).
$$

 T_1 :

$$
T_1=K_1, T_{k+1}=T(T_1,\ldots,T_k).
$$

$$
T_1=K_1, T_{k+1}=T(T_1,\ldots,T_k).
$$

$$
T_1=K_1, T_{k+1}=T(T_1,\ldots,T_k).
$$

T_3 :

$$
T_1=K_1, T_{k+1}=T(T_1,\ldots,T_k).
$$

$$
T_1=K_1, T_{k+1}=T(T_1,\ldots,T_k).
$$

 T_4 :

Theorem

Every T_k can be built from $\{K_1, K_2, \overline{K_2}\}$ by gluing on sets of size at most 2 and substituting by $\overline{K_2}$.

Theorem

Every T_k can be built from $\{K_1, K_2, \overline{K_2}\}$ by gluing on sets of size at most 2 and substituting by $\overline{K_2}$. Equivalently, every nontrivial induced subgraph of a T_k either has false twins or a separation of order at most 2.

Proposition

Every T_k is edge-critical: for every edge e of T_k , $\chi(T_k - e) = k - 1$.

Proposition

Every T_k is edge-critical: for every edge e of T_k , $\chi(T_k - e) = k - 1$.

Proposition

The family of twincut graphs has bounded VC-dimension.

Proposition

Every T_k is edge-critical: for every edge e of T_k , $\chi(T_k - e) = k - 1$.

Proposition

The family of twincut graphs has bounded VC-dimension.

Proposition

The twin-width of T_k is at most $k - 1$.

Proposition

Every T_k is edge-critical: for every edge e of T_k , $\chi(T_k - e) = k - 1$.

Proposition

The family of twincut graphs has bounded VC-dimension.

Proposition

The twin-width of T_k is at most $k - 1$.

Theorem [Bonnet, Geniet, Kim, Thomassé, Watrigant '21]

Every triangle-free graph of chromatic number k has twin-width at least $k - 2$.

• What is the maximum chromatic number of triangle-free graphs of twin-width k ? (either $k + 1$ or $k + 2$)

- What is the maximum chromatic number of triangle-free graphs of twin-width k ? (either $k + 1$ or $k + 2$)
- Is there a minimal hereditary subclass of twincut graphs with unbounded χ ?
- What is the maximum chromatic number of triangle-free graphs of twin-width k ? (either $k + 1$ or $k + 2$)
- Is there a minimal hereditary subclass of twincut graphs with unbounded χ ?

Thank you!