A tamed family of triangle-free graphs with unbounded chromatic number

Romain Bourneuf LaBRI

### Joint work with Édouard Bonnet, Julien Duron, Colin Geniet, Stéphan Thomassé and Nicolas Trotignon

JGA 2024

### Definition (Chromatic Number, Clique Number)

•  $\chi(G) =$  minimum number of colors to color the vertices of G so that adjacent vertices always get different colors.

### Definition (Chromatic Number, Clique Number)

- $\chi(G) =$  minimum number of colors to color the vertices of G so that adjacent vertices always get different colors.
- $\omega(G) = \max \min \text{ size of a clique.}$

### Definition (Chromatic Number, Clique Number)

- $\chi(G)$  = minimum number of colors to color the vertices of G so that adjacent vertices always get different colors.
- $\omega(G) = \max \min \text{ size of a clique.}$

### Definition (Chromatic Number, Clique Number)

- $\chi(G) =$  minimum number of colors to color the vertices of G so that adjacent vertices always get different colors.
- $\omega(G) = \max \min \text{ size of a clique.}$



### Definition (Chromatic Number, Clique Number)

- $\chi(G) =$  minimum number of colors to color the vertices of G so that adjacent vertices always get different colors.
- $\omega(G) = \max \min \text{ size of a clique.}$



### Definition (Chromatic Number, Clique Number)

- $\chi(G) =$  minimum number of colors to color the vertices of G so that adjacent vertices always get different colors.
- $\omega(G) = \max \min \text{ size of a clique.}$



### Definition (Chromatic Number, Clique Number)

- $\chi(G) =$  minimum number of colors to color the vertices of G so that adjacent vertices always get different colors.
- $\omega(G) = \max \min \text{ size of a clique.}$



### Definition (Chromatic Number, Clique Number)

- $\chi(G) =$  minimum number of colors to color the vertices of G so that adjacent vertices always get different colors.
- $\omega(G) = \max \min \text{ size of a clique.}$



### Definition (Chromatic Number, Clique Number)

- $\chi(G) =$  minimum number of colors to color the vertices of G so that adjacent vertices always get different colors.
- $\omega(G) = \max \min \text{ size of a clique.}$



#### Theorem

There exist triangle-free graphs with arbitrarily large  $\chi$ .

#### Theorem

There exist triangle-free graphs with arbitrarily large  $\chi$ .

- Zykov (1952)
- Blanche Descartes (1954)
- Mycielski (1955)
- Erdős (1959)
- Burling (1965)
- ...

 $G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)$ 

 $G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)$ 



JGA 2024 4 / 10

 $G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)$ 



 $G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)$ 



$$G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)$$



• If  $G_1, \ldots, G_k$  are triangle-free then  $Z(G_1, \ldots, G_k)$  too.

JGA 2024 4 / 10

$$G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)$$



- If  $G_1, \ldots, G_k$  are triangle-free then  $Z(G_1, \ldots, G_k)$  too.
- If  $\chi(G_i) \ge i$  for every *i* then  $\chi(Z(G_1, \ldots, G_k)) \ge k + 1.$

$$G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)$$



- If  $G_1, \ldots, G_k$  are triangle-free then  $Z(G_1, \ldots, G_k)$  too.
- If  $\chi(G_i) \ge i$  for every *i* then  $\chi(Z(G_1, \ldots, G_k)) \ge k + 1.$

$$G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)$$



- If  $G_1, \ldots, G_k$  are triangle-free then  $Z(G_1, \ldots, G_k)$  too.
- If  $\chi(G_i) \ge i$  for every *i* then  $\chi(Z(G_1, \ldots, G_k)) \ge k + 1.$

$$G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)$$



- If  $G_1, \ldots, G_k$  are triangle-free then  $Z(G_1, \ldots, G_k)$  too.
- If  $\chi(G_i) \ge i$  for every *i* then  $\chi(Z(G_1, \ldots, G_k)) \ge k + 1.$

$$G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)$$



- If  $G_1, \ldots, G_k$  are triangle-free then  $Z(G_1, \ldots, G_k)$  too.
- If  $\chi(G_i) \ge i$  for every *i* then  $\chi(Z(G_1, \ldots, G_k)) \ge k + 1.$

$$G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)$$



- If  $G_1, \ldots, G_k$  are triangle-free then  $Z(G_1, \ldots, G_k)$  too.
- If  $\chi(G_i) \ge i$  for every *i* then  $\chi(Z(G_1, \ldots, G_k)) \ge k + 1.$

$$G_1, G_2, \ldots, G_k \longrightarrow Z(G_1, G_2, \ldots, G_k)$$



- If  $G_1, \ldots, G_k$  are triangle-free then  $Z(G_1, \ldots, G_k)$  too.
- If  $\chi(G_i) \ge i$  for every *i* then  $\chi(Z(G_1, \ldots, G_k)) \ge k + 1.$

Zykov sequence:  $Z_1 = K_1$ ,  $Z_{k+1} = Z(Z_1, ..., Z_k)$ .

$$G_1, G_2, \ldots, G_k \longrightarrow T(G_1, G_2, \ldots, G_k)$$

$$G_1, G_2, \ldots, G_k \longrightarrow T(G_1, G_2, \ldots, G_k)$$



$$G_1, G_2, \ldots, G_k \longrightarrow T(G_1, G_2, \ldots, G_k)$$







A tamed family of triangle-free graphs with unbounded chromatic number





A tamed family of triangle-free graphs with unbounded chromatic number





$$G_1, G_2, \ldots, G_k \longrightarrow T(G_1, G_2, \ldots, G_k)$$



A tamed family of triangle-free graphs with unbounded chromatic number

### Properties of the Twincut operator

 $G_1, G_2, \ldots, G_k \longrightarrow T(G_1, G_2, \ldots, G_k)$ 



### Properties of the Twincut operator

$$G_1, G_2, \ldots, G_k \longrightarrow T(G_1, G_2, \ldots, G_k)$$



 If G<sub>1</sub>,..., G<sub>k</sub> are triangle-free then T(G<sub>1</sub>,..., G<sub>k</sub>) too.

### Properties of the Twincut operator

$$G_1, G_2, \ldots, G_k \longrightarrow T(G_1, G_2, \ldots, G_k)$$



### Twincut sequence

$$T_1 = K_1, T_{k+1} = T(T_1, \ldots, T_k).$$

### Twincut sequence

$$T_1 = K_1, T_{k+1} = T(T_1, \ldots, T_k).$$

 $T_1$  :

$$T_1 = K_1, T_{k+1} = T(T_1, \ldots, T_k).$$





A tamed family of triangle-free graphs with unbounded chromatic number

$$T_1 = K_1, T_{k+1} = T(T_1, \ldots, T_k).$$



$$T_1 = K_1, T_{k+1} = T(T_1, \ldots, T_k).$$

### $T_3$ :



$$T_1 = K_1, T_{k+1} = T(T_1, \ldots, T_k).$$



$$T_1 = K_1, T_{k+1} = T(T_1, \ldots, T_k).$$



#### Theorem

Every  $T_k$  can be built from  $\{K_1, K_2, \overline{K_2}\}$  by gluing on sets of size at most 2 and substituting by  $\overline{K_2}$ .

#### Theorem

Every  $T_k$  can be built from  $\{K_1, K_2, \overline{K_2}\}$  by gluing on sets of size at most 2 and substituting by  $\overline{K_2}$ . Equivalently, every nontrivial induced subgraph of a  $T_k$  either has false twins or a separation of order at most 2.

### Proposition

Every  $T_k$  is edge-critical: for every edge e of  $T_k$ ,  $\chi(T_k - e) = k - 1$ .

### Proposition

Every  $T_k$  is edge-critical: for every edge e of  $T_k$ ,  $\chi(T_k - e) = k - 1$ .

#### Proposition

The family of twincut graphs has bounded VC-dimension.

### Proposition

Every  $T_k$  is edge-critical: for every edge e of  $T_k$ ,  $\chi(T_k - e) = k - 1$ .

#### Proposition

The family of twincut graphs has bounded VC-dimension.

#### Proposition

The twin-width of  $T_k$  is at most k - 1.

#### Proposition

Every  $T_k$  is edge-critical: for every edge e of  $T_k$ ,  $\chi(T_k - e) = k - 1$ .

#### Proposition

The family of twincut graphs has bounded VC-dimension.

#### Proposition

The twin-width of  $T_k$  is at most k - 1.

### Theorem [Bonnet, Geniet, Kim, Thomassé, Watrigant '21]

Every triangle-free graph of chromatic number k has twin-width at least k - 2.

• What is the maximum chromatic number of triangle-free graphs of twin-width k? (either k + 1 or k + 2)

- What is the maximum chromatic number of triangle-free graphs of twin-width k? (either k + 1 or k + 2)
- Is there a minimal hereditary subclass of twincut graphs with unbounded  $\chi?$

- What is the maximum chromatic number of triangle-free graphs of twin-width k? (either k + 1 or k + 2)
- Is there a minimal hereditary subclass of twincut graphs with unbounded  $\chi?$

Thank you!